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Abstract—Networks are powerful and flexible structures for
modeling relationships in medical and biological systems, but in
a traditional first-order network representation, an edge typically
expresses a relationship between a single pair of nodes. In
order to analyze complex relationships between groups of nodes,
researchers rely on combined sets of these pairwise connections,
which can misrepresent the true relationships in the underlying
data. Higher-order networks, on the other hand, capture the
higher-order dependencies that go beyond the pairwise interac-
tions, and thus can encode more complex relationships within a
familiar structure. In this study, we created and analyzed higher-
order networks of disease trajectories generated from the records
of 913,475 type 2 diabetes patients. We show that higher-order
networks provide a more accurate representation of the under-
lying disease trajectories than traditional first-order networks.
We also analyze differences in PageRank scores and community
structure at higher orders and discuss the implications of these
differences for the future study of comorbidity networks.

Index Terms—diabetes, comorbidities, disease trajectories,
higher order networks

I. INTRODUCTION

Networks are powerful structures for expressing complex
and interdependent relationships among entities. Many studies
of biological systems have embraced networks to model prob-
lems such as patient similarity, disease progression, protein
interactions, drug repositioning, and gene expression [1]. To
create a network, researchers have traditionally generated a
set of nodes, which represents a collection of real entities,
and a set of edges, which connects nodes in the network and
represents relationships between the entities. However, such
networks are only able to express relationships between a pair
of entities at a time. Studying relationships between larger
groups of entities requires researchers to assume the Markov
property, which means that, for a given process, knowledge of
its future states depend only on information that is immediately
available at the present state. Given two edges a → b, and
b → c in a network, the Markov property manifests itself
via a random walker that moves from a to b to c, even if
the entities represented by a and c are unrelated outside the
network. In other words, this network, which we call a first-
order network, transitively infers a connection between a and
c because of their mutual connection to b.

∗Corresponding author.

Fig. 1. A toy example of the difference between first-order and higher-
order network representations of a set of disease trajectories. In the first-order
network each node represents a single entity, but in a higher-order network a
node can represent more than one entity. In this example, node 250 is split into
250|272 and 250|585 to better represent the underlying trajectories. Dashed
lines around a node or edge indicate topological changes relative to the first-
order network.

This Markov assumption has been challenged in studies of
invasive species networks [2], human mobility [3], information
networks [4], citation networks [5], trade relations [6], and
more [7], [8]. Network scientists have recently introduced
generalizable models that break the Markovian template [2],
[4], [5]. These models, which we call higher-order networks
(HONs), use directed and weighted networks to represent
non-Markovian relationships between entities in a sequence.
Experimental results from the aforementioned domains have
demonstrated that HONs provide a higher-quality represen-
tation of the underlying sequence data than their first-order
ancestors.

Figure 1 shows a toy example of the difference between
a first-order network and a higher-order network. We begin
with a set of eight trajectories, or sequences of entities.
In this example, the entities are diagnostic codes from the
ninth revision of the International Classification of Diseases
(ICD9). We call these sequences disease trajectories, since
they contain diagnosis codes and thus an estimate of disease
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progression within a patient. In a first-order network, a node is
created for each unique entity, and an edge is created between
a pair of nodes if their corresponding entities are adjacent
in a trajectory. This produces an underfit network. Consider a
random walker at node 250: it has no knowledge of the higher-
order pattern that three of the four trajectories that begin with
code 272 end with 401, and only one with 584. Rather, it is
only aware that the terminal node is 401 four out of eight
times, and 584 for the other four.

A HON, on the other hand, allows a single node to represent
multiple entities as a mechanism for capturing such dependen-
cies. For example, in Figure 1, the entity 250 is represented
by 2 distinct nodes: 250|272 (read as 250 given 272) and
250|585. Both nodes represent the same base code, but with a
different predecessor. This method of encoding memory into
the nodes allows edges to be constructed and weighted in a
way that better represents the non-Markovian relationships in
the trajectories. We refer to the order of a node as the number
of entities that it represents; e.g., 585 has an order of 1 and
250|585 has an order of 2. The goal of a HON is to identify
dependencies and encode them as higher-order nodes, without
overfitting on nodes that do not have dependencies.

In this study, we used HONs to model comorbidities in
type 2 diabetes mellitus (T2D) patients. A number of previous
works have taken network-based approaches to modeling
comorbidities [9]–[19], which Brunson et al. categorized ac-
cording to which of the following problem(s) they are trying
to solve [20]:

1) Identifying complex dependencies between diseases.
2) Analyzing the contribution of heterogeneous factors to

co-occurrence of diseases.
3) Describing patient trajectories as they transition between

various states over time.
This work focuses on the potential of HONs to address items

1 and 3 as they relate to comorbidities within T2D, which has a
rich and complex comorboditiy space [21]. To demonstrate, we
generated first-order and higher-order networks from disease
trajectories extracted from the medical records of 913,475 T2D
patients. We then examined differences between the networks,
including changes in transition probabilities and results from
random walking experiments, and conclude that HONs provide
a more accurate representation of the underlying disease
trajectories than first-order networks. Given this conclusion,
we analyzed differences in PageRank scores and community
structure at higher orders. Our main contribution is the novel
application of the higher-order network framework to a set of
T2D disease trajectories. Our experimental results demonstrate
that HONs have the potential to greatly enrich the study of
disease trajectories and comorbidities.

The rest of this paper proceeds as follows. First, we survey
related work on T2D disease trajectories and HONs (Section
II). Next, we detail our methods for collecting data, gener-
ating disease trajectories, and building higher-order networks
(Section III). Then, we report our experimental results and
discuss their implications (Section IV). Finally, we conclude
and discuss opportunities for future work (Section V).

II. RELATED WORK

A. Disease Networks and Trajectories

Researchers have previously created networks of disease
trajectories by representing disease states as nodes and using
edges to connect related states [9], [10]. Hanauer and Ramakr-
ishnan demonstrated the importance of incorporating time and
directionality into models of disease states [11]. Chen et al.
used networks of cancer patient trajectories to predict metasta-
sis [12], and other works took a similar approach to predicting
sepsis mortality [13], cognitive decline in Alzheimer’s patients
[14], and chronic heart failure [15]. Glicksberg et al. utilized a
disease network to identify differences in disease progression
between races [16]. Jensen et al. generated a network of
population-wide trajectories to identify a set of key diagnoses
that are central to disease progression [17]. Their method
revealed a cluster of diseases closely associated with the
progression from T2D to insulin-dependent diabetes mellitus,
and identified retinopathy as a key transition point to other
comorbidities. Other work in the diabetes space includes that
of Li et al., who utilized a patient similarity network to identify
subgroups of T2D patients [18]. All of these works either
analyze trajectories independently of a network structure or
within a network that assumes the Markov property.

Some recent works addressed the shortcomings of such
models by developing more sophisticated trajectories or net-
work structures. Kannan et al. generated a multi-layered
network and use directional dependencies between diagnoses
to infer causality [22]. Thomas et al. combined diagnoses
with demographic and clinical data, and used the resulting
heterogeneous graph to predict the rate at which T2D patients
will develop comorbidities [23]. However, to the best of our
knowledge, none of these models addresses the challenge of
treating more complex, non-Markovian interactions between
disease states [19], [24]. Oh et al. generated trajectories of
variable length [25], but analyzed them outside of a network
context. This type of approach cannot take advantage of a net-
work’s natural ability to encode complex and interdependent
relationships, or the number of proven and robust network
analysis methods [1]. To the best of our knowledge, our work
is the first to analyze higher-order disease trajectories within
the context of a network structure.

B. Higher Order Network Models

Studies of invasive species networks [2], human mobility
[3], information networks [4], citation networks [5], trade
relations [6], and more [7], [8] share the common conclusion
that first-order Markov models are insufficient for represent-
ing complex trajectories, but solve the problem via different
methodological approaches. We use the higher-order network
framework introduced by Xu et al., which encodes variable
orders of dependencies in a single-layer network structure [2].
Key advantages of their approach over other models include:

1) It infers an optimal order for each trajectory, rather
than inferring a fixed order at the model level and
assuming all trajectories should be constrained to that



Fig. 2. A visualization of the process for generating higher-order networks of T2D disease trajectories, as described in Section III. We extracted a mapped
and filtered set of diagnosis codes from our T2D patient data (Sections III-A and III-B), then used these codes to generate a set of trajectories (Section
III-C), which we finally used to generate networks of different k (Sections III-D and III-E). The networks pictured are generated from a coarse mapping of
all diagnosis codes to their ICD9 chapter and are not used in any experiments, but are included to illustrate the effects of higher values of k on the size of a
network. Nodes are colored according to community structure.

order. This mitigates the exponential complexity and
over/underfitting problems incurred by fixed order mod-
els, while seeking to create a balance between the
expressivity and compactness of the network.

2) Trajectories of variable order share the same space,
which means existing network analysis tools can be
utilized without further modification. This is in contrast
to approaches that use the original trajectories in combi-
nation with the first-order network to guide analysis [5],
and approaches that generate multiple network layers
and project characteristics between layers [4].

III. METHODS

In this section we present our methods for generating
higher-order networks of T2D disease trajectories. First, we
describe our data (Section III-A). Next, we explain our method
for mapping and filtering diagnosis codes (Section III-B).
Then, we summarize our procedure for generating disease tra-
jectories (Section III-C). Finally, we detail our framework for
generating higher-order networks (Sections III-D and III-E).
Figure 2 provides an overview of the entire process.

A. Data Description

We utilized a data set of 913,475 T2D patients created from
the Indiana Network for Patient Care (INPC) database by the
Indiana Biosciences Research Institute, Regenstrief Intistute,
and other industrial partners. This study was approved by
Indiana University’s IRB (Exempt Protocol #: 1608149240
Computational Phenotyping for Type 2 Diabetes). The INPC
links major healthcare providers across the state of Indiana
and thus provides a rich source of patient data [26]. Included

in the T2D cohort was any patient who, while being at least
18 years old, met at least one of the following criteria:

1) The patient was diagnosed with at least one T2D diag-
nosis code, as detailed in Table I.

2) The patient reported a laboratory glycated hemoglobin
(HbA1C) test result of at least 6.5%.

3) The patient was prescribed at least one Medi-Span-
defined anti-diabetes medication.

TABLE I
THE ICD9 AND ICD10 CODES USED TO IDENTIFY A T2D PATIENT.

ICD9 ICD10
249.*, 250.*, 357.2, 362.01, 362.01, 362.02, E10.*, E11.*
362.03, 362.04, 362.05, 362.06, 362.07, 366.41
* is a wildcard symbol.

The patient records are multi-modal and contain infor-
mation about demographics, procedures, prescriptions, and
clinical laboratory results, but for this work we only used
diagnosis codes. Despite limitations in their ability to accu-
rately represent states of disease, diagnosis codes are still a
rich source of historical information. In total we considered
228,652,937 diagnosis codes across 913,475 patients (an aver-
age of 250.31 codes per patient) between the years 1995 and
2018. 205,977,594 of these codes were valid under ICD9 and
20,248,072 were valid under ICD10. 2,427,271 were not valid
under either classification and were likely the result of scribal
error.



B. Mapping and Filtering Diagnosis Codes

We next applied two distinct mapping schemas to our data.
This resulted in two sets of patient records, one defined by
each schema.

1) ICD Major Codes: Because our longitudinal data is
dominated by ICD9 codes (due to its timespan) and the
difficulty of mapping these codes forward to the more granular
ICD10 system, we preserved the ICD9 codes and attempted
to map any ICD10 codes to their corresponding ICD9 code.
Our procedure addressed the following cases:
• If the code was valid under ICD9, we preserved the

section-level code (first 4 characters for E and V codes;
first 3 characters for all others), which, for simplicity, we
refer to as the major code. For example, codes 250.00
and 250.01 both mapped to 250.

• If the code was valid under ICD10, we used General
Equivalence Mappings [27] to attempt a one-to-one map-
ping to an ICD9 code. If such a mapping existed, we
replaced the ICD10 code with its ICD9 equivalent and
preserved the major code as above. If there was more
than one possible target, we did not attempt to identify
the correct one and instead, to minimize bias, discarded
the entire patient record. For example, ICD10 E11.42 can
map to ICD9 250.60 or 357.2, so we discarded the record
containing that code.

• If the code was not valid under ICD9 or ICD10, we
discarded the code but kept the rest of the record.

We additionally discarded all E and V codes (supplementary),
as well as major codes 780-799 (ill-defined conditions), which
do not provide useful information about disease states and
would have introduced noise into the trajectories. This process
resulted in a set of records containing 908 distinct ICD major
codes.

2) Clinical Classification Software (CCS) Codes: CCS
was developed as a means of collapsing ICD9 and ICD10
codes into 283 “clinically meaningful categories” [28]. We
performed this mapping for each valid ICD9 and ICD10 code
and discarded any invalid codes. Because each ICD9 and
ICD10 code maps to a single CCS code, we did not need
to discard any patient records. After mapping, we discarded
the CCS codes that were comprised entirely of E and V codes,
as well as codes 780-799. We additionally discarded the CCS
codes that were comprised of more than 50% of ICD codes
that we discarded above: 196 (pregnancy otherwise unclassi-
fied), 218 (liveborn), 259 (residual codes; unclassified), and
663 (screening for mental health and substance abuse). This
resulted in a set of records containing 243 unique CCS codes.

C. Generating Disease Trajectories

We next used the following procedure to generate two
distinct sets of disease trajectories, one for each of the mapping
schemas:

1) Sorted each patient’s diagnoses in chronological order.
2) Split the trajectory into two separate trajectories at

any gap of more than 1,095 days (3 years) between

diagnoses. This is to minimize the risk of patients who
have time lapses in their records due to missing data.

3) Removed all but the first occurrence of each code. In
this study we simply assumed the first occurrence of a
disease is the most informative about the progression
between states, but acknowledge this assumption may
not always hold.

4) Removed any remaining codiagnoses, which introduce
ambiguity into the true sequence of states. We treat two
or more codes as codiagnoses if they were recorded
for the same patient on the same day. If this step
removes any codes that have another occurrence that was
removed in step 3, we re-insert the next occurrence at its
appropriate chronological position in the trajectory. We
then repeated this step until there were no codiagnoses
in the trajectory.

The final set of ICD9 major code trajectories, which we call
ICD, contained 1,005,931 trajectories, with 86,132 trajectories
discarded due to having at least one ICD10 code that did
not have a one-to-one backwards mapping. The set of CCS
code trajectories, which we call CCS, contained 1,104,274
trajectories. We used both sets of t rajectories to build networks
according to the methods described in the following sections.

D. Building First-order Networks

We formally define a trajectory as a sequence S =
(s0, s1, ..., sn). Each si ∈ S represents a discrete entity.
Intuitively, a trajectory is a path with a entity s0, a destination
entity sn, and intermediate entities (s1, ..., sn−1). Each pair
of entities (si, si+1) ∈ S represents a transition from si to
si+1. In our case each entity is a diagnosis code, so the
disease trajectory S estimates a sequence of disease states
for a given patient. We also define S′ = (s′0, s

′
1, ..., s

′
m) as

a subtrajectory of S, denoted as S′ v S, if and only if all
the entities in S′ also appear in S in exactly the same order,
i.e.

S′ v S ⇐⇒ ∃j ≤ n−m : ∀s′i ∈ S′, s′i = si+j . (1)

We construct a first-order network of a set of trajectories
S = {S0, S1, ..., SN} by creating a graph G1 = (V1, E1)
where the set of nodes V1 = {

⋃
S} is the set of unique

entities across all trajectories, and the set of edges E1 =
{(u, v) : ∃S ∈ S, (u, v) v S} is the set of adjacent pairs
of entities across all trajectories. Edges are directed such that
(u, v) 6= (v, u), and weighted such that w(u, v) ∈ Z+

0 is the
number of occurrences of the subtrajectory (u, v) across all
trajectories. In the first-order network, each node represents a
single entity, and each edge represents a Markovian transition
from one entity to the next.

E. Building Higher-order Networks

A higher-order network encodes one or more entities in a
single node. Let Gk = (V ′k, E

′
k) be a higher-order network,

where k ∈ Z+ is the maximum order of the network, i.e. the
maximum amount of history each node can encode. We first



TABLE II
SUMMARY OF THE HONS GENERATED FROM THE DISEASE TRAJECTORIES USING THE METHOD DESCRIBED IN SECTION III.

N na k Build Time (s) |V| |E| |E|
|V| H(Gk) (bits)b # Clusters Clustering Time (s)

CCS 1,104,274 12.20

1 49 242 50,851 210.13 6.643 2 1
2 190 48,796 2,121,789 43.48 6.296 423 17
3 533 2,315,331 11,244,163 4.86 3.299 115,081 1,469
4 902 4,678,276 14,921,000 3.19 2.081 251,493 2,211
5 1,093 4,700,681 14,958,602 3.18 2.072 253,220 2,239

ICD 1,005,931 11.81

1 44 908 312,410 344.06 7.509 3 1
2 254 306,735 5,388,506 17.57 5.970 11,491 87
3 486 4,569,841 13,601,271 2.98 2.042 266,059 1,682
4 620 5,364,759 14,738,097 2.75 1.618 312,981 1,477
5 796 5,375,585 14,752,165 2.74 1.614 313,727 1,505

aThe mean trajectory length.
bDefined in Equation 6.

define an unpruned set of higher-order nodes Vk as the set of
all subtrajectories of length k + 1 or less:

Vk =
k+1⋃
j=1

{(si−j+1, ..., si) : ∃S ∈ S∧∃i, (si−j+1, ..., si) v S}.

(2)
Each node u = (s0, s1, ..., sm) ∈ Vk encodes a current

entity sm and a sequence of m−1 preceding entities. However,
because the subtrajectories vary in length, Vk contains nodes
of different orders. Intuitively, the order of a node is the
length of the subtrajectory it represents, and a node’s order
increases with the number of previous entities it encodes. We
use cardinality to denote order, such that |u| = m+1. We say
that a node u′ = u \ {s0} is the lower-order counterpart of
u, since it represents the same subtrajectory but with the first
(and oldest, assuming the sequence is chronological) entity
truncated. Likewise, u is a higher-order counterpart to u′

since it represents the same subtrajectory but predicated on
one additional entity. A node can have up to |V1| higher-order
counterparts, but only one lower-order counterpart.

We next define an unpruned set of edges Ek in a manner
similar to E1, but generalized to accommodate the fact that
nodes represent variable-length subtrajectories rather than in-
dividual entities:

Ek = {(u, v) : [(u, v) ∈ Vk] ∧ [∃S ∈ S, u+ (vm) v S]}, (3)

where + is the concatenation operator and vm is the last
entity in the subtrajectory v. Each edge in Ek is directed and
weighted in the same way as in E1. While E1 is the set of
adjacent pairs of entities across all trajectories, Ek is the set
of adjacent pairs of subtrajectories (of length k or less) across
all trajectories.

Two significant problems arise from this approach:
1) From a statistical perspective, some subtrajectories may

be insignificant, so incorporating them would cause
overfitting.

2) From a computational perspective, the cost of network
generation and analysis grows exponentially with in-
creasing values of k.

Following Xu et al. [2], we address these problems by
pruning higher-order nodes from Vk if they do not contribute

sufficiently to reducing the entropy of the network. We mea-
sure this by calculating the relative entropy (Kullback-Leibler
divergence) of a higher-order node u with respect to its lower-
order counterpart u′ and comparing the result to a dynamic
threshold. Recalling that in Vk a given node u is a tuple
(a0, ..., am), and that w(u, v) is the weight of the edge (u, v),
we define a transition probability function P (u → v) as the
probability that a random walker would move from node u to
v, i.e.

P (u→ v) =
w(u, v)

outdeg(u)
, (4)

where outdeg(u) =
∑

x∈Vk(u)
w(u, x) is the weighted out-

degree of u. We then utilize Shannon entropy to measure the
level of uncertainty for a given transition from u to v:

H(u→ v) = P (u→ v)logP (u→ v). (5)

We can also measure the entropy rate of the entire network
as a weighted sum of H(u→ v) across all u and v:

H(Gk) = −
∑

(u,v)∈Ek
w(u, v)H(u→ v)∑

u∈Vk
outdeg(u)

. (6)

In constructing a higher-order representation, we want to
reduce the entropy of the network. To determine which
subtrajectories should be represented at higher orders, we
utilize relative entropy. Given that each higher-order node u
has exactly one lower-order counterpart u′, we calculate the
entropy of u as follows:

H(u) =
∑

v∈N (u)

P (u→ v)log
P (u→ v)

P (u′ → v′)
, (7)

where N (u) is the set of u’s outgoing neighbors. Because
u is of higher-order than u′, we assume that higher relative
entropy indicates that the u’s additional historical information
is valuable and is likely to reduce the total entropy of the
network. However, relative entropy can be biased at higher
orders, where edges are sparser and the transition probabilities
are noisier. To mitigate this problem, we utilize the following
threshold function from [29]:

f(u, τ) =
τ × (1 + |u|)

log(1 + indeg(u))
, (8)



TABLE III
A SAMPLE OF CCS CODES AND THEIR REPRESENTATION IN HIGHER-ORDER NETWORKS.

# Nodesa PageRank Scores
Code Description Frequency k = 1 k = 2 k = 3 k = 4 k = 5 k = 1 k = 2 k = 3 k = 4 k = 5

49 Diabetes mellitus without complication 513,546 1 192 27,138 139,051 141,160 .0378 .0371 .0452 .0513 .0513
53 Disorders of lipid metabolism 370,398 1 186 23,368 112,074 116,085 .0279 .0277 .0309 .0357 .0357
87 Retinal detachments, defects; retinopathy 65,535 1 221 13,543 23,070 23,110 .0052 .0049 .0047 .0047 .0047
98 Essential hypertension 435,269 1 185 25,443 129,597 133,143 .0323 .0380 .0438 .0437 .0437

103 Pulmonary heart disease 27,935 1 230 10,692 12,016 12,016 .0024 .0024 .0019 .0017 .0017
108 Congestive heart failure; nonhypertensive 90,107 1 211 16,626 34,406 34,412 .0075 .0076 .0074 .0072 .0072
109 Acute cerebrovascular disease 48,687 1 224 13,521 17,152 17,152 .0040 .0040 .0038 .0035 .0035
157 Acute renal failure 309,240 1 230 14,208 19,301 19,301 .0042 .0043 .0035 .0032 .0032
158 Chronic kidney disease 82,684 1 215 15,985 29,651 29,676 .0068 .0068 .0072 .0068 .0068
653 Delirium, dementia, cognitive disorders 247,913 1 224 12,926 16,320 16,320 .0037 .0037 .0033 .0030 .0030

aIndicates the number of nodes that represent the same CCS code, but with different predecessors.

where τ ∈ R is a free parameter and indeg(u) =∑
v∈Vk

w(v, u) is the weighted in-degree of u. The value
of f(u, τ) increases with higher τ and node order |u|, but
decreases for nodes that have a higher in-degree, which have
more stable transition probability distributions.

Next, we create a pruned set of nodes V ′k and edges E′k
by keeping only the nodes from Vk whose relative entropy
exceeds the threshold:

V ′k = {u ∈ Vk : H(u) > f(u, τ)}, (9a)
E′k = {(u, v) ∈ Ek : u, v ∈ V ′k}. (9b)

We found that this raw pruning of nodes and edges can
isolate some higher-order nodes and increase the number of
strongly-connected components. To avoid this, as a postpro-
cessing step we identify any isolated higher-order nodes or
components and merge them with their lower-order coun-
terparts by combining their edge weights and removing the
higher-order nodes.

The final network G′k = (V ′k, E
′
k) thus addresses the statis-

tical problem identified above by only keeping the trajectories
that are expected to reduce the entropy of the network. Pruning
has the additional computational benefit of significantly reduc-
ing the network size. However, it does not address the fact
that larger values of k incur an exponentially increasing cost
to enumerate and process the longer trajectories. We mitigate
this problem by embedding all the subtrajectories of length
k + 1 into a tree structure during a preprocessing step, then
performing pruning in-place on the tree structure. When each
node is written to the edge list, it is converted from a tuple
(s0, s1, ..., sn) to a delimited string “sn|sn−1|...|s0” (as in
Figure 1) for ease of interpretation. Further details and code
for this implementation can be found online1.

IV. EXPERIMENTAL RESULTS

In this section we present and discuss our experimental
results. We first describe the networks and show examples
of changes to the transition probability distribution between
k = 1 and k = 2 (Sections IV-A and IV-B). We then use
random walking to quantify the representational quality of
each network with respect to the original trajectories (Section

1https://github.com/sjkrieg/growhon

(a) Heatmap of first-order transition probabilities, as defined by Equation 4.
Each column label represents a possible destination, and the value in cell is
the probability (%) of moving from 49 to the corresponding destination at
k = 1. Darker shading corresponds to higher probabilities.

(b) Heatmap of second-order transition probabilities, relative to the first-order
probabilities in Figure 3a, for CCS node 49. Each row label 49|x represents
the second-order node 49 conditioned on the previous step x. Darker reds and
blues indicate, respectively, greater increases and decreases to the transition
probabilities. Blank cells represent non-existent transitions, i.e. edges that do
not exist in the network at k = 2.

Fig. 3. An example of the changes in transition probabilties from k = 1
to k = 2 for CCS node 49 (diabetes mellitus) to the sample nodes listed in
Table III.

IV-C). Next, we use PageRank to show changes in node
importance as the value of k increases (Section IV-D). Finally,
we discuss differences in community structure detected in the
higher-order networks (Section IV-E).

A. Network Generation

We generated HONs for both the ICD and CCS trajectories
using k = 1..5 (we set τ = 1.0 for all cases). This resulted
in 10 total networks, which we describe in Table II. In all
cases, the build time t was measured as process time on a



single Intel® Xeon® E5-2686 v4 2.30GHz CPU. For both
CCS and ICD, the number of vertices and edges increased
rapidly at lower orders but saturated at k = 5, which means
that k = 4 was sufficient to capture most of the statistically
significant subtrajectories. Additionally, the average degree |E||V |
decreased monotonically as k increased, which means that
fewer distinct trajectories were detected at higher orders than
would be predicted by inferring transitive connections at the
first order. We also note that, as expected, the network entropy
rate H(Gk) decreased monotonically with higher values of k.

B. Changes to Transition Probabilities

As the order of a network increases, the transition prob-
ability between nodes changes. Figure 3 shows an example
of transition probabilities between k = 1 and k = 2 for
the sample of CCS codes described in Table III. Figure 3a
shows the probabilities at k = 1, and Figure 3b shows the
changes from k = 1 to k = 2. At k = 2, CCS code
49 (diabetes mellitus) was split into 184 nodes, each with a
unique predecessor (49|x). In some cases, the addition of a
predecessor shifted the transition probabilities by an order of
magnitude. For example, the transition 49|157 → 158 (T2D,
given renal failure, to chronic kidney disease) was 8.83x more
likely to occur than the corresponding first-order transition
49 → 158. The higher-order network is thus able to capture
the known relationship between kidney diagnoses, even though
in the original trajectories they are separated by a diagnosis of
T2D. Also of note are changes to codes with high first-order
baselines: e.g., the probability of 49|53 → 98 (T2D, given
a lipid disorder, to hypertension) increases by 2.23x from an
already-high 7.67% at the first order to 17.10% at the second
order—another significant change that is not captured by the
first-order network.

C. Using Random Walks to Measure Representational Quality

Random walks are foundational to many network meth-
ods, including PageRank, network embedding, and clustering
methods. In these cases, a random walker’s ability to simulate
trajectories relies entirely on the representational quality of
the network with respect to the underlying data. To quantify
the effects of higher-order networks on random walking, we
performed two experiments. In the first, we used a random
walker to predict future disease states. In the second, we used
a random walker to generate synthetic trajectories, which we
then compared to the original set of trajectories.

1) Predicting Disease States: In the first random walking
experiment, we predicted the final three entities in each trajec-
tory. To do this, we first removed the last three codes of each
trajectory and treated them as labels for the prediction task.
We considered the rest of each trajectory as an observation,
and used the set of observations to build a new set of networks
(used only in this experiment) for k = 1..5. Then, for each
trajectory, we instructed a random walker to follow the entire
sequence of observed diagnoses before taking an additional
3 steps, which represent its predictions. At each step, the
walker moved to a random neighbor based on probabilities

{185, 477, 250, 401, 110, 465, 455}

{949, 461, 704, 682, 131, 616, 380}

…

{401, 719, 726, 367, 250, 492, 285}

Trajectories

{185, 477, 250, 401}

{949, 461, 704, 682}

…

{401, 719, 726, 367}

{110, 465, 455}

{131, 616, 380}

…

{250, 492, 285}

Observations Labels

Build Network

ery Set

{110, 465, 455}

{250, 362, 366}

…

{250, 401, 285}

Predictions

{185, 477, 250, 401}

{949, 461, 704, 682}

…

{401, 719, 726, 367}

…

Results

Fig. 4. Overview of the first random walking experiments used to quantify the
representational quality of higher-order networks. Results of this experiment
are shown in Figure 5.

Fig. 5. Relative accuracy of random walk predictions on networks of various
k. The y-axis of each plot represents accuracy relative to k = 1, with error
bars representing standard deviation over 10 iterations. In (a) and (c), the x-
axis represents each of the 3 steps predicted for each test trajectory. In (b)
and (d), the x-axis represents the number of consecutive steps for each test
trajectory. In this case, a prediction for steps 2 or 3 can only be correct if the
predictions for all previous steps were correct.



TABLE IV
RESULTS OF USING RANDOM WALKS TO REPRODUCE THE ORIGINAL TRAJECTORIES.

Jaccard Similarity Weighted Jaccard Similarity
k n = 2 n = 3 n = 4 n = 5 n = 2 n = 3 n = 4 n = 5

CCS

1 .9839 .3626 .0378 .0013 .3680 .2614 .0349 .0012
2 .9867 .7163 .0508 .0020 .3678 .3203 .0464 .0019
3 .9868 .7222 .4096 .0801 .3679 .3265 .2399 .0635
4 .9865 .7218 .4096 .1790 .3680 .3265 .2400 .1311
5 .9871 .7221 .4098 .1790 .3680 .3264 .2400 .1311

ICD

1 .9328 .1396 .0087 .0002 .3552 .1351 .0086 .0002
2 .9329 .5508 .0287 .0025 .3551 .2762 .0259 .0022
3 .9326 .5511 .3492 .1450 .3551 .2762 .2199 .1107
4 .9328 .5510 .3493 .1816 .3552 .2763 .2199 .1346
5 .9325 .5506 .3493 .1816 .3552 .2761 .2199 .1346

calculated using Equation 4. We considered a step correct if
it matched the corresponding label, and incorrect otherwise.
Figure 4 provides an overview of the process. Because our
trajectories are defined to not include duplicate codes, we
forced the walker to ignore neighbors that represent codes
already observed in the trajectory. We also excluded any
trajectories that contained fewer than eight total codes in order
to minimize bias against higher values of k, which rely on
historical information. In total, we tested 540,090 trajectories
from CCS and 469,383 from ICD.

Figure 5 shows the results of 10 iterations on each network.
In all cases the HONs outperformed the first-order network,
and performance increased monotonically with higher k until
saturating at k = 5. The y-axis for each plot represents
accuracy relative to k = 1, rather than raw accuracy. This
is because we are interested not in using random walks as a
predictive model, but in quantifying the network’s represen-
tational ability at higher values of k. We note that the raw
accuracy values are quite low due to the difficulty of the
task; for example, in CCS at k = 1, the accuracy of step
1 was only 1.9% across the 540,090 trajectories. In (a) and
(c), the x-axis represents each independent step. In this case,
the higher-order networks consistently outperformed the first-
order networks, except for k = 2 on step 3. We suggest that
the decrease in relative accuracy for k > 1 at steps 2 and 3 is
because in a higher-order network, each of the walker’s node
choices are more consequential than in a first-order network.
The first-order networks have high density, so if the walker
makes an incorrect choice at step 1, it has a chance to correct
its course at steps 2 or 3. In the higher-order networks, an
incorrect choice directs the walker into a sparse neighborhood
in which it is unlikely to correct itself. To test this hypothesis,
we recomputed the results to count each step as correct only
if the walker also correctly predicted all previous steps. These
results are shown in (b) and (d) of Figure 5. As expected, for
both CCS and ICD the increased accuracy compounds with
each consecutive step. On ICD at k = 4 and k = 5, after 3
steps the accuracy is almost an order of magnitude higher than
k = 1.

2) Reproducing the Original Trajectories: In the second
random walking experiment, we tested the ability of each
network to generate synthetic trajectories that accurately re-

produce the original set of trajectories. To generate a synthetic
trajectory, we selected a random starting node u, using the
out-degree distribution to weigh the selection probabilities. In
the HONs we only considered first-order nodes for u, since
the first node in the trajectory should be free from historical
information. At each step, the walker moved to a random
neighbor based on probabilities calculated using Equation 4.
We used this method to generate sets of synthetic trajectories
on each of the networks described in Table II. Given a
fixed trajectory length n, we enumerated all subtrajectories
of length n from the set of real trajectories, then generated an
equal number of synthetic samples. We evaluated the results
using the Jaccard similarity coefficient, which measures the
similarity of two sets Sn (real trajectories of length n) and S′n
(synthetic trajectories of length n) according to the following:

J(Sn, S
′
n) =

|Sn ∩ S′n|
|Sn ∪ S′n|

. (10)

Because Jaccard measures similarity only with respect to set
membership and is thus agnostic to frequency, we additionally
utilized weighted Jaccard to measure similarity with respect
to the frequency distribution of each trajectory. To do this, we
first created a set Tn = Sn ∪ S′n of all trajectories (real and
synthetic) with length n. We then constructed two vectors,
Xn = {x0n, x1n, ..., x

|Tn|−1
n } and Yn = {y0n, y1n, ..., y

|Tn|−1
n },

such that xin and yin correspond to the frequency that trajectory
i ∈ Tn occurs in Sn and S′n, respectively. We then calculated
weighted Jaccard as follows:

JW(Xn, Yn) =

∑|Tn|−1
i=0 min(xin, y

i
n)∑|Tn|−1

i=0 max(xin, y
i
n)
. (11)

For each network with maximum order k and trajectory
length n we generated 10 sets of synthetic trajectories and
report the average similarity in Table IV. The standard de-
viation was less than 0.001 in all cases. For both CCS and
ICD, the first-order network’s performance decayed rapidly
with increasing n, which reflects the exponentially increasing
difficulty of the task. However, the HONs were much more
resilient to increasing n: increasing the value of k consistently
increased performance on longer trajectories while maintain-
ing the same performance for shorter ones. Because a HON
of a given k incorporates subtrajectories of up to length k+1,



Fig. 6. Differences in PageRank scores for nodes in ICD between k = 1
(x-axis) and k = 5 (y-axis), in log-log scale. Nodes are colored blue if their
score decreases and red if their score increases.

it is expected that the performance for a given value of n
peaks when k + 1 ≥ n. For the hardest task (n = 5), k = 4
and k = 5 outperformed k = 1 by two and three orders of
magnitude for CCS and ICD, respectively. This demonstrates
that random walks longer than two nodes are much more likely
to correspond to the distribution of the underlying data when
performed on higher-order networks than on their first-order
counterparts.

D. Using PageRank to Measure Node Importance

PageRank was developed to measure the relative importance
of web pages [30], and is used similarly in other networks
to quantify node importance. PageRank scores are calculated
by assessing the importance of a node as a function of both
its degree and the importance of its neighbors, so the results
depend heavily on the network structure. To investigate the
effects of higher-order representation on PageRank, we calcu-
lated PageRank scores in each of our networks and compared
the change in each entity’s score at higher values of k. In each
HON, we calculated an entity’s PageRank score as the sum of
the scores of all its higher-order splits. Because the out-degree
of a given entity often increases with higher k, we calculated
PageRank on a set of HONs constructed with an additional
postprocessing step: for each preserved higher-order node, we
decreased the out-degree of its lower-order counterparts by the
higher-order node’s out-degree. This ensures that each entity
has the same representation (with respect to total out-degree)
at any value of k, and thus avoids biasing the PageRank scores
toward entities whose out-degree increases more at higher k.

Table III reports the scores for a sample of CCS codes
across all k, and Figure 6 depicts the changes to scores in

ICD between k = 1 and k = 5. For ICD, most nodes
(836) decrease in importance at higher-orders, while a much
smaller number (72) increase in importance. These changes
can be used to understand the significance of a node as a
transition point between other nodes when we consider longer
trajectories. For example, Jensen et al. identify retinopathy
as a gatekeeper to other diabetic comorbidities because of
the number of other diagnoses it precedes in their disease
trajectory network [17]. In our case, retinopathy (CCS code
87, ICD9 code 362) has a PageRank score of 0.0052 in both
CCS and ICD at k = 1. At k = 5, its score decreases to 0.0047
in CCS and 0.0051 in ICD. While in many cases retinopathy
connects other comorbidities, its significance decreases as we
consider more history. By contrast, the score of CCS code 211
(disorders of soft and connective tissue) increases from 0.0282
at k = 1 to 0.0371 at k = 5, suggesting that such a diagnosis
could be a more important indicator of progression to other
comorbid conditions.

E. Detecting Communities of Related Diseases

Clustering, or community detection, algorithms are used to
identify groups of densely connected nodes within a network
[31]. Within a higher-order network, which uses nodes to
represent trajectories rather than single entities, clustering
offers even more analytical potential than in a first-order
network. We applied the Infomap algorithm to cluster each
network according the map equation, which seeks to mini-
mize the number of bits required to accurately describe the
flow of information, measured by PageRank score, between
communities [32]. Table II shows the number of clusters
found by Infomap for each network. For ICD at k = 1,
the nodes were trivially divided into a dominant cluster with
855 nodes (responsible for 99% of information flow), and two
smaller clusters: one with 44 nodes (0.1% of flow) from ICD
codes 630-679 (complications of pregnancy, childbirth, and
the puerperium) and 760-779 (certain conditions originating
in the perinatal period), and the other cluster with 9 nodes
(0.01% of flow) from ICD codes 630-640 (complications of
pregnancy). Thus, the only major difference revealed by the
flow of information at k = 1 was between pregnancy and non-
pregnancy-related codes. As k increased, so did the number
of clusters and the complexity of their distinguishing features.
Figure 7 shows a summary of the diseases represented in the
most influential cluster at each value of k for ICD. There were
clear differences in node representation, especially at k > 2,
where the flow is dominated by endocrine diseases (codes 240-
279). At k = 3, the rest of the cluster was dominated almost
entirely by diseases of the circulatory system (codes 390-
459). At k = 4 and 5 we observed high representation from
other codes such as 401 (essential hypertension), 477 (allergic
rhinitis), 724 (back disorders), and 733 (bone disorders). These
structural relationships were important for describing flow in
the higher-order networks, but were not distinguishable in
the first-order network. Further study of these higher-order
clusters could greatly enrich our understanding of complex
relationships between diseases and thus further one of network



Fig. 7. Summary of differences in the most influential cluster at each value of k for ICD, as discussed in Section IV-E. The most influential cluster is the one
whose nodes have the highest combined PageRank score. In this figure, representation is defined as the contribution of each node to the cluster’s combined
PageRank score. Nodes are additionally grouped by ICD9 chapter.

science’s main contributions to the study of comorbidities
[20].

V. CONCLUSION

In this study, we demonstrated the ability of higher-order
networks to model complex relationships between cormorbid
diseases more effectively than traditional first-order networks.
Because higher-order networks can use a single node to
represent one or more entities, they are able to capture more
complex dependencies from a set of disease trajectories than
first-order networks. To show this, we first extracted diagnosis
codes from the medical records of 913,475 type 2 diabetes
patients and used them to generate sets of disease trajectories.
We then used these trajectories to generate a set of higher-order
networks of various k, where k represents the maximum order,
or amount of history encoded by each node in the network.
We showed that increasing k reduces entropy in the network,
and discussed changes to the transition probability distribution
for a sample of disease states. We then demonstrated that
random walks on higher-order networks are better able to
predict additional steps and reproduce the original set of
trajectories. We next analyzed PageRank scores for nodes
across all networks and discussed implications for nodes that
increase or decrease in importance at higher orders. Finally, we
clustered the networks and discussed that the ability of higher-
order networks to encode complex relationships can produce
more informative communities.

From the results of this study, we conclude that the higher-
order network framework, which provides a solution to the
Markovian limitations of other network models, is important
for the continued research of complex dependencies between
diseases and their progression over time. Future work could in-
clude incorporating heterogeneous information like medication
history, laboratory results, and procedure history into higher-
order networks, which are currently limited to representing
sequences of the simple type used in this study. Additionally,
more sophisticated methods for representing the disease trajec-
tories, especially in regards to time between diagnoses, could
enable even higher-quality network representations.
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P. Paci, “A paradigm shift in medicine: a comprehensive review of
network-based approaches,” Biochimica et Biophysica Acta (BBA)-Gene
Regulatory Mechanisms, p. 194416, 2019.

[2] J. Xu, T. L. Wickramarathne, and N. V. Chawla, “Representing higher-
order dependencies in networks,” Science advances, vol. 2, no. 5, p.
e1600028, 2016.

[3] I. Scholtes, N. Wider, R. Pfitzner, A. Garas, C. J. Tessone, and
F. Schweitzer, “Causality-driven slow-down and speed-up of diffusion
in non-markovian temporal networks,” Nature communications, vol. 5,
p. 5024, 2014.



[4] I. Scholtes, “When is a network a network?: Multi-order graphical model
selection in pathways and temporal networks,” in Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. ACM, 2017, pp. 1037–1046.

[5] M. Rosvall, A. V. Esquivel, A. Lancichinetti, J. D. West, and R. Lam-
biotte, “Memory in network flows and its effects on spreading dynamics
and community detection,” Nature communications, vol. 5, p. 4630,
2014.
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