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Abstract—With the rise of network science as an exciting
interdisciplinary research topic, efficient graph algorithms are in
high demand. Problematically, many such algorithms measuring
important properties of networks have asymptotic lower bounds
that are quadratic, cubic, or higher in the number of vertices. For
analysis of social networks, transportation networks, communica-
tion networks, and a host of others, computation is intractable. In
these networks computation in serial fashion requires years or
even decades. Fortunately, these same computational problems
are often naturally parallel. We present here the design and
implementation of a master-worker framework for easily com-
puting such results in these circumstances. The user needs only to
supply two small fragments of code describing the fundamental
kernel of the computation. The framework automatically divides
and distributes the workload and manages completion using an
arbitrary number of heterogeneous computational resources. In
practice, we have used thousands of machines and observed
commensurate speedups. Writing only 31 lines of standard C++
code, we computed betweenness centrality on a network of 4.7M
nodes in 25 hours.

I. INTRODUCTION AND RELATED WORK

DisNet is an architecture for achieving difficult feats of

computation on large networks. It allows network scientists

to develop and deploy new and existing algorithms to obtain

results for intractable problems quickly. Architecturally, it

is a master-worker framework where the master coordinates

vertex-centric computation by distributing vertices to workers.

In this paradigm, users must specify only how to compute

results for a single vertex and how to combine computed

results from two vertices. Each potentially multi-core worker

machine has its own local in-memory copy of the network.

DisNet is not an attempt at enabling the computation of

any problem in any network. It is a recognition that many

interesting forms of network analysis lend themselves to

computation in a naturally parallel fashion that makes them

feasible for the majority of interesting networks. While the

rest of this paper will describe in detail the implementation

and scaling properties of DisNet, from a user perspective the

system is incredibly simple. Users do not need to deploy

any complex architectures, learn any special primitives, or

understand any principles of parallel processing. With a only a

basic knowledge of network science or graph algorithms, users

can leverage a wide variety of different computing resources,

grids, and clouds to solve their problems. More concretely, by

writing between 16 and 31 lines of standard C++ code with no

special primitives or consideration of parallelization, we were

able to leverage thousands of machines to compute algorithms

such as exact diameter and betweenness centrality in under 25

hours for a 4.7M node network.

Because this work resides at the intersection of work in

distributed computing and in graph algorithms, a wide va-

riety of research has at least some bearing. We focus here

on reasonable existing approaches for accomplishing rapid

computation in large networks. In [1], the authors offer a much

more complete survey of the challenges and options available.

One solution is the application of approximation algorithms

or specifically targeted parallel algorithms. For instance be-

tweenness centrality is of such interest that researchers have

developed a number of algorithms since Brandes’ exact algo-

rithm [2], including an approximation algorithm [3], a range-

limited algorithm [4], and a parallel algorithm [5]. While such

solutions are impressive and clever, each such approximation

or parallel algorithm requires its own impressive cleverness.

That is to say that the approach of devising these algorithms

lacks generality in providing a solution to the explosion in the

size of network analysis tasks. Further, these algorithms are

often conceptually complex, may be difficult to implement,

may still require substantial serial post-processing time, may

provide unacceptable bounds on approximation accuracy, or

may admit no error bounds at all.

Another approach is to grant the unmanageable compu-

tational complexity and devise better ways to attack the

problem with greater computational resources. Barring signif-

icant breakthroughs in serial computational speed, we cannot

hope for a single processor core to keep up with the size

of the network data we wish to analyze. Instead, we must

apply resources from computational grids and clouds to attack

the problem. One solution involves distributed memory and

message-passing, for example using MPI. The Parallel Boost

Graph Library (BGL) [6] is designed primarily for user

extension in achieving MPI computation on distributed graphs,

but it supplies and supports parallel algorithms on traditional

graphs. Writing parallel implementations in this manner is

tricky, however, and to such a degree that the implementation

and study of single-source shortest paths in the Parallel BGL

was sufficiently novel to warrant publication [7]. In short,
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while researchers can use existing parallel implementations

in these tools, and even this requires knowledge of MPI,

new implementations require additional knowledge above and

beyond vanilla programming that many lack. Furthermore,

message passing with distributed graph representations to

exploit fine-grained parallelism is inefficient when problems

present sufficient coarse-grained parallelism.

The authors of XWS [8] provide a nice framework with

which users can more easily manage concurrency in fine-

grained parallelism. Because it allows for fine-grained paral-

lelism, the best it can do in terms of simplicity is provide a set

of abstractions and primitives. It does not remove the burden

of understanding the parallelism from its users. The simple

alternative to such fine-grained parallel computation is coarse-

grained distributed computation. MapReduce [9] and exten-

sions like GraphLab [10] provide excellent frameworks for

distributed computation when components of the computation

are independent and divisible. For graph computation specifi-

cally, [11] describes a number of graph analysis techniques in

terms of their MapReduce transformations. In recognition of

some of the limitations and efficiency problems of MapReduce

for many graph problems [12], the authors of [13] extend the

framework with a data propagation primitive. In general, while

we do not disagree that MapReduce is an excellent paradigm

for computation in graphs, and indeed the mapping and

reducing operations are analogous to the process_vertex

and combine_data API in DisNet, [11] acknowledges

that MapReduce transformations often require a significant

rethinking about the computation in question.

Pregel [12] is similar in spirit to DisNet because of its

vertex-centric approach and its own processing and combi-

nation primitives. Pregel employs a more complex set of

abstractions than DisNet, provides for the modification of

the input network, and employs message passing between

computational workers. This grants it a greater flexibility

and broader range of applicability than DisNet, but it again

comes at the expense of an additional burden of code de-

velopment and understanding on the user. Writing algorithms

for Pregel requires writing code in terms of Pregel primitives

and messaging operations. Pregel uses message passing with

aggregation as part of the means of achieving its flexibility

and must therefore occasionally wait for messages to continue

processing. DisNet workers are bound only by the speed of

their local processors and memories; all communication is

performed while independent computations are running.

There are several fundamental differences between DisNet

and all of these existing systems. DisNet represents the

recognition that many interesting problems in network anal-

ysis involve computations that are inherently vertex-centrally

independent. This paper offers two maxims. First, naturally

parallel graph computation is most quickly run when it is

unencumbered by synchronization or knowledge of unrelated

computations. Second, graph algorithms are most quickly

developed when the developer can focus on the complexities of

the serial algorithm instead of the complexities of parallelism.

Many researchers in biology, sociology, and other fields have

minimal programming expertise. They can write serial graph

processing code but cannot be expected to have the knowledge

to write MPI or multi-threaded code or otherwise manage

aspects of parallelism. DisNet presents many advantages: it is

extremely easy to use and deploy, robust, fast, and can exactly

solve a large set of problems of interest in the analysis of large

graphs. If you can write the code describing a graph algorithm,

you can use DisNet. It is even possible to debug DisNet code

easily using standard debugging tools and techniques.

Some may be concerned about using localized in-memory

representations, but we disagree that in-memory representation

is problematic when using adjacency lists. An uncompressed

space-efficient immutable adjacency list representation of a

graph of |V | vertices and |E| edges theoretically requires only

|V | · ⌈log
2
|V |⌉+ |E| · ⌈log

2
|V |⌉ bits of space, because only

log
2
|V | bits are necessary to address |V | elements. To put

this in a more concrete perspective, a large social network of

5 million nodes and 20 million edges requires less than 72 MB

of space. Networks with 6 billion nodes and 36 billion edges,

a possible network representation of all living humans, would

require only 27.9 GB. Practical demands are somewhat higher,

but not much. Meanwhile, many research universities have

computing clusters with hundreds or thousands of available

computational nodes, and services such as Amazon EC2

provide inexpensive computing time.

II. PERTINENT PROBLEMS

We provide here a small sample of the problems to which

the framework nicely lends itself. The all-pairs shortest paths

problem lies at the root of several of these. It may be

computed in O(V 3) with the Floyd-Warshall algorithm or

in O(V 2 log(V ) + V E) with Johnson’s algorithm for sparse

graphs [14]. Important centrality measures also require high

computational time. Betweenness centrality, computed by

Brandes’ algorithm requires O(V E) or O(V E + V 2 log V )
in unweighted or weighted networks respectively [2]. This

is intractable for large networks, and achieving results faster

is of great interest [5]. Link prediction, especially expen-

sive path-based approaches, benefits greatly from distributed

computation. In many cases, the problems listed are related

conceptually or through transformation to a variety of other

difficult problems. These include all-pairs shortests paths,

eccentricity distribution, radius and diameter, radiality, clus-

tering coefficient, motif membership, centrality (e.g. random-

walk, closeness, betweenness), and link prediction (e.g. Adam-

ic/Adar, Katz, Rooted PageRank), just to name a few.

DisNet has already been used in a production setting by

fellow researchers to: (1) compute the exact diameter of a

social network of 6.5 million vertices (2) determine geodesic

distances and node similarities for all pairs in a selection of

60,000 vertices of Twitter and (3) analyze the exact distribution

of betweenness centralities for a demonstration of central-

ity scaling properties in a 4.7 million node communication

network. DisNet easily supports node and edge attributes in

addition to purely topological information by including this

information in the network representation.
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III. DISNET USER INTERFACE

Design and implementation decisions are geared toward

allowing users to complete the development phase as quickly

and easily as possible so that they can finish the real work of

computing the results they desire. From start to finish, typical

users of DisNet must simply specify three things: the data type

into which results are computed, how to compute results for a

single vertex, and how to combine results from two vertices in

the selected data type. Specifying the data type requires only

selecting from a list of preprocessor macro options. Single-

vertex result computation and data combination require writing

code or calling graph library functions.

In the current implementation, typical users should modify

one file, user.cpp, to make these three modifications. This

file does not contain any DisNet architectural code or graph

library code. Instead, its sole purpose is to serve as the one

location where users write the small code segments necessary

to specify the computations they want DisNet to perform.

This implementation of the DisNet framework employs

C/C++ for reasons of memory efficiency and execution speed.

The framework will scale to million-node networks even with

commodity resources and billion-node networks with available

cluster resources. Users unfamiliar with C/C++ need not fret

as actual coding requirements are minimal. Only a basic

knowledge of C/C++ is required to achieve computation using

the provided graph library, and the user need not understand

any details of the DisNet implementation itself. Despite its

current roots in C/C++, the ideas that form the DisNet architec-

ture are entirely separate from this particular implementation.

DisNet may be implemented in or employ modules from many

programming languages including Perl, Python, Java, and R.

We will briefly describe a few artifacts in the code seg-

ments below for reasons of clarity. First, the object variable

network is available globally in user.cpp. It contains

the single, immutable local representation of the network,

which is shared among all worker computational threads.

The network object supports several self-analytical functions

and simple functions to support arbitrary computation over

the topology, such as vertexCount(), which indicates the

number of vertices in the network. vertex_t is a type

definition for vertex identifiers. Likewise, neighbor_set_t

is a type definition for the container class that holds adjacent

vertex_t neighbors for each vertex.

A. Arbitrary Data Types

Users may select whatever data type they like to contain

their data. The specification involves modifying one line in

user.cpp to select from the provided data types. Existing

selectable data types include primitives, strings, and several

STL containers including vector, map, and set. Adding

additional data types is simple, requiring the specification of

only a few lines of code in the file macros.h and potentially

a basic ASCII serialization routine.

The initialization of these data types is important because

the result of data type initialization serves as the initial value

passed into the combination function with the first results. In

TABLE I
THE OPTIMAL DATA STRUCTURE AND REQUIRED SLOC FOR THE (A)

PROCESS VERTEX AND (B) COMBINE DATA ROUTINES.

Problem Data Structure A B

Betweenness vector<double> 28 3

Closeness map<vertex_t,double> 24 3

Eccentricities map<vertex_t,unsigned int> 15 3

Graph Diameter unsigned int 15 1

Link Prediction - Katz string 16 1

the current implementation, all data types including primitives

will be initialized by their default constructor except for

random-access data structures, which contain |V | objects each

initialized by their default constructor. For example, a double

is initialized to 0.0, a map<unsigned int,bool> is

initialized to a map with no existing key-value pairs, and

a vector<string> is initialized to |V | empty strings.

These defaults are reasonable because they serve as identities,

either additive identities or set union identities or otherwise.

Consider, for instance, betweenness, which involves attributing

partial sums to each vertex in the network. In this case, the ini-

tialization of a vector of values to the additive identity makes

perfect sense. In the rare case when the default initialization

behavior for an existing type is undesirable, users may easily

modify it by changing one line of code in macros.h.

Often, many different data types will get the job done.

For some problems particular data structures are required. For

others selecting a particular data structure may reduce perfor-

mance or increase network or disk demands. Consider the case

of centrality computations. Computing closeness centrality for

a single vertex results in a single number representing the

average distance of that vertex from all others. This number

could be placed in a vector<vertex_t,double>, but

then each combination requires |V | summations and every

transmission to the master must send the entire vector. If a map

is selected then the combination step is merely adding an entry

to the map, and transmission only involves as many vertices as

have been computed. On the other hand, the betweenness cen-

trality computation for each vertex produces the contribution

of that vertex in shortest paths to other vertices. The compu-

tation requires storage and fast access for all vertices, and all

vertices must be transmitted for accumulation of partial sums.

In this case, a vector<double> is the most efficient choice.

Finally, data types may contain multiple information elements

such as a map<vertex_t,pair<int,double>> so that

problems with overlapping solutions like eccentricity and

closeness can benefit from the same computation.

B. Vertex Processing

This is the first of two entirely isolated locations where

users must supply code. The function process_vertex in

user.h is constructed so that users can forget about every

aspect of the framework except how to compute results for a

single vertex. User code can either employ the API in the

network library to achieve arbitrary unanticipated analysis,

or it can call library procedures. For example, the included

library already implements closeness centrality so computing
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closeness for all vertices requires writing only a one-line

call. In the case when users want to experiment with new

analytical techniques or implement new functionality, most of

the coding requirements for the framework will rest in the

vertex processing task.

C. Data Combining

This is the second of two entirely isolated locations where

users must supply code. The function combine_data in

user.h is constructed so that users can forget about every

aspect of the framework except how sets of results from

two vertices should be combined. This snippet of code will

usually be extremely minimal. It might involve merging

maps, summing two vectors, concatenating two strings, or

computing the maximum of two numbers. These tasks are

usually straightforward, involving at most a loop expressed

in three lines of code. The combination function does not

have any theoretical constraints. It may be any of idempotent,

associative, or commutative depending on what the user wants

to accomplish. If the combination function involves generating

the union of one set with another, all three properties pertain.

If the combination function involves the concatenation of two

strings, none of the three pertain.

D. Development

To illustrate just how little effort is necessary, and to provide

an entirely concrete example, we include a complete user

specification for a working DisNet deployment in Listing 1.

To compute the diameter of a graph, we need only to select

the largest among all vertex eccentricities. Maintaining the

diameter we have discovered so far requires a single integer,

so we specify the data type as a single integer. For each

vertex, we must perform a breadth-first search, to determine

the maximum distance of any vertex from a source vertex. To

combine results, we choose the largest eccentricity.

Table I provides summary details of the development re-

quirements for a few other research problems. We use physical

source lines of code (SLOC) as a measurement of the difficulty

of the development task. The SLOC determination is based on

a standard count of semicolons.

1 # d e f i n e DATA TYPE DATA TYPE UNSIGNED INT

2

3 void p r o c e s s v e r t e x ( void∗ d a t a P t r , c o n s t Network& network , v e r t e x t v e r t e x ) {
4 / / a u t o m a t i c c a s t and d e c l a r a t i o n o f ‘ ‘ d a ta ’ ’ v a r i a b l e from d a t a P t r

5 v e c t o r<bool> found ( ne twork . v e r t e x C o u n t ( ) ) ;

6 v e c t o r<v e r t e x t> v1 ;

7 found . a t ( v e r t e x ) = t r u e ;

8 v1 . push back ( v e r t e x ) ;

9 f o r ( d a t a = 0 ; ! v1 . empty ( ) ; d a t a ++) {
10 v e c t o r<v e r t e x> v2 ;

11 f o r ( v e c t o r<v e r t e x t >:: c o n s t i t e r a t o r v I t =v1 . b e g i n ( ) ; v I t != v1 . end ( ) ;++ v I t ) {
12 c o n s t n e i g h b o r s e t t& n= ne twork . o u t L i s t . a t (∗ v I t ) ;

13 f o r ( n e i g h b o r s e t t : : c o n s t i t e r a t o r n I t =n . b e g i n ( ) ; n I t != n . end ( ) ;++ n I t ) {
14 i f ( ! found . a t (∗ n I t ) ) {
15 found . a t (∗ n I t ) = t r u e ;

16 v2 . push back (∗ n I t ) ;

17 }
18 }
19 }
20 v1 . swap ( v2 ) ;

21 }
22 }
23

24 void combine da t a ( c o n s t Network& network , void∗ d a t a P t r , c o n s t vo id∗
v e r t e x D a t a P t r ) {

25 / / a u t o m a t i c c a se and d e c l a r a t i o n o f ‘ ‘ d a ta ’ ’ and ‘ ‘ v e r t e x D a t a ’ ’ v a r i a b l e s

26 d a t a = d a t a >= v e r t e x D a t a ? d a t a : v e r t e x D a t a ;

27 }

Listing 1. All required user code for graph diameter.

Master

Workers

Communication Thread
Assigned Vertices: 

17,23,45,72,73,74,80,82,83

Vertex Status List*
...
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...
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98 Remaining
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Threads
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...
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...
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...
-----
...
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15 - 87.4
16 - 19.3

Network

Disk State
...
15 Checkpointed
16 Remaining
17 Remaining
18 Failed
...
-----
...
14 - 1.8
15 - 87.4

45 73

72 74
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83

Assignment Request/

Response

Assignment Request/

Response

Checkpoint

Checkpoint

Result 

Transmission

Fig. 1. An architectural overview of DisNet. Data structures with synchro-
nized access are marked with *.

IV. ARCHITECTURAL DESIGN

The framework employs the master-worker paradigm to

accomplish computation. The master coordinates work among

the workers and maintains the consistency of the results.

Workers accept vertices as basic independent units of the

computational task and run the same user-specified routine

for each. Workers communicate only with the master, never

with each other. Figure 1 is an illustration of these basic

components, their construction, and their interactions. Each

master communication thread and each worker share the same

data as their exemplars on the left.

The only requirement for a machine to serve as a DisNet

master is that it have an accessible port on which to listen

for contact from new worker machines. Workers may be

instantiated on local or remote machines directly operated

by the user, within computing grids such as Condor [15]

or the Sun Grid Engine (SGE), or even on cloud resources

such as Amazon EC2. DisNet is not inherently married to

any particular underlying grid or cloud management system.

Any machine or virtual machine that can send and receive

data using TCP/IP may serve as a worker. Any grid or cloud

management system that allows user-specified programs and

network communication can host pools of workers. In practice,

we have simultaneously employed locally-operated servers,

Condor, SGE, and Globus. DisNet includes batch submission

scripts for all of these.

To be useful and effective, the framework must scale to

provide service for at least thousands of workers, reliably

handle worker failures, and efficiently make use of disk and

network resources. Because systems may provide multiple

cores to a worker, the worker abstraction should handle

these resources optimally. Some high-throughput systems like

Condor employ a wide variety of architectures and operating

systems with heterogeneous resources, so the framework must
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be constructed in a way that is portable across operating

systems and architectures both in terms of how it is constructed

and how it transmits information. Given that computation may

require years of CPU time, the framework must consider

computations to be precious and must be able to recover

from almost any type of error or failure in a consistent state

and with minimal loss of data. The data involved may place

arbitrarily severe demands on the disk and network, but the

machines involved may be arbitrarily prone to failure. To allow

for appropriate trade-offs in this environment, the framework

must allow for simple tuning. Perhaps most importantly, the

framework must allow researchers to compute results on large

networks quickly and with minimal effort. We can encapsulate

these goals tersely: portability, efficiency, scalability, reliabil-

ity, customizable tuning, and ease of use. We will discuss the

final point, ease of use, in Section III.

A. Portability

DisNet achieves portability through the use of Bourne

shell scripts and remote compilation. When master.sh is

invoked, it combines and compresses all worker source code

and creates a compressed representation of the network. When

worker.sh is invoked, it first requests worker source code

from the master, which it then compiles. Remote compilation

is performed once at each physical worker machine and

requires only a couple seconds. Next, the worker requests the

network from the master unless the network file is specified

to be available locally. Transmission of compressed million-

node social networks requires less than 3 seconds on a 100

Mbps network. After these preliminary operations have been

successfully completed, the worker Bourne script invokes the

C++ worker binary. The setup time is negligible compared to

the time required to compute the difficult results for which

DisNet is designed.

B. Efficiency

DisNet workers load the network into memory once when

they are started and use the same immutable representation

for the duration of their lifetime. The immutable nature of the

network also allows for a single read-only representation of

the network that all worker threads can share. Local workers

on multi-core machines can employ any number of those cores

for computation. As processors offer increasingly many cores,

workers will enjoy increasing speed and lower overall ratios of

memory requirements to core count. Transient threads arise to

handle each vertex and require only the additional memory

necessary for running the computing algorithm. The main

worker thread also contains a copy of all data combined so

far. When each transient thread completes vertex processing,

the result is combined with the existing data under a mutex

lock.

When the master receives new results from workers, the re-

sults are combined and system state is updated within a mutex.

Time with the master is a precious resource, so workers accept

as a parameter a number of vertex results to combine locally

before sending data to the master. As we will demonstrate

theoretically and practically below, this combination parameter

effectively eliminates the master as a bottleneck without the

complexity of having multiple masters in a distributed or

hierarchical arrangement. It simultaneously reduces processing

demands on the master and reduces the bandwidth required by

both the master and the worker. Transient threads spawned

by the worker for additional vertex assignments continue

running while the worker communicates with the master. The

combined vertex data is locked until communication finishes

at which time it is cleared and again becomes available to the

transient threads for update.

C. Scalability

One of the principal concerns of DisNet is scalability. By

isolating workers from each other entirely, the architecture

guarantees that the only potential bottleneck is the master. The

master must be able to handle many simultaneous connections,

deserialize results, combine results with the combination func-

tion, and checkpoint all as quickly as the workers can supply

results. Whereas workers are likely only to encounter CPU

limitations, the master may encounter limitations due to the

CPU, the disk, or the network. CPU and network limitations

are both due to frequent and voluminous client communica-

tion, which necessitates equally frequent deseralization and

combination. By designing workers that combine results as

they produce them, most of the burden on these resources

can be reduced to allow for virtually arbitrary scalability.

Scalability problems are reduced to tradeoffs between speed

and waste, which we can leave to users based on their level

of confidence in the stability of their systems.

We implemented the master with a thread-per-worker com-

munication paradigm. Although we are aware of theoretical

arguments against such a paradigm, in practice we did not

observe thread scheduling problems or network saturation.

The framework does not currently provide for hierarchical

master-worker relationships where workers are themselves

masters for a broader array of workers. Such a provision

would indeed decrease load on the master, but at the cost of a

decrease in CPU and network efficiency. Load on the master

is not problematic in practice. Even if it were, the master

can itself utilize multiple cores, and result deserialization is

often substantially more expensive than data combination in

the mutex, reducing the probability of encountering a real

bottleneck.

D. Reliability

The most efficacious approach to achieving reliability is

to acknowledge that workers are inherently unreliable and to

treat them accordingly. Workers may experience software or

hardware failures for innumerable reasons, most of which are

entirely beyond our control. The master ensures the appearance

of reliability to the user through failover. The master must be

able to detect when workers fail so that it can reassign the

relevant vertices. It accomplishes this using keepalive probes.

When a worker fails to respond to a number of successive

keepalive probes, the master considers the worker dead, closes
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the connection, and moves all outstanding assigned vertices

from the RUNNING state to the FAILED state.

We take the approach that the system should successfully

complete as much computation as possible as quickly as

possible in the event that errors occur. Because some worker

failures may actually result from a problem processing a

particular vertex, vertices in the FAILED state are reassigned

only when there are no longer REMAINING vertices to assign

to waiting workers. This implicitly assumes that the remain-

der of results are still valuable and avoids spinning on the

assignment of problematic vertices that consume worker time

only to probably or certainly fail. After all vertices have been

moved from the REMAINING state through assignment to

workers, FAILED vertices are reassigned repeatedly until all

vertices are finished or the user terminates the master. At

no time are resources idle, because FAILED vertices occupy

free resources as soon as there are no longer REMAINING

vertices to assign. Alternatively, FAILED vertices might be

retried immediately with a threshold number of attempts

before reporting the failure to the user.

In the case of master machine failure, recovery is ac-

complished via checkpointing. Checkpoints are created by

writing a single temporary file that contains the vertex sta-

tus information and the computed results. After writing a

temporary file, the master atomically renames the file to

create the latest checkpoint and then updates the in-memory

vertex status information moving vertices from the DONE state

to the CHECKPOINTED state. When all vertices reach the

CHECKPOINTED state, the master indicates successful com-

pletion and terminates. Until then, the master sends deferral

messages to unoccupied workers in case straggling compu-

tations fail. The master creates a checkpoint in one of three

circumstances: (1) every time a specified number of vertices

has been successfully processed, (2) when all vertices have

been successfully processed, or (3) upon detecting Ctrl+C.

When the master is restarted after failure, it loads the vertex

status list and result data structure from the latest existing

checkpoint and listens for connections from new workers.

E. Customizable Performance Tuning

Tuning is achievable with a data combination parameter, c,

which is accepted by master and worker alike. On the master,

this parameter designates the number of vertex results, not

worker transmissions, to accept and combine before initiating

a checkpoint. Decreasing the value of this parameter results

in more frequent checkpoints and less wasted worker time

if the master fails; increasing it lowers the disk throughput

requirements on the master. On workers, the combination

parameter designates the number of vertices to finish and

combine before sending data to the master. In this case, a

lower parameter value decreases wasted worker time when

the worker fails; higher values reduce the computational and

network bandwidth demands on the master. The parameter c

can be set differently on the master, each worker, or on each

batch of workers submitted to a computational grid.
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Fig. 2. Strong scaling behavior.

V. EFFICIENCY AND SCALABILITY

Analyzing the efficiency of non-parallelized algorithms on

real social networks of the size for which DisNet is designed

is intractable because they simply take too long to run. DisNet

does not reduce the total computational time to complete

long-running algorithms on large graphs, but simply makes

it extremely easy to distribute this time across many hetero-

geneous resources. For comparative experiments, we extract

the largest strongly-connected component from Erdös-Rényi

(n,M) : M = 4n model random graphs of different sizes to

gain an idea of the efficiency and scalability of the distributed

system. All experiments are performed with betweenness cen-

trality, closeness centrality, and diameter using code compiled

with the -O3 flag to the GNU g++ compiler. The master

is a dual quad-core 3.0 GHz Xeon machine with 1 Gbps

network bandwidth. We report CPU utilization such that 100%

utilization means complete occupation of a single core.

A. Strong Scaling

Figure 2 shows the strong scaling of the system, how it

behaves as additional workers are added. We select a random

graph with 125,871 vertices and 503,411 edges. To obtain

these results, we use only 2.53 GHz core-clock Nehalem

workers on the SGE. The master was set to checkpoint only

after completion and the worker combination parameter was

fixed at 200.

The figure indicates excellent strong scaling, almost perfect

scale-free behavior. Doubling the number of workers results

in 50-55% of the wall time at any number of workers. From

50 to 100 workers, the time to complete the computation

becomes so small that the time to setup worker connections,

send source code, and distribute vertices becomes a significant

factor. To illustrate that strong scalability continues to pertain

with an ever-increasing number of workers, we computed the

two more challenging problems on a SCC with 503,758 nodes

and 2,014,746 edges. Closeness required 1186 seconds of wall

time with 50 workers and 602 seconds with 100 workers, 51%
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Fig. 3. Performance and master burden with respect to the worker combination parameter.

as much time. Betweenness required 6319 seconds of wall time

with 50 workers and 3416 seconds with 100 workers, 54% as

much time.

B. Parameter Manipulation

We also report burden on the master in terms of CPU time

with different values of the combination parameter, c. We use

the same random graph with the same parameters as for the

strong scaling experiments, but the number of machines is

fixed at 100. Figure 3 illustrates results. Theoretically, the

three problems are representatives of different classes of dif-

ficulty in terms of their network bandwidth requirements and

deserialization demands on the master. Betweenness centrality

scales according to O
(

|V |2

c

)

, closeness centrality according

to O(|V |), and diameter according to O
(

|V |
c

)

.

To understand the reason for these different classes of

scaling, one must consider what information must be sent

for each vertex and how that information interacts with or is

independent of c. Betweenness centrality requires calculating

and summing partial sums that result from one computation

initiated at each vertex. Each transmission requires sending

|V | values, and |V | transmissions are required, but workers

can effectively reduce the number of transmissions by a factor

of c by summing together individual vertex results. Closeness

centrality requires sending O(1) information for each of the

|V | vertices. Worker combination can aggregate this data for

fewer transmissions, but ultimately all |V | values must be

transmitted. Finally, diameter requires only a single integer.

This integer must be selected from the maximum eccentricity

of each of the |V | vertices, but worker combination can reduce

the amount of data transmitted by selecting the maximum

integer from all its results and discarding the rest.

Practical results align well with theory. Betweenness places

much greater demands on the master. Nevertheless, we ob-

serve that the time required to finish the computation stops

decreasing after the combination parameter reaches 25, which

indicates that for the selected graph size and 100 workers,

the master is no longer a bottleneck. We also note that

increasing graph size for betweenness centrality computations

increases the size of the data to transmit to the master, but

computation for individual vertices also takes longer. The

O
(

|V |2

c

)

requirements above are overall requirements. Per

unit time, the number of workers involved is more important

in selecting a combination parameter balanced against the

reliability of the worker machines in question.

The substantially lighter demands of the closeness and

diameter computations are apparent in their lower absolute

time requirements, but also in terms of their flatness. Even

with workers sending results upon finishing each vertex, the

master is no bottleneck, but CPU utilization is slightly higher

for low values of c. Since closeness centrality data volume

is independent of c, the smaller, more frequent transactions

are causing the higher utilization by virtue of their frequency

alone. In employing DisNet to achieve our own results for a

large social network the master was not a bottleneck. Speeds

are instead bound to the number of accessible workers.

C. Problem Size

Betweenness centrality is among the most stressing prob-

lems of those listed in Section II because the data structure

must always contain information for every vertex. For this

reason, it serves as a conservative benchmark for DisNet.

Figure 4 illustrates results for several problem sizes. In line

with our scalability claims, we observe a monotonic decrease

in average master CPU utilization with increasing network

size. DisNet does not reduce the total computational time

required to complete a particular task, so the functional form

of the growth in Figure 4 is the same regardless of how the

computation is achieved. Nonetheless, when the graph size

surpasses 500,000 vertices, a week of serial computation is

no longer sufficient to reach a solution. Even with only 100

cores, DisNet requires under two hours, and adding more

computational power is simple.

D. Extreme Performance

Finally, we are interested in the most grandiose performance

we can muster with DisNet and the computational resources

available to us. We compute the betweenness of a real-world

social network with 4,773,246 vertices and 29,393,714 edges.

The run required 25 hours. The master interacted with 2368

distinct workers and successfully handled 442 worker failures,

most due to Condor evictions. The most highly multi-threaded

worker ran 28 threads on a 32-core machine, achieved nearly
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Fig. 4. Speedup as a function of problem size.

constant 2800% utilization, and required only 10 GB of mem-

ory. Local workers were run with a combination parameter of

1000, SGE workers with 500, and Condor workers with 250.

The master was set to checkpoint every 100,000 vertices. With

logging overhead, peak master CPU utilization was 609%,

average master CPU utilization was 307%, and total master

CPU time was 76.1 hours.

VI. CONCLUSION

DisNet represents a new avenue for approaching com-

putation in large networks. With recognition of the natural

parallelism in most network computation through a vertex-

centric approach, a framework can achieve high efficiency and

allow for easy development. We have illustrated how com-

putationally complex measures like graph diameter, closeness

centrality, and betweenness centrality can be calculated in a

matter of hours on a representative of one of the largest social

networks under active study, results that would have required

years of computation with serial algorithms. Researchers can

achieve the same complex computations in a reasonable time

given widely available grid resources. Most importantly, the

system is easy to use and understand. DisNet abstracts away

all details of parallelism so that users only need to consider the

fundamentals of the problem they are trying to solve in natural,

untransformed terms and can ignore virtually all aspects of

how the computation is achieved.

We recognize that some networks under study contain 109

vertices or more. Given a pool of workers with sufficient

memory, DisNet is not limited to networks of any particular

size. Nonetheless, for these extremely large networks, dupli-

cate local representations of the network in general may be

unsuitable. We contend that the selection of interesting algo-

rithms, so many of which are O(|V |2) or O(|V |3), that one can

reasonably apply to such networks is severely constrained un-

der any system even with world-class computational resources.

In short, DisNet is not an attempt to allow the computation

of anything conceivable on any conceivable network. It is

an attempt to make harnessing many heterogeneous computa-

tional resources easy and efficient in the pursuit of computing

many interesting computationally complex algorithms on most

networks under study.

DisNet includes a skeleton network library for rapid devel-

opment with the framework as is, but the framework exists

independent of the library. Existing graph libraries such as

the BGL or home-built code can be substituted with few

changes to the core software. DisNet is available at http:

//nd.edu/∼dial/software.html.
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