
GrowHON: A Scalable Algorithm
for Growing Higher-order Networks

of Sequences

Steven J. Krieg(B), Peter M. Kogge, and Nitesh V. Chawla

University of Notre Dame, Notre Dame, IN 46556, USA
{skrieg,kogge,nchawla}@nd.edu

Abstract. Networks are powerful and flexible structures for expressing
relationships between entities, but in traditional network models an edge
can only represent a relationship between a single pair of entities. Higher-
order networks (HONs) overcome this limitation by allowing each node to
represent a sequence of entities, which allows edges to naturally express
higher-order relationships. While HONs have proven effective in several
domains, and previous works have been forced to choose between scal-
ability and thorough detection of higher-order dependencies. To achieve
both scalability and accurate encoding of higher-order dependencies, we
introduce GrowHON, an algorithm that generates a HON by embed-
ding the sequence input in a tree structure, pruning the non-meaningful
sequences, and converting the tree into a network (Code available at
https://github.com/sjkrieg/growhon). We demonstrate that GrowHON
is scalable with respect to both the size of the input and order of the net-
work, and that it preserves important higher-order dependencies that are
not captured by prior approaches. These contributions lay an important
foundation for higher-order networks to continue to evolve and represent
larger and more complex data.

Keywords: Higher order networks · Sequence mining · Graph models

1 Introduction

Networks are powerful and flexible structures for expressing relationships
between entities. However, some relationships are too complex to be represented
by traditional network representations that typically rely on first order repre-
sentation. In this first-order network (FON) representation, each entity in a
sequence (typically a set of events or states that are ordered by time) is repre-
sented by a single node, with an edge connecting each pair of entities that are
adjacent in the sequence. The resulting network assumes the first order Markov
property, which means that at a given state, all necessary information about
that state is available locally. For example, in Fig. 1, a random walker that
arrives at node 2 could transition to nodes 3 or 4. But the underlying sequences
exhibit higher-order dependencies: 2 is followed by 3 only when preceded by 1,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
R. M. Benito et al. (Eds.): COMPLEX NETWORKS 2020, SCI 944, pp. 485–496, 2021.
https://doi.org/10.1007/978-3-030-65351-4_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65351-4_39&domain=pdf
https://github.com/sjkrieg/growhon
https://doi.org/10.1007/978-3-030-65351-4_39

486 S. J. Krieg et al.

and followed by 4 when preceded by 3. This vital information is lost during net-
work construction. Several recent works have shown that this limitation of FONs
is problematic in a number of domains, including the study of user behaviors
[3], citation networks [18], trade relations [9], human mobility and navigation
patterns [14,22], information networks [21], the spread of invasive species [24],
anomaly detection [20], and others [10,14].

Fig. 1. A toy example of the differences between a FON and HON representation of a
set of sequences.

A higher-order network (HON) representation, introduced as BuildHON
by Xu et al. [24], is a solution to this problem that seeks to preserve dependen-
cies by allowing each node to represent a variable-length sequence of entities,
rather than a single entity. For example, in Fig. 1, node 3|2 (read as 3 given
2) represents the current state 3 conditioned on the prior state 2. This distin-
guishes it from node 3, and thus allows the network to more fully represent the
underlying statistical patterns. The BuildHON framework is flexible because it
allows nodes of varying order to coexist, and generalizable because it allows for
existing network analysis tools, like clustering and random walking, to be used
without modification. Finally and perhaps most importantly, a HON seeks to
only preserve higher-order patterns that are statistically significant, which helps
control the size of the network and prevent overfitting.

The trade-offs for the increased representative accuracy of such a HON are
increased network size and the cost of network generation, which becomes com-
putationally expensive as the order of the network and size of the input increases.
This paper introduces GrowHON, an algorithm that offers two main advan-
tages over the algorithms utilized in prior work (BuildHON/BuildHON+)
[20,24]:

1. Increased scalability with respect to order and input size. By embedding
sequences in a tree, GrowHON avoids repeated searches through the input
and enables efficient computation.

2. More thorough detection of dependencies at higher orders. By testing higher-
order nodes at first, GrowHON is able to preserve important sequences that
are missed by other methods.

The rest of the paper proceeds as follows. First we survey related work (Sect. 2).
Next we introduce the problem of HON generation and present GrowHON

GrowHON 487

(Sect. 3). Then we experimentally demonstrate GrowHON’s increased scalabil-
ity and ability to detect dependencies at higher orders. Finally we conclude and
discuss opportunities for future work (Sect. 5).

2 Related Work

Several recent works share the conclusion that first-order Markov models are
an inadequate representation of many real-world processes, which often exhibit
complex spatiotemporal dependencies. While a multitude of approaches exist,
we focus our discussion on studies that utilize network structures to model these
dependencies alongside, or together with, other patterns of connectivity between
entities [15]. These works span many domains, including the study of user behav-
iors [3], citation networks [18], trade relations [9], human mobility and naviga-
tion patterns [14,22], information networks [21], the spread of invasive species
[24], anomaly detection [20], and more [10,14]. These works agree on the need
to reach beyond the limits of first-order networks, but differ in methodological
approach. We build on the model of Xu et al., which encodes dependencies of
variable order into a single-layered network structure [20,24]. Compared with
multi-layered networks [21] and models that rely on supplemental higher-order
path information [14,18], this approach has the advantage that existing network
analysis tools can be utilized without modification. Additionally, rather than
inferring a fixed order for the entire model—which can produce a model that
is overfit on some sequences and underfit on others—it allows nodes of variable
order to coexist in the same space. Xu et al. accomplished this by testing each
higher-order pattern and only preserving those that were expected to reduce the
entropy of the network. Saebi et al. noted that this approach was combinatorially
explosive and developed a lazy algorithm that starts with lower-order patterns
and seeks to extend them one entity at a time [20]. This method, BuildHON+,
successfully mitigated the combinatorial problem, but is still limited (by repeated
searches through the input and lazy pattern testing) in its scalability and ability
to thoroughly detect dependencies at higher-orders.

We additionally distinguish our task of higher-order representation from that
of higher-order network analysis, which uses substructures like motifs [11] or
graphlets [16] to model statistically significant patterns of connectivity between
nodes. Higher-order analysis is important and has sparked new approaches to
clustering [1,23,25], representation learning [17], and more, but is ultimately
concerned with analyzing an existing network. In this work, however, we are
concerned with the upstream task of creating a network—one that accurately
represents the underlying data and thus enables meaningful analysis.

3 Methods

3.1 Problem Setting

We define a sequence s = 〈a0, a1, ..., an〉 as an ordered collection of elements.
Each ai ∈ s represents a discrete state or entity, and each adjacent pair ai

488 S. J. Krieg et al.

and ai+1 represents a transition from ai to ai+1. We call s′ = 〈a′
0, a

′
1, ..., a

′
m〉 a

substring1 of s, denoted as s′ � s, if and only if all the elements in s′ also appear
in s in exactly the same order, i.e.

s′ � s ⇐⇒ ∃j : ∀a′
i ∈ s′, a′

i = ai+j . (1)

Fig. 2. An overview of GrowHON on toy data using k = 3. Nodes are colored accord-
ing to their destination state.

In a FON G1 = (V1, E1), a set of sequences S = {s0, s1, ..., sN} is represented
by a set of nodes, V1, and a set of edges, E1. Each entity in {⋃ S} maps to exactly
one node in V1, and two nodes u and v are joined by a directed edge u → v if u
precedes v in some sequence s ∈ S, i.e. 〈u, v〉 � s. Edges are additionally weighted
such that w(u, v) is the number of times 〈u, v〉 appears across all sequences in
S. Statistically significant patterns involving more than two entities, which we
call higher-order dependencies, are thus lost in the construction of G1.

A HON, on the other hand, seeks to preserve these dependencies. Let Gk =
(Vk, Ek) be a HON such that k is the maximum order, or the amount of history
that can be encoded by each node. The set of possible nodes, V ′

k, is the set of
all substrings of length k + 1 or less:

V ′
k =

k+1⋃

m=1

{〈a′
i−m+1, ..., a

′
i〉 : (∃s ∈ S) ∧ (∃i > 0), 〈a′

i−m+1, ..., a
′
i〉 � s}. (2)

In practice, we encode nodes in the following form in order to emphasize that
the destination state am is conditioned on a sequence of prior states am−1, ..., a0:

am|am−1|...|a1|a0 ≡ 〈a0, ..., am−1, am〉, (3)
1 We use the term “substring” instead of “subsequence” because the formal definition

of a subsequence allows for intermediate elements to be removed, and thus does not
preserve adjacency from the original sequence.

GrowHON 489

In both cases, a0 is the earliest element in the original sequence and am is the
latest. For example, node 3|2 in Figs. 1 and 2 represents the substring 〈2, 3〉.
This definition of a node allows for edges in Ek, which are defined in the same
way as in E1 but generalized to allow for the fact that u and v are substrings, to
naturally represent higher-order interactions between nodes. For example, the
edge 3|2 → 1 represents the substring 〈2, 3, 1〉 that cannot be represented by a
single edge in E1.

We define a node’s order as the number of states—current and prior—it
represents. A HON can contain nodes with variable order, so we use cardinality
to denote the order of a node, such that for a given node u = am|am−1|...|a0,
we have |u| = m + 1. This heterogeneity with respect to node order means
that there are many possible representations of a given sequence. For example,
1 → 2 and 1 → 2|1 are both valid representations of 〈1, 2〉. The key objective in
generating a HON is to produce a representation, i.e. a final set of nodes Vk and
edges Ek, that preserves the statistically significant higher-order sequences in
a generalizable (avoids overfitting) and concise form. GrowHON accomplishes
this through three phases:

1. Grow a sequence tree, which is a compact and connected representation of
the original sequences that enables efficient pruning and extraction.

2. Prune statistically insignificant sequences. Pruning is performed in-place and
top-down (with respect to order) in order to ensure all higher-order depen-
dencies are preserved.

3. Extract sequences by converting them to edges in a manner that preserves
the topological integrity of the network.

The following sections detail each of the three phases, and Fig. 2 illustrates
the output of each phase on a toy data set.

3.2 Phase 1: Grow

Grow processes each sequence by embedding the observed substrings of length
m ≤ k + 1 as branches in a tree. For example, in Fig. 2, the first substring
in s1, 〈1, 2, 3, 1〉, produces the leftmost branch on the grown tree: 1 → 2|1 →
3|2|1 → 1|3|2|1. Algorithm 1 details the procedure, which is somewhat similar to
growing a frequent-pattern tree (FP-tree) [6]. The main benefit to this structure
is that it is very efficient to compute transition probability distributions during
the prune phase, since all of a node’s outgoing neighbors are represented as its
children in the tree.

Alongside the tree, we utilize a hash table called the nmap (node map) to
store object references and thus enable efficient node lookups. For a given node
u = am|am−1|...|a0, we call any node u′ = am|am−1|...|az for some 0 < z < m a
lower-order counterpart of u, since it represents the same destination state
am but with z fewer prior states. We express this relationship using the logical
shift operator �:

am|am−1|...|a0 � z = am|am−1|...|az (4)

490 S. J. Krieg et al.

Algorithm 1. GrowHON Phase 1: Grow

1: function Grow(S, k)
2: Q ← an empty queue with length k + 1
3: t.root ← a dummy node
4: t.nmap ← an empty hash table
5: for each sequence s in S do
6: Prime Q with the first k + 1 elements in s
7: for each remaining element a in s do
8: parent ← t.root
9: for each element u in Q do

10: if u in parent.children then
11: child ← parent.GetChild(u) � Retrieve child from hash table
12: child.indeg ← child.indeg + 1
13: else
14: child ← parent.AddChild(u) � Store child in a hash table
15: child.indeg ← 1
16: child.outdeg ← 0
17: t.nmap.Insert(child)

18: parent.outdeg ← parent.outdeg + 1
19: parent ← child

20: Q.pop()
21: Q.push(a)

22: Repeat lines 9-20 until Q is empty

23: return t

Every higher-order node has exactly one lower-order counterpart for each
0 < z < |u′|. This is trivially proven by the fact that if there exists some s ∈ S
such that 〈a0, a1, ..., am〉 � s, then 〈az, az+1, ..., am〉 � s. This means that we can
look up a node’s lower-order counterpart in constant time using the nmap, rather
than traversing the tree from the root, which could require up to k lookups.

3.3 Phase 2: Prune

Given a fully grown tree, Prune decides which nodes to preserve in the HON.
Algorithm 2 details the procedure. We follow Saebi et al. in seeking to preserve a
given node u if the Kullback-Leibler divergence (relative entropy) of its outgoing
transition probabilities, measured with respect to its lower-order counterpart u′,
exceeds a threshold function f [20]. We define both as follows:

DKL(u ‖ u � 1) =
∑

v∈N (u)

P (u → v)log2
P (u → v)

P (u � 1 → v � 1)
, (5)

f(u, τ) =
τ |u|

log2(1 + indeg(u))
, (6)

where N represents the set of outgoing neighbors or children in the grown tree,
P (u → v) = w(u,v)

outdeg(u) represents the probability of transition from node u to

GrowHON 491

Algorithm 2. GrowHON Phase 2: Prune
1: function Prune(t, τ)
2: for i ← t.height − 1 down to 1 do
3: for each node u in t where |u| = i do
4: if u.marked or DKL(u ‖ u � 1) > f(u, τ) then
5: u.parent.marked = true � Ensure ancestors are preserved
6: else
7: u.outdeg ← 0
8: for each child c in u.children do
9: c.indeg ← 0

Algorithm 3. GrowHON Phase 3: Extract
1: function Extract(t)
2: E ← an empty edgelist
3: Extract-Helper(E, t.root)
4: return E

5: function Extract-Helper(E, u)
6: if u.indeg > 0 then
7: if |u| > 1 then � Nodes at level 1 cannot be destinations
8: v ← u
9: while v.outdeg = 0 and |v| > 1 do � Handle the dead-end (leaf) case

10: v ← v � 1

11: E.insert(u.parent, v, u.indeg)

12: for child in n.children do
13: Extract-Helper(E, child)

node v, and τ is a free parameter (we use a default of 1.0). f increases monoton-
ically as τ and |u| increases and decreases monotonically as indeg(u) increases,
which helps control for the fact that DKL is biased at higher orders, where edge
weights are sparser and transition probabilities are noisier.

The key advantage afforded by Prune is that higher-order nodes are tested
first. This means that when a higher-order node is preserved, we can also ensure
that its ancestors are preserved (line 22)—otherwise it may have no in-edges in
the resulting network. Previous approaches, limited by computational complex-
ity, tested higher-order dependencies in bottom-up fashion [20,24]. This bottom-
up testing implicitly assumes that a node u can only have a dependency if u � 1
also had a dependency, which is often not the case.

3.4 Phase 3: Extract

The final step is to convert the pruned tree into a HON. Extract, detailed
in Algorithm 3, recursively traverses the pruned tree and converts each tree
node into an edge in the HON. Because each tree node represents the final
element in a substring, the parent/child relationship is directly converted to a

492 S. J. Krieg et al.

Table 1. A summary of the data sets used for evaluation. N and n̄ represent the
number of sequences and average sequence length, respectively. The Airport data served
as the source for five synthetic sets of sequences.

Name N n̄ Nn̄ |V1| |E1| |E1|
|V1|

Shipping 54,892 151.15 8,296,770 5,590 369,965 66.18
T2D (ICD) 913,475 39.18 35,792,618 914 481,020 526.28
T2D (CCS) 913,475 31.54 28,809,027 304 85,025 279.69
Airport — — 1,2,3,4,5 00,000,000 1,922 31,491 16.38

source/destination relationship in the HON for all non-leaf nodes. When a leaf
node is detected, Extract attempts to redirect the edge to a lower-order coun-
terpart. This seeks to maximize the preserved higher-order information while
ensuring that tree leaves do not produce nodes with no out-edges, which would
disrupt the flow of information.

3.5 Asymptotic Complexity

Grow requires n queue pushes and n pops for a sequence of n elements. For each
substring of length k +1, each element induces either a weight increment (for an
existing child) or the insertion of a new child—both of which are constant-time
operations2. In total, Grow considers n − k substrings with length k + 1 and
k substrings with length < k + 1 (line 22). The time complexity of processing a
single sequence is thus bounded by O(kn). If there are N total sequences with
an average length of n̄, then the function’s complexity is bounded by O(kNn̄).
Prune requires a constant number of operations for each tree node, since each
node above order 1 could be considered in a calculation of DKL, and each node
below order k will be looked up once in nmap. Extract similarly requires a
constant number of operations, on average, for each node. If a leaf node u requires
more than one lookup to find an appropriate lower-order destination, that means
u � 1 was pruned and will be skipped by Extract. Thus the complexity of
both Prune and Extract is bound by the number of nodes in the tree, i.e. |V ′

k|.
While it is possible to derive an upper bound for |V ′

k|, GrowHON’s complexity
will always be dominated by Grow, and is bounded by O(kNn̄).

4 Experimental Results

GrowHON is implemented in Python 3.7.3, and all code is publicly available3.
We evaluated the scalability of GrowHON and the representation of the result-
ing networks using eight data sets—three real and five synthetic—each of which
are summarized in Table 1. The real data includes the set of global shipping
2 In practice, creating a new node takes much longer than a weight increment, so the

number of unique substrings has a significant effect on runtime.
3 https://github.com/sjkrieg/growhon.

https://github.com/sjkrieg/growhon

GrowHON 493

routes over 15 years (1997–2012) that Xu et al. studied in their seminal HON
manuscript [24], and a set of diagnoses sequences for type-2 diabetes (T2D)
patients under two distinct mapping schemas: the first using the ninth revision
of the International Classification of Diseases (ICD) and the second using the
Clinical Classification Software (CCS) taxonomy[7]. Both represent the same
set of real patients, but with diagnoses aggregated at different levels of granu-
larity and density. We generated the synthetic data by constructing a first-order
network of U.S. airport travel in 2018 based on data from the Bureau of Trans-
portation Statistics [2]. From this network we used a random walker to generate
five sets of sequences, each of a different size.

Execution time as a function of k for all real data sets.

Execution time as a function of input size (Nn̄) for airport data.

Fig. 3. Execution times, measured as wallclock time, of each algorithm on all data
sets using k = 2..5. The reported values are the means of 10 iterations, and error bars
represent standard deviations.

Figure 3 shows the execution times of each algorithm using k = 2..5 for
10 iterations on each data sets. All Shipping and Airport experiments utilized
Intel Xeon E5-2680 v3 @2.50GHz CPUs, and all T2D experiments (due to data
sensitivity) utilized Intel Xeon E5-2686 v4 @2.30GHz CPUs. GrowHON was
faster than BuildHON+ in all experiments, in many cases by almost an order
of magnitude—especially at higher k. Perhaps more importantly, GrowHON
demonstrates greater scalability, with respect to both k and input size.

In addition to the base version of GrowHON, we used Ray, a Python frame-
work for efficient distributed computation [12], to implement a parallel version
of Grow. This modified version utilizes a driver for growing the tree and a
group of workers (four, in this case) for enumerating substrings from the input
sequences. Despite Ray’s efficiency, our experiments show that, when k > 3,

494 S. J. Krieg et al.

Table 2. Differences between network sizes when k = 5.

Algorithm Shipping T2D (ICD) T2D (CCS)

|V5| |E5| |V5| |E5| |V5| |E5|
BuildHON+ 2,010,511 5,937,933 17,918,723 50,272,035 11,620,878 36,423,805

GrowHON 2,596,214 6,893,689 21,683,241 54,378,822 15,285,534 40,461,838

Fig. 4. Distribution of nodes by order for the networks produced by both algorithms.

Fig. 5. Results of using a random walker to reproduce the original sequences. Each plot
shows weighted Jaccard similarity (JW) as a function of substring length (i.e. number
of steps taken by the random walker). The reported values are the means of 10 samples,
and standard deviations were < .0001 in all cases.

the combinatorial explosion of substrings causes the cost of message passing to
outweigh its benefits.

Table 2 shows the difference in network sizes at k = 5, and Fig. 4 visual-
izes the distributions of nodes by order. These differences are attributable to
GrowHON’s top-down pruning procedure, which allowed it to preserve higher-
order dependencies that BuildHON+’s lazy testing did not capture.

To quantify the effect these additional nodes have on the representational
quality, we utilized a random walker to generate samples of synthetic sequences
from each network. Since random walking is core to many network applications
like PageRank [13], community detection [5], and network embedding [4,19], it is
critical that such walks reflect real patterns in the underlying data. We compared
each synthetic sample to the real sequences using weighted Jaccard (Ruzicka)
similarity JW , which returns a score between 0.0 (sets are totally disjoint) and 1.0
(sets are identical with respect to both membership and frequency) [8]. Figure 5
shows the results for m = 2..6 (substring length) on a FON (G1) and the HONs
generated with k = 5 (G5) by both algorithms. At m = 2, where a substring is an

GrowHON 495

edge in E1, all models performed similarly. As m increased, G1’s performance
deteriorated quickly. While BuildHON+’s G5 significantly outperformed G1

at all m > 2, GrowHON’s G5 was best able to better reproduce the sets
of longer substrings. This supports the conclusion that the additional higher-
order dependencies preserved by GrowHON are important in representing the
underlying data.

5 Conclusions and Future Work

Higher-order networks (HONs) overcome the Markovian limitations of first-order
networks by allowing each node to represent part of a sequence, rather than a
single entity. This allows edges to naturally encode higher-order relationships
between entities and improves the representative quality of the network with
respect to the original sequences. However, the process of enumerating and test-
ing for higher-order dependencies is computationally complex, especially as the
order of the network increases, and previous approaches have been limited by the
trade-off between efficient computation and thorough detection of dependencies.
We introduced GrowHON, an algorithm that grows a HON by embedding the
input in a tree, pruning the non-meaningful sequences, and converting the pre-
served sequences into an edgelist. We demonstrated that GrowHON is scalable
with respect to both the size of the input and order of the network, and that
its top-down pruning procedure preserves important higher-order dependencies
that are missed by prior approaches.

While our work has mostly focused on the computational procedure of grow-
ing a HON, there are still many opportunities for advancing the HON frame-
work. At present, GrowHON only captures information about sequence order,
but this could be extended to consider additional information like distance in
time or space. Additionally, it does not test the assumption that sequences are
strictly ordered, i.e. that 1|2|3 is different than 1|3|2, and is limited in its abil-
ity to compute how relevant each entity is to the overall sequence. GrowHON
could also be extended to include heterogeneous information, and even use this
information in deciding whether a given sequence is statistically meaningful. We
believe that GrowHON lays an foundation for studying these problems and
creating even more meaningful representations of large and complex data.

References

1. Benson, A.R., Gleich, D.F., Leskovec, J.: Higher-order organization of complex
networks. Science 353(6295), 163–166 (2016)

2. Bureau of Transportation Statistics: Transtats. https://www.transtats.bts.gov/.
Accessed 30 Sep 2019

3. Chierichetti, F., Kumar, R., Raghavan, P., Sarlos, T.: Are web users really Marko-
vian? In: Proceedings of the 21st International Conference on World Wide Web,
pp. 609–618 (2012)

4. Cui, P., Wang, X., Pei, J., Zhu, W.: A survey on network embedding. IEEE Trans.
Knowl. Data Eng. 31(5), 833–852 (2018)

https://www.transtats.bts.gov/

496 S. J. Krieg et al.

5. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)
6. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.

ACM Sigmod Rec. 29(2), 1–12 (2000)
7. Healthcare Cost and Utilization Project (HCUP): Clinical classification software,

March 2017. http://www.hcup-us.ahrq.gov. Accessed 8 Jan 2020
8. Ioffe, S.: Improved consistent sampling, weighted minhash and l1 sketching. In:

2010 IEEE International Conference on Data Mining, pp. 246–255. IEEE (2010)
9. Koher, A., Lentz, H.H., Hövel, P., Sokolov, I.M.: Infections on temporal networks-a

matrix-based approach. PloS ONE 11(4), e0151209 (2016)
10. Lambiotte, R., Rosvall, M., Scholtes, I.: From networks to optimal higher-order

models of complex systems. Nat. Phys. 15(4), 313–320 (2019)
11. Milo, R., Shen-Orr, S., et al.: Network motifs: simple building blocks of complex

networks. Science 298(5594), 824–827 (2002)
12. Moritz, P., Nishihara, R., et al.: Ray: A distributed framework for emerging AI

applications. In: 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pp. 561–577 (2018)

13. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
bringing order to the web. Technical report, Stanford InfoLab (1999)

14. Peixoto, T.P., Rosvall, M.: Modelling sequences and temporal networks with
dynamic community structures. Nat. Commun. 8(1), 582 (2017)

15. Porter, M.A.: Nonlinearity+ networks: a 2020 vision. In: Emerging Frontiers in
Nonlinear Science, pp. 131–159. Springer, Cham (2020)

16. Pržulj, N., Corneil, D.G., Jurisica, I.: Modeling interactome: scale-free or geomet-
ric? Bioinformatics 20(18), 3508–3515 (2004)

17. Rossi, R.A., Ahmed, N.K., Koh, E.: Higher-order network representation learning.
In: Companion Proceedings of the The Web Conference 2018, pp. 3–4. International
World Wide Web Conferences Steering Committee (2018)

18. Rosvall, M., Esquivel, A.V., Lancichinetti, A., West, J.D., Lambiotte, R.: Memory
in network flows and its effects on spreading dynamics and community detection.
Nat. Commun. 5, 4630 (2014)

19. Saebi, M., Ciampaglia, G.L., Kaplan, L.M., Chawla, N.V.: Honem: learning embed-
ding for higher order networks. Big Data 8(4), 255–269 (2020)

20. Saebi, M., Xu, J., Kaplan, L.M., Ribeiro, B., Chawla, N.V.: Efficient modeling of
higher-order dependencies in networks: from algorithm to application for anomaly
detection. EPJ Data Sci. 9(1), 15 (2020)

21. Scholtes, I.: When is a network a network? In: Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
1037–1046. ACM (2017)

22. Scholtes, I., et al.: Causality-driven slow-down and speed-up of diffusion in non-
Markovian temporal networks. Nat. Commun. 5, 5024 (2014)

23. Tsourakakis, C.E., Pachocki, J., Mitzenmacher, M.: Scalable motif-aware graph
clustering. In: Proceedings of the 26th International Conference on World Wide
Web, pp. 1451–1460 (2017)

24. Xu, J., Wickramarathne, T.L., Chawla, N.V.: Representing higher-order depen-
dencies in networks. Sci. Adv. 2(5), e1600028 (2016)

25. Yin, H., Benson, A.R., Leskovec, J., Gleich, D.F.: Local higher-order graph clus-
tering. In: Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 555–564. ACM (2017)

http://www.hcup-us.ahrq.gov

	GrowHON: A Scalable Algorithm for Growing Higher-order Networks of Sequences
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Problem Setting
	3.2 Phase 1: Grow
	3.3 Phase 2: Prune
	3.4 Phase 3: Extract
	3.5 Asymptotic Complexity

	4 Experimental Results
	5 Conclusions and Future Work
	References

