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Abstract. In this paper a concern about the accuracy (as a function
of parallelism) of a certain class of distributed learning algorithms is
raised, and one proposed improvement is illustrated. We focus on learning
a single model from a set of disjoint data sets, which are distributed
across a set of computers. The model is a set of rules. The distributed
data sets may be disjoint for any of several reasons. In our approach,
the first step is to construct a rule set (model) for each of the original
disjoint data sets. Then rule sets are merged until an eventual final rule
set is obtained which models the aggregate data. We show that this
approach compares to directly creating a rule set from the aggregate
data and promises faster learning. Accuracy can drop off as the degree
of parallelism increases. However, an approach has been developed to
extend the degree of parallelism achieved before this problem takes over.

1 Introduction

Training data may be distributed across a set of computers for several reasons.
For example, several data sets concerning telephone fraud might be owned by
separate organizations who have competitive reasons for keeping the data pri-
vate. However, the organizations would be interested in models of the aggregate
data.

Another example is very large datasets that will not fit in a single memory
which are useful in the process of learning a classifier or model of the data. It
is now possible to have training data on the order of a terabyte which will not
fit in a single computer’s memory. A parallel approach to learning a model from
the data will solve the practical problem of how to deal with learning from large
data sets.

This paper describes an approach that learns a single model of a distributed
training set in the form of a set of rules. A single model may be an advantage in
the case that it will be applied to a large amount of data. For example, consider
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the problem of visualizing “interesting” regions of a large data set. A set of
rules might be learned which can do this. These rules would then be applied to
similarly large data sets to guide the user to the interesting regions.

This paper examines an approach to generating rules in parallel that is related
to work by [1,2]. A set of rules will be generated from disjoint subsets of the full
data set used for training. Given N disjoint subsets of the full dataset there
will be N sets of rules generated. Each subset of data may reside on a distinct
processor. The distributed rule sets must be merged into a single rule set. Our
focus is towards using a large N with very large training sets.

The final set of merged rules should be free of conflicts and have accuracy
equivalent to a set of rules developed from the full dataset used for training.
We discuss an approach to building a single, accurate set of rules created from
N rule sets. The question of how similar to one another rule sets developed
sequentially and in parallel might be is explored. Experimental results on several
small, representative datasets show that accuracy tends to decline as N increases.
A method to reduce this tendency is presented.

In Section 2 the generation of rules in parallel and the combination of rule
sets is discussed. Section 3 contains experimental results and a discussion of
the issues shown by an analysis of them. Section 4 contains a summary of the
strengths and open questions associated with the presented approach to learning
in parallel.

2 Generating Rules in Parallel and Combining Them

The disjoint subsets of extremely large data sets may also be very large. In
principle any approach that produces rules can be used to learn from each data
set. It is possible, for example, to learn decision trees [3,4] in a fast, cost effective
manner. Learning a decision tree, pruning it and then generating rules from the
pruned tree will be an effective competitor from a time standpoint to other rule
generation approaches such as RL [5] or RIPPER [6].

In the work reported here, rules are created directly by traversing pruned
decision trees (with the obvious optimization of removing redundant tests). The
process of creating rules from decision trees in a more time consuming fashion
has been covered in [3,7]. In learning rules it is often the case that a default
class is utilized. However, it is desirable to avoid having default classes for ex-
amples because the lack of a model for some examples cannot be resolved in a
straightforward way when rule sets are merged.

Each rule that is created will have associated with it a measure of its “good-
ness” which is based on its accuracy and the number and type of examples it
covers. We are using a normalized version of Quinlan’s certainty factor [8,2] to
determine the accuracy of a rule R over an example set E as:

acc(R, E) = (TP − 0.5)/(TP + ρFP ), (1)

where TP is the number of true positives examples covered by R when applied
to E, FP is the number of false positives caused by R when applied to E, and
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ρ is the ratio of positive examples to negative examples for the class of the rule
contained in the training set.

A rule, R, must have acc(R,E) ≥ t for some threshold t in order to be
considered acceptable over a set of E examples. When a rule is built on a single
subset of data, its accuracy may change as it is applied to each of the other
subsets of data. The rule can be discarded whenever its accuracy is less than t
or only after it has been applied to all of the distributed examples and has an
accuracy below the threshold.

Discarding a rule as soon as it is below the accuracy threshold will save the
testing time on other processors and some communication time required to send
it and its current TP/FP count to another processor. Testing time is not likely to
be very high and communication time for one rule will generally be low. So, the
per rule savings may be relatively low. On the other hand a rule which performs
poorly on one partition and then improves to be acceptable or quite good will
be ruled out under the incremental deletion approach. Our approach will be to
only delete rules after testing is complete.

2.1 Merging Rule Sets Generated in Parallel

In [9] it is shown that any rule which is acceptable, by the accuracy definition in
(1), on the full training set will be acceptable on at least one disjoint subset of
the full data. This suggests that a rule set created by merging sets of acceptable
rules learned on disjoint subsets of a full training set will contain rules that would
be found on the full training set. Earlier work on building rules in parallel and
then merging them [2] found that the merged set of rules contained the same
rules as found by learning on the full data set and some extras. In that work, the
training set was large, over 1,000,000 examples. The same paper expressed the
belief that the same rule set would be found in parallel as generated sequentially.

However, in Figure 1 we show a small illustrative data set for which the rules
learned by merging disjoint rule sets built on a disjoint 2 partition of the data
do not include any rules learned by training on the full data set. Information
gain is used to choose the attribute test for each node in the decision tree [4].

Figure 1 shows that a merged rule set, with each of the constituent rule
sets developed in parallel on a disjoint training set, may in the extreme contain
no rules in common with the rules created by training on the union of all the
subsets (i.e. the full training set). The final merged rule set will depend upon
how the examples are partitioned. The mix of examples needs to reflect the mix
of available training examples.

The example data set and results from it shown in Figure 1 suggest that the
accuracy of merged rules may well be different from the accuracy of the rules
created from the full training set. Our experimental results will examine how
different the accuracy may be and how it is affected by the number of partitions
made from the training data.

As rule sets are merged, contradictions may be introduced in the sense that
an example may be classified into different classes by two rules. As an individual
rule is applied to more labeled examples its accuracy may change significantly.
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Processor 1 gets examples BCD
and produces the rules:

if attr 1 > 2 then C1.
if attr 1 <= 2 then C2.

if attr 2 > 3 then C2.
if attr 2 <= 3 then C1.

or

Processor 2 gets examples AEF
and produces the rules:

if attr 1 <= 1 then C1.
if attr 1 > 1 then C2.

From the full training set we get the rules:

if attr 1 > 4 then C2.
if attr 1 <= 4 and attr 2 <= 3 then C1.
if attr 1 <= 4 and attr 2 > 3 then C2.

Fig. 1. An example where rules built in parallel on disjoint subsets must be
different from rules built on the full data set. Using information gain to decide
the splits.

Consider two rules R1 and R2 which classify an overlapping set of examples into
two different classes. As the rules are applied to all of the subsets of the original
training examples, the accuracy of one of them is expected to become less than
a well-chosen threshold, t. Hence, one will be removed and the conflict resolved.
However, it is possible for partially conflicting rules to survive.

For example, from the Iris data set [10] using 2 partitions we get the rules
shown in Figure 2. The final accuracy after they have been applied to all training
examples (but learned only from the examples in one partition) is shown in
the second set of brackets associated with the rule. Both rules perform quite
well when the accuracy measure in (1) is applied to them. If the conflict is
not resolved, then rule ordering will affect the rules’ performance. A reasonable
choice might be to give higher priority to the rule with a better value of acc(R,E).
Alternatively, conflict can be resolved as shown in [11,1]. Essentially conditional
tests can be added to one or both rules resulting in specialization of the rules.
Any examples left uncovered can then be classified by a newly created rule.
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Here, we will remove the lowest performing conflicting rule with any uncovered
examples being assigned to the majority class.

if petal width in cm > 0.4 and

petal length in cm > 4.9

then class Iris-viginica [1/23]

[1/40]

if 0.5 < petal width in cm <= 1.6

then class Iris-Versicolor [0/23]

[4/48]

Fig. 2. Example of two rules from 1 fold of an Iris data 2 partition which have
conflicts but survive to the final set. The numbers in brackets are the false pos-
itives and number of examples covered respectively. The second set of numbers
for a rule is its accuracy after it is applied to the partition on which it was not
learned.

Another type of conflict occurs when two rules for the same class created
from different disjoint subsets have coverage which overlaps. For example, the
rules shown in Figure 3, can be combined as the second more general rule. In
general when there are overlaps among rules for the same class, the more general
test is used.

a) if x > 7 and x < 15 then Class1

b) if x > 9 and x < 16 then Class1

c) if x > 7 and x < 16 then Class1

Fig. 3. Two overlapping rules, a and b, can be replaced by the third, c.

3 Experiments

The experiments reported here are from two datasets from the UC Irvine database
[10] both of which consist of all continuous attributes. The IRIS data set [12]
has 150 examples from 3 classes and the PIMA Indian diabetes data set has 768
examples from 2 classes. We are interested in how the accuracy is affected by
partitioning these small data sets into N disjoint subsets, learning decision trees
on the subsets, generating rules from the decision trees and then merging the
rules into a final set of rules.

Our experiments were done using 10 fold cross validation [13]. For an indi-
vidual data set and a given number of disjoint subsets, N, 10 partitions of the
data were made each consisting of 90% of the train data with a unique 10% held
back for testing. From each fold, N disjoint subsets are created. C4.5 is applied
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to each of the N subsets and rules are created from the generated decision tree.
The rules created from the jth subset of data are then applied to the N-1 other
subsets. The accuracy of each rule must be greater than the chosen threshold,
t, in order for the rule to remain in the final set of rules. The default for the
threshold t was chosen as 51, just slightly better than guessing every example
belongs to the class of the rule. For the Iris data we chose t=75 rather arbitrarily.
Setting t in an appropriate and systematic way must still be addressed.

For the Iris data, we have done an experiment with N=2. With the default
C4.5 release 8 parameters the results on Iris for 10-fold cross validation and the
results from the approach described here (with 2 different choices for certainty
factors or cf’s for use in pruning) are given in Table 1. The average number of
rules was 6.5 for the default cf=25 and 3.1 for cf=1.

The reason for decreasing the certainty factor for pruning was to make the
rules produced on the data subsets more general and less likely to overfit on the
small number of examples. On this dataset there was a small positive impact.

Table 1. Results on the Iris data set using 10-fold cross-validation for a 2 pro-
cessor partition. sd - standard deviation.

C4.5 % Pruned (cf=25) % Pruned (cf =1)%
Correct ± sd Correct ± sd Correct ± sd

95.3 ± 6.01 94 ± 6.96 94.7 ± 5.81

The results for the simulated parallel approach are insignificantly worse than
for C4.5 with default parameters but comparable to C4.5 with the cf=1 (94.7%
and std= 5.81%).

A more interesting experiment is to look at a significant number of partitions.
With the larger Pima data set, experiments were run with N=2, N=4, . . ., N=10,
and N=12. The results of a 10-fold cross-validation experiment with C4.5 using
its default pruning (cf=25) were an average accuracy of 73.90% with sd=4.26%
and an average of 23.8 rules. Figure 4 shows plots of accuracy, standard deviation
and the number of rules for 10-fold cross validation experiments with each of the
above N disjoint partitions. The performance of rules created from the unpruned
tree, the pruned tree with the certainty factor of 25 and a certainty factor of 1 are
shown. It can be seen that the accuracy of the rule set generally decreases as N
increases. The standard deviation tends to get large, suggesting that performance
on some folds is quite poor. The number of rules that remain in the final set
remains fairly constant as N is increased. There are significantly less rules, after
conflict resolution, than when training is done on the full data set.

3.1 Discussion

The results obtained here come from small datasets. However, we believe the
issue of rule accuracy falling off can also occur with larger datasets. Our results
are consistent with those found in [14] where experiments were conducted on
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Fig. 4. Results from PIMA dataset experiments.

data sets related to the human genome project. It was found that more partitions
resulted in lower performance on unseen data. Their approach to combining the
classifiers was different, relying on voting among the learned set of classifiers.

Some success in mitigating the effect of learning in parallel may be gained
by using a combiner or arbitrator approach to integrating multiple classifiers
[15,16]. However, such approaches entail retaining all N classifiers learned in
parallel and may be problematic for large N. There is not a single model of the
data either.

In [2] an approach similar to ours was used on a very large dataset (over
1,000,000 examples) and there was no drop off in accuracy for partitions up to
N=4. Our results suggest that accuracy would fall off as N increased.

If there are enough representative examples of each class in each of N disjoint
partitions, the combined ruleset will have high accuracy. Clearly, the limit case
is that each of the N subsets has an example which exactly or in the case of
continuous data, almost exactly, matches each of the examples in the other
subsets. So, the data really consists of only |Si| distinct examples, where |Si| is
the set of examples at the ith compute node.
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The very worst case is that |Si| = C, the number of classes in the data. In
this case each subset consists of just one example of each class. Clearly, this is
an unreasonable choice for N and no one would make it in practice.

Under the approach to parallel rule generation covered here there is the usual
question of how large N can be before communication costs begin to slow the rule
generation process significantly. However, there is the more important question
of determining an N for which the accuracy of the resultant rule set is acceptable.
In datasets that are too large to learn from on a single processor, it will not be
possible to know what the maximum accuracy is.

Clearly with this approach a tradeoff between accuracy and speed exists.
The use of more processors promises that each can complete its task faster
on a smaller training set at the usual cost of coordinating the work of all the
processors and waiting for the combination of rules to be completed. However,
there is a second accuracy cost that will be paid at some point as N becomes
large. What the point of significant accuracy falloff is and how to recognize it is
an open question.

Improving Highly Parallel Performance. On very small datasets, the rules
learned will tend to be too general. A good rule on one dataset may prove to
wrongly classify many examples on another processor which belong to a different
class. Specializing such rules by adding conditional tests to them can help rule
out some or all of the examples that are incorrectly classified on a given processor
by a rule created on a different processor.

In a couple of small experiments, we have adopted the following strategy
to improve rule performance. Any rule that is within 5% of the acceptability
threshold and was created on a processor other than the current processor is a
candidate for specialization. The rule is specialized by taking the examples that
are classified by the rule and growing a decision tree on them. Then one takes the
test(s) along the best branch and adds this to the rule to create a new specialized
rule. The specialized rule as well as the original rule will be tested against the
next subset of examples. The accuracy of the specialized rule is only reported on
the examples available on the current processor. Both the original rule and the
specialized rule can be further specialized as new data is encountered as long as
their performance remains within 5% of the threshold, t.

A good feature of this approach is that there will be no decrease in perfor-
mance as long as the original rule remains in the final rule set, but has a lower
priority than its specializations. Any examples left uncovered by the specialized
rules will still be classified by the more general rule. Of course, the general rule
will only exist at the end if its accuracy value is above the threshold.

As a simple example of the potential for improvement consider the example
of Figure 1. Assume you got the second set of rules using attribute 2 (Att2) from
processor 1 (Proc1) and applied them to the examples held by processor 2. The
rule

if Att2 <= 3 then C1
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now gets only 2/5 examples correct. If it is specialized to be

if Att2 <= 3 and Att1 < 5 then C1

the rule will cover 3/3 examples correctly. Further it essentially matches the
second rule obtained from the whole training set in Figure 1. This example
shows how specialization would work.

On the Pima data, specialization was applied to the two partition case raising
the accuracy slightly from 73.38% to 73.77%.

Rule specialization could be decided upon in other ways than in our experi-
ment. For example, after learning, a pessimistic estimate of the rules performance
[3] could be generated. For a test subset on which the classification performance
of the rule was more that x% below the estimate, specialization could be carried
out. To get a better estimate of the performance of a specialized rule, it might
be tested against all the data on which it was not created (e.g. broadcast to all
processors). This would make the conflict resolution process more accurate.

4 Summary

This paper discusses an approach to creating rules in parallel by creating dis-
joint subsets of a large training set, allowing rules to be created on each subset
and then merging the rules. It is shown that this approach can provide good
performance. It is also pointed out that the rules discovered in parallel may be
different from those discovered sequentially. While it is true that rules which
perform well on the full data set will perform well on at least one subset of the
data, it is not necessarily the case that these rules will be discovered.

In an empirical study, it is shown that the accuracy of the merged rule sets
can degrade as the number of processors, N, is increased. This raises the question
of how to choose N to maximize speed and keep accuracy high. The approach
discussed here uses a threshold of goodness for rules. Rules that perform below
the threshold are deleted from the final rule set. The question of how to most
effectively set the threshold is an open one.

It is shown that the performance of rules can be improved by further spe-
cializing those that are under performing. Conditions can be added as the rules
are applied tested on data stored on other processors. Both the specialized rules
and original rules remain as long as their accuracy is above the threshold.

We have pointed out issues and potential fixes to an approach that promises
to provide scalable, accurate rules generated from a parallel computing system.
It will enable learning from large distributed data sets.
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