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Abstract

The introduction and establishment of nonindigenous species (NIS) through global ship

movements poses a significant threat to marine ecosystems and economies. While ballast-

vectored invasions have been partly addressed by some national policies and an interna-

tional agreement regulating the concentrations of organisms in ballast water, biofouling-vec-

tored invasions remain largely unaddressed. Development of additional efficient and cost-

effective ship-borne NIS policies requires an accurate estimation of NIS spread risk from

both ballast water and biofouling. We demonstrate that the first-order Markovian assumption

limits accurate modeling of NIS spread risks through the global shipping network. In con-

trast, we show that higher-order patterns provide more accurate NIS spread risk estimates

by revealing indirect pathways of NIS transfer using Species Flow Higher-Order Networks

(SF-HON). Using the largest available datasets of non-indigenous species for Europe and

the United States, we then compare SF-HON model predictions against those from net-

works that consider only first-order connections and those that consider all possible indirect

connections without consideration of their significance. We show that not only SF-HONs

yield more accurate NIS spread risk predictions, but there are important differences in NIS

spread via the ballast and biofouling vectors. Our work provides information that policy-

makers can use to develop more efficient and targeted prevention strategies for ship-borne

NIS spread management, especially as management of biofouling is of increasing concern.

1 Introduction

The subset of nonindigenous species (NIS) that become invasive pose significant and growing

threats to ecosystems, infrastructure, human and animal health, resulting in an estimated

annual cost of 1.4 trillion USD globally (of which 120 billion USD, 9% of global damages, is
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the estimated cost in the United States) [1]. In the Great Lakes alone, the annual cost of ship-

borne NIS is estimated as high as 800 million USD [1]. While various mechanisms can lead to

the introduction of NIS, this paper focuses on the NIS risks stemming from international com-

mercial shipping, which is responsible for more marine NIS introduction around the world

than any other mechanism [2–4], and whose risk rises with increasing trade and new shipping

routes [5].

Prevention of NIS transfer and establishment has been identified as the most effective and

economically efficient means to reduce NIS costs [6, 7]. However, cost-effective prevention

requires a good understanding of the vectors of NIS introduction. Ship-borne NIS are trans-

ported via two main vectors: ballast water and biofouling. Ballast water management has

received significant attention from researchers and policy-makers in recent years, including

the International Maritime Organizations International Convention for the Control and Man-

agement of Ships’ Ballast Water and Sediments (BWM) and associated national legislation in

the US. On the other hand, management of biofouling NIS transfer has received relatively less

attention [8–10]. Not only do the two vectors of marine NIS transport require very different

management interventions, but they also present challenges on how to effectively model their

respective pathways to more accurately assess risk. Accurate risk assessment is critical to

inform a cost-effective and efficient strategy for NIS risk management.

We posit that NIS spread through the global shipping network is not a simple first-order

Markov process as mostly assumed in the literature [11–15]. Rather, the pathways of NIS

introduction exhibit higher-order pathways of species transfer, because many ships do not

discharge their entire ballast water or release all of their biofouling species in their first port of

call. For example, consider the case where a ship visits port C, A, and then E. Suppose the ship

takes in ballast water in port C, and discharges a portion of water in port A, and discharges the

rest in port E. This means that there is still a considerable risk of species introduction from

port C to port E, in addition to port A. Fig 1(a) left displays an illustration of this situation. The

first-order connections may have higher species transfer risk, but there is a non-trivial possibil-

ity of species transfer via either of the mentioned mechanisms from port C to port A, and E.

Recurrence of such movement patterns over time results in the formation of indirect pathways

for species introduction. The above scenario holds for biofouling as well. Species that accumu-

late on a ship in port C can still impose introduction risk to port E in addition to port A, if they

manage to survive along the path C! A! E. Ignoring such dependencies will result in an

inaccurate estimation of the introduction risk.

Recent research has brought to fore challenges with the first-order network view and the

limitations it poses in network analysis (e.g., community detection [16–19], node ranking [20],

anomaly detection [21], and representation learning [22, 23]). In the Ecology domain, recent

studies have recognized the importance of higher-order dependencies in ship-borne NIS

transfer and some have attempted to incorporate them into their risk models. The authors in

[24, 25] propose to include the entire ship trajectory for calculating the NIS risk. However,

some connections are more important than others. For example, reoccurring higher-order

patterns are more likely to result in species introduction at a global scale. As a result, accumu-

lating the risk over the entire trajectory can result in over-estimation of the risk. The authors

in [8], consider shipping paths of length five and fewer to be connected. The problem with this

method is that a fixed order is not realistic for all connections: as we explain further in this

paper, several significant smaller or longer paths (e.g., some having up to 15th order of depen-

dencies [26]) could exist in the network. These uniform approaches may both prevent accurate

risk estimation and may also disguise likely differences between higher-order patterns of spe-

cies introduction through biofouling versus ballast discharge. Lastly, previous models failed to

incorporate environmental dependencies in higher-order introduction pathways, ignoring
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how significant higher-ordered patterns may change over time. These are important factors

for forecasting NIS spread under future global change.

Contributions. Here, we conduct a comparative study to assess the risk of NIS spread via

biofouling and ballast water through the global shipping network. To this end, we integrate the

vessel movement data, environmental data, and biogeographical data to develop species-flow

networks for both introduction vectors. We compare two network flow models, species flow

first-order network (SF-FON) which only includes the first-order connections, and species-

flow higher-order network (SF-HON) which includes all significant higher-order dependen-

cies in the ship movement patterns. We then evaluate predictions of each model, as well as the

higher-order model of [24] against NIS introduction datasets from the USA and Europe.

This study presents the first large-scale validation of higher-order NIS spread via ballast

water and biofouling. Our results may inform more effective, targeted prevention strategies for

NIS spread management. Our main unique contributions include:

• Providing a global model for biofouling risk by integrating the shipping, environmental and

biogeographical data.

• Presenting a global comparison of the NIS spread risk via ballast water and biofouling. We

identify the main differences in network structure, clustering patterns, main pathways, and

illustrate the correlation between vessel characteristics and NIS spread risk for each vector.

• Quantifying the impact of incorporating higher-order dependencies into species-flow

modeling by comparing the accuracy of SF-HON model against the existing higher-order

approach and the SF-FON model using two large datasets of NIS from the USA and Europe.

Fig 1. Two different patterns of higher-order species transfer between ports. (b) Out of six ships, ship 1 and 2 follow

the pattern in (a) left, and ship 4 and 5 follow the pattern in (a) right. Conventional first-order network ((c) left), where

organisms have the same probability of being introduced to port E and F via port A. Higher-order network ((c) right)

with a second-order dependency example in species transfer. Due to higher-order patterns in ship movements,

organisms native to port C are more likely to get transferred to port F via ships traveling through port A and organisms

native to port B are more likely to get transferred to port E via ships traveling through port A.

https://doi.org/10.1371/journal.pone.0220353.g001
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• Illustrating changes in NIS spread risk and SF-HONs characteristics over 6 years of data

shipping data spanning (1997-2012).

2 Materials and methods

2.1 Data sources

As illustrated in Fig 2, we incorporated the shipping and environmental data sources into

SF-HON. We then used invasion records from AquaNIS data and the NAS data for validating

the effectiveness of SF-HON. All validation datasets are filtered to include records from 1997

to the present. We assume it takes one to two decades for species to be introduced via shipping

activity, thrive and reproduce in the new environment to be publicly detected as an invasive

species. We have provided an aggregated view of the shipping data along with the environmen-

tal properties of the ports in this repository: http://bit.ly/2GF3fJ4.

Ship movement data: We obtained port locations and ship voyage data from Lloyd’s List

Intelligence, an Informa Group Company (LLI, New York, NY, USA). LLI collects global port

calls in conjunction with the Lloyd’s Agency Network, which gathers information from over

1200 local agents who observe port arrivals and departures directly and additionally gather

data from other sources. The LLI Database is a global standard for commercial ship traffic

research for government and business applications. It does not include military or recreational

ships. These data contain travel information for ships including port ID, sail date and arrival

date, along with ship meta-data (we used ship size, ship gross weight-tonnage, and type of the

cargo carried by ship). This information is used to build both SF-FONs and SF-HONs to rep-

resent the NIS risk through ballast discharge and biofouling among ports. Our study is based

on LLI data over the most recent year of data available to us starting May 2012 with 1, 185, 510

individual voyages. However, for section 3.3 (Evolution of SF-HONs and NIS risk) we used 6

years of data (spanning over 15 years) starting 1st of May 1997, with 9, 482, 285 voyages.

Ballast discharge data: This data is provided by the National Ballast Information Clearing-

house (NBIC) [27], and contains the date and the discharge volume of all ships visiting U.S.

ports from Jan. 2012 to present. We used the NBIC data to estimate an average ballast dis-

charge for ships given their type and size. We did not consider ballast-water exchange or other

ballast water management practices that were being practiced in some jurisdictions during

some of our time series.

Fig 2. A block diagram of the risk network construction. The ecoregion data, environmental data, and the shipping data are used to

compute the first-order (pairwise) NIS spread link between the shipping ports through each shipping introduction vector. The resulting

probabilities along with the shipping trajectories are used for constructing the two SF-HONs, ballast SF-HON and biofouling SF-HON.

https://doi.org/10.1371/journal.pone.0220353.g002
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Environmental data: The temperature and salinity of the shipping ports is extracted from

the Global Ports Database [8] and the World Ocean Atlas [28] using the approach in [8]. From

9177 ports in the ship movement data, 6695 ports with the temperature and salinity informa-

tion were included. We did not consider the salinity and temperature profiles of each voyage,

which could influence biofouling survival.

Biogeographical data: Ecoregions are geographical regions of the ocean that share species

sets due to shared evolutionary history. We obtained the ecoregion data from Marine Ecore-

gion of the World (MEOW) [29] to determine the likelihood of a transported species being

nonindigenous given the source and destination ecoregion.

AquaNIS nonindigenous species data: This data set contains information on NIS intro-

duction histories, recipient regions, taxonomy, biological traits, and impacts. This data set is

frequently updated with new records and is regarded as best available [30]. The NIS data is

available for species introduced to European countries and is filtered to include only species

suspected to have been introduced by shipping activity (ballast water and/or biofouling) from

1997 to 2017.

NAS nonindigenous species data: This dataset contains reliable information about the dis-

tribution and presence of species across the United States. Data fields include information

about the introduced species such as taxonomy, state, freshwater/marine. Because most of the

species in this dataset are freshwater species, we used only the first introductions for each NIS

in each state that were potentially transported by shipping activity (ballast water and/or bio-

fouling) and recorded between 1997 to 2017. This criterion automatically removes all the

inland states from our analysis.

National Exotic Marine and Estuarine Species Information System (NEMESIS): This is

the nonindigenous marine and estuarine species database for North America. Taxonomic cov-

erage includes algae and animal species. Data fields include taxonomic descriptions and classi-

fication, global distribution, invasion history, ecological and life-history traits, and known

environmental and economic impacts. We extracted the first introduction for each NIS in

each state that was potentially transported by shipping activity (ballast water and/or biofoul-

ing) and recorded between 1997 to present. Similar to the NAS data, the NEMESIS data does

not include any inland states in our analysis. For all three species data sources, we did not

attempt to distinguish ballast mediated from biofouling mediated species.

2.2 Risk assessment method

In this section, we explain our calculation of first-order NIS risk, construction of SF-HON and

calculation of higher-order risks, network analysis methods used, and the evaluation method.

We first explain how the NIS risk through each introduction vector is calculated for every voy-

age between a pair of ports. We aggregate the risk overall voyages to calculate the network

edge weights (equivalent to the NIS risk for each port pair) for our first-order model, SF-FON.

In order to calculate the edge weights in our higher-order model (SF-HONs), we first identify

significant higher-order dependencies or “rules” in the shipping network using the algorithm

developed by [26]. We then build SF-HON by combining the higher-order patterns and the

first-order NIS risk. In addition to comparing network structure and clustering patterns

between ballast and biofouling SF-FONs and SF-HONs, we also tested how well each model

predicted recent NIS introduction data from Europe (AquaNIS) and the USA (NAS). Below

we describe each step in more detail.

2.2.1 NIS spread. As illustrated in Fig 2, we incorporated the shipping, environmental,

and biogeographical data sources to estimate NIS spread risk for each ship voyage as the prod-

uct of three independent probabilities: probability of being nonindigenous to the destination
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port, probability of establishment (survival and reproduction), and probability of introduction

to the destination port. NIS introduction risks for ballast water and biofouling were calculated

using a different formula, yielding separate NIS spread risks for these two vectors. For both

introduction mechanisms we define the NIS spread risk between port i and j to be the product

of the three probabilities:

PðNIS spreadÞij ¼ PðnonindigenousÞij � PðestablishÞij � PðintroÞij ð1Þ

The probability of being nonindigenous We identified port pairs that may contain nonin-

digenous species based on the ecoregion data, to account for the fact that many wide-spread

species are found in more than one ecoregion [31], [29]. As a result, neighboring ecosystems

are likely to share more species that are considered native [31].

Therefore, for source and destination ports belonging to the same or neighboring ecore-

gions, we define the probability that they introduce a nonindigenous species to each other to

be 0; otherwise, this probability is set to 1.

PðnonindigenousÞij ¼

(
0; i & j 2 same or neighboring ecoregions

1; i & j 2 different ecoregions
ð2Þ

The probability of establishment This probability is calculated based on the environmen-

tal similarity of the give ports. We adapt the state-of-the-art formulation and parameters based

on [24]: This probability is modeled as a Gaussian distribution of the temperature difference

ΔTij and salinity difference ΔSij of the source and destination ports, normalized by their stan-

dard deviation, δT and δS,

PðestablishÞij ¼ ae
� 1

2
½ð
DTijÞ
dT Þ

2þð
DSij
dS Þ

2 � ð3Þ

in which α = 0.00015, δT = 2˚C and δS = 10 ppt are chosen based on [24].

The introduction probability via biofouling Biofouling risk is calculated based on two

main factors: species accumulation and species survival during the trip. We estimate the rela-

tive biofouling accumulation on a ship based on two parameters: the duration of stay at the

source port i, di, and the antifouling practice based on the ship type A(t). The relationship

between biofouling accumulation (measured as the proportion of maximum species richness)

and duration in port i (measured in days) was derived from data taken from four studies that

had tracked biofouling community accumulation overtime at multiple latitudes [32–35]. The

relationship was modeled as a third-order polynomial, with accumulation at locations in tropi-

cal and subtropical latitudes (equator +/- 35 degrees latitude) and temperate latitudes having

different patterns (S1 Fig in S1 File). The antifouling parameter A(t) refers to the proportion of

ships of a given type without an operational antifouling system. Estimates for each ship type

were obtained from a survey of commercial ships in California [36] as follows: Container

Ships: 0.19, Automobile Carriers: 0.20, Tankers: 0.30, Passenger Ships: 0.31, Bulk Carriers:

0.42, and General ships: 0.53, and all other commercial ships: 0.60.

The second main factor in the introduction risk via biofouling is the survival probability of

species during the voyage, which is known to decrease with increasing voyage velocity vij.
Using experimental data from [37], we fit an exponential decay function to estimate survival

probability as a function of vij (S2 Fig in S1 File).
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Considering both species accumulation and survival probability, we estimate biofouling

introduction risk for each voyage between port i and j as:

pðvÞij ¼ AðvÞðbTr1
d3

i � bTr2
d2

i þ bTr3
diÞe

ð� gvijÞ;Tropical ð4Þ

pðvÞij ¼ AðvÞðbTp1
d3

i � bTp2
d2

i þ bTp3
diÞe

ð� gvijÞ;Temperate ð5Þ

Where vij is the average voyage velocity from source port i to destination port j measured in

kilometers per day. γ = 0.008 and βTr1 = 1.29 × 10−7, βTr2 = 8.316 × 10−5, βTr3 = 0.0149 are the

tropical coefficients and βTp1 = 1.4 × 10−9, βTp2 = 1.6566 × 10−5, βTp3 = 5.193 × 10−3 are the

temperate coefficients (refer to section 1 in supplementary materials for more details on model

development and calculation details).

The introduction probability via ballast discharge Our method for estimating the intro-

duction probability based on ballast discharge slightly alters the equation used by [24]. Let v be

a ship traveling from port i to j, during the time DtðvÞij . Species in the ship ballast water may die

at a daily mortality rate of μ. Let DðvÞij , ρ(v) 2 [0, 1], and λ be the amount of ballast water dis-

charged at the destination, the efficacy of ballast water management for the route, and the

species introduction potential per volume of discharge. Then, the probability of ship v intro-

ducing species from port i to port j is given by [24]:

pðvÞij ¼ rðvÞð1 � e� lD
ðvÞ
ij Þe� mDt

ðvÞ
ij : ð6Þ

The amount of ballast water DðvÞij is estimated based on ship type and ship gross weight tonnage

using the method proposed in [14]. The trip duration DtðvÞij is extracted from Lloyd’s data set. μ
= 0.02 and λ = 3.22 × 10−6 are chosen based on [14]. Note that, our vessel movement data does

not include details about partial ballast discharge between the ports. As a result, we used the

total estimated volume of ballast water discharged in the intermediate ports to calculate the

risk in ballast SF-HON model. This is a limitation of our study and can be improved in future

work with the availability of more accurate data. Incorporating the partial ballast discharge

information in our model may reduce the NIS risk in the SF-HON model.

SF-FON: The edges in SF-FON are equivalent to the first-order NIS introduction risk

between pairs of ports. In order to calculate this value for each pair of ports (given an introduc-

tion vector) we aggregate the NIS risk of all voyages from port i to port j:

PðintroÞij ¼ 1 �
Y

r;v

ð1 � pðvÞij Þ; ð7Þ

where the product is taken over all routes r such that a ship v travels from port i to j.

2.3 SF-HON: Higher-order network of species flow risk

We calculate the NIS spread risk for every pair of ports under ballast discharge and biofouling

mechanisms using the model defined in Section 2.2. At this point, we could conventionally

model this data into a network structure where nodes represent the shipping ports and edges

correspond to the first-order port risks. However, this interpretation is an over-simplification

of the complex system of global shipping traffic. Studies show that a ship’s next port to visit

can depend on previously visited ports [26]. As illustrated in Fig 1(b), ships coming to port A
from port C are more likely to visit port E than F, and ships coming to port A from port B are

more likely to visit port F, than port E. These patterns indicate a second-order dependency,

which implies that species native to port C have a higher introduction probability to port E
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(via port A) and species native to port B have a higher introduction probability to port F (via

port A, as illustrated in Fig 1(a)). However, if the first-order movement pattern is assumed

(Fig 1(c) left), the ship has equal probabilities of visiting either port E or F. Considering only

first-order interactions does not capture such introduction probabilities. Therefore, a more

accurate way of wiring the shipping ports is required to account for these hidden patterns. The

Higher-Order Network (HON) representation is shown in Fig 1(c) right, in which probability

of going to port E and F from port A varies given the port visited before port A (i.e., probability

of going from A|C to F is higher than probability of going from A|C to E). Such higher-order

patterns are also very important in the environmental conditions of the ports. For example,

species that are intolerant to cold temperature will probably die in port P2 if the ship travels a

path of P1(tropical)! P2(arctic)! P3(tropical). Therefore, considering only first-order inter-

action of P1(tropical) and P3(tropical) does not represent the intermediate port P2(arctic) and

its environmental conditions.

Xu et al., [26] proposed a framework to model such higher-order movement patterns in a

network structure. Here we adopt this framework to assess the higher-order NIS spread risk.

From a total of 1,185,510 voyages during 2012-2013 (latest available year of shipping data), we

extracted 29,788 and 49,895 unique first-order pathways (pairwise connections without con-

sidering intermediate ports). For each pathway, we calculate the pairwise biofouling and ballast

discharge risks between source and destination ports based on the available data (ecoregion

data, environmental data, and the shipping data). We also construct the ship trajectories by

listing the sequence of ports visited by each ship during a one year period. Then, we combine

the pairwise risks together with the ship trajectories to determine which indirect shipping

routes exhibit higher-order species introduction patterns and produce the Species Flow

Higher-Order Network (SF-HON). As a result, SF-HON contains the higher-order pathways

of NIS transfer in the network structure. We use the ship trajectories and the NIS spread risk

of the paths as the input for SF-HON (Fig 2). We then feed these probabilities to the Rule

Extraction step to identify significant higher-order dependencies from the sequence of trajec-

tories. The generated rules will be used to generate the SF-HON in the Network Wiring step

(defined below).

Rule extraction: In the rule extraction step, the objective is to identify the significant

higher-order introduction pathways by finding the correct order of dependency in the data.

We use the similar rationale as [26]: Given a pathway of order k: S ¼ fp1; p2; p3; . . . ; pkg, We

can calculate the corresponding NIS spread probability of the path using the below formula:

PSðNISspreadÞ ¼ 1 �
Y

ði;jÞ2S

ð1 � pijÞ; ð8Þ

In order to identify the correct order of dependency based on the shipping trajectories,

using a similar approach as [26], we check whether including a previous step p0 and extending

S to Snew ¼ fp0; p1; p2; p3; . . . ; pkg (of order knew = k + 1, with NIS spread probability of

PSnew
ðNISspreadÞ) will significantly change the NIS spread probability of the path. If so, order

knew is assumed as the new order of dependency, and S will be extended to Snew. The resulting

rule is Pðfp0; p1; p2; p3; � � � ! pkgÞ ¼ PSnew
ðNISspreadÞ.

The above method only accepts rules that are significant and have reoccurred sufficiently.

Therefore, random patterns would fail to meet the dependency rule in aggregating significant

higher-order connections. Furthermore, our method allows for variable order of dependencies

for different paths.

Network wiring: In the network wiring step, the extracted rules are converted to

corresponding nodes and edges in the SF-HON. For example, given a discovered rule
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P({p0, p1, p2! p3}) = 0.5 we define the edge p2|p0, p1! p3 with the weight 0.5. This indicates

that the probability of NIS spread from p2 to p3 for ships who have visited ports p0 and then p1

before coming to p2 is 0.5. The node p2|p0, p1 is a third-order node, and p3 is a first-order node.

The resulting network is called SF-HON in which a node can represent a sequence of ports,

and thus several nodes in SF-HON can map to a single physical port (for example, p2|p0, p1

and p2|p1 both represent the physical port p2). We construct the SF-HON for the two shipping

introduction vectors and define them as ballast SF-HON and biofouling SF-HON. We perform

all the further analysis based on these two SF-HONs.

2.3.1 Network characteristics. Below we provide a discretion of the network characteris-

tics we used in Section 3.1.

Clustering Coefficient [38] (CC). Network CC is a measure of the degree to which nodes

in a graph tend to cluster together. As a global network measure, we used average CC, which is

the average of the local clustering coefficients of all the nodes in the network [39]. CC for a par-

ticular node is quantifies how close its neighbours are to being a clique (complete graph).

Therefore, Consider a node vi in the network G = (V, E) with neighborhood Ni = {vj: eij 2 E _
eji 2 E}. [38] define Ci, the CC of node vi, as the ratio of edges between the nodes within neigh-

bourhood Ni divided by the number of edges that could possibly exist between them; i.e.,

Ci ¼
jfejk : vj; vk 2 Ni; ejk 2 Egj

kiðki � 1Þ
ð9Þ

Density: The density D of a network G = (V, E) is defined as a ratio of the number of edges

to the number of possible edges in a network; i.e.,

D ¼
jEj

ðjVj � jVjÞ
2

ð10Þ

Betweenness centrality [40]: Betweenness centrality of node is a measure of is a way of

detecting the amount of the node centrality and as a result, the influence a node has over the

flow of information in a network [41]. To compute betweenness for a node vi, we calculate the

fraction of shortest paths between any pairs of nodes (s, t) that include vi; i.e.,

CBðviÞ ¼
X

s6¼v6¼t

sstðvÞ
sst

ð11Þ

where σst is the total number of shortest paths from node s to t. We calculate the shortest paths

by inverting transfer probabilities between nodes. To account of the size of the graph, we nor-

malize CB(vi) by dividing CB(vi) by its maximum value, 1

2
ðn � 1Þðn � 2Þ. This normalized

measure is called relative betweenness centrality. We then use Freeman’s definition [40] for

calculating the betweenness centrality of the entire graph:

CBðGÞ ¼
2
Pn

i¼1
½C0Bðv

�Þ � C0BðviÞ�
ðn � 1Þ

ð12Þ

Where C0Bðv
�Þ is the largest value of C0BðviÞ for any vertex vi in the graph.

Connected components: In a strongly connected component of a directed network, any

nodes can reach any other node via a directed path. In a strongly connected component, any

nodes can reach any other node via a path, regardless of the direction.

2.3.2 Network clustering analysis. Clustering allows us to obtain a large-scale view of

NIS spread and identify the groups of ports that have a similar probability of introducing spe-

cies among each other. Ports within the same cluster are relatively more connected and have a
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stronger chance of mutual species spread. Note that, using the higher-order approach, each

physical port can belong to several clusters, because its corresponding higher-order nodes

belong to different clusters. For example, p2|p0, p1 belongs to cluster 1 and p2|p1 belongs to

cluster 2, while they both represent the physical node p2.

We used Infomap [42] as a network clustering method on the two risk networks. The basic

principle of Infomap clustering is to find groups of nodes among which the species flow is

quick and easy, which can be aggregated as a separate cluster. This clustering method is suit-

able for extracting modules of species flow since it identifies clusters by optimizing the entropy

corresponding to intra-cluster and inter-clusters using a recursive random-walk method, and

random walks are the most similar to the species flow pattern.

2.3.3 Evaluation metrics. Our goal is to test which model is more consistent with existing

data on NIS occurrence. We compare the results from SF-HONs with the conventional

SF-FON and another higher-order model proposed by [24]. In [24], the authors include the

entire ship trajectory for calculating the NIS risk, without any further constraints on the signif-

icance of the higher-order patterns. We refer to the baselines using this method as Ballast All-
Paths and Biofouling All-Paths.

We evaluate the SF-HON predictions against SF-FON and All-Paths baselines using one

dataset for European countries (the AquaNIS data) and two datasets for the United States (the

NAS and NEMESIS data). We filtered all three datasets to include only species suspected to

have been introduced by shipping activity from 1997 (the first year of our shipping data) to the

present. However, since the introduction vector for each species record was not available, we

were not able to generate separate datasets for ballast water and biofouling.

For the United States (US), we obtained a total of 251 species introduction records from

NAS data and 250 species introduction records from NEMESIS data. We define the NIS intro-
ductions to be the normalized count (between 0 and 1) of the first introduction for each NIS

reported from each state. For AquaNIs data, we extracted a total of 815 introductions for 20

European countries, and define the NIS introductions to be the normalized count (between 0

and 1) of the first introduction for each NIS reported from each country. Normalization is

done so that we can compare the relative NIS risk across different models and different

datasets.

Since the NIS introduction records (AquaNIS, NAS, and NEMESIS) are at the level of

states/countries, we calculate the NIS risk for each state/country by averaging the NIS risk

(using SF-HONs, SF-FONs, and All-Paths models) over all the ports corresponding to each

state (and each country, in case of Europe). We define the Mean Square Error (MSE) for each

model by calculating the square difference between the NIS introductions and the scaled NIS

spread risk obtained from the network models. We report the MSE value for each model (for

detailed results on each state and country, refer to S8 Fig in S1 File). Note that, we also tried

using median and simple aggregation (similar to Eq 7) over all the ports corresponding to a

state/country. However, aggregating the risk resulted in many countries with a risk of 1, and

using the median resulted in many countries with a risk of close to zero. As a result, we chose

the average value of all the ports to represent the risk of a country/state.

3 Results

Below we provide a comparison of the SF-HONs and SF-FONs in terms of basic network char-

acteristics. We then compare ballast and biofouling SF-HONs in terms of species flow across

major biogeographic realms, the evolution of global species flow patterns from 1997-2012, and

global clustering patterns. We end by comparing the relative risk estimated by SF-HON,

SF-FON and the All-Paths model (based on [24]) on large NIS introduction datasets from the
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USA and Europe. We leave for future modeling the estimation of reduced relative risk from

interventions such as required by the BWM or by local jurisdictions.

3.1 Network characteristics

We first evaluate the basic network properties of the two SF-HONs (ballast and biofouling)

and compare them with their first-order counterparts (SF-FONs). Our analysis indicates that

ballast SF-HON includes more higher-order nodes and NIS spread pathways than biofouling

SF-HON (Table 1). This result can be recognized as a function of containing potentially inva-

sive species in ballast tanks during ship voyages compared with the hull-attached species

exposed during ship transits to wave and other forces (and/or the presences of antifouling hull

coatings designed to improve ship fuel economies).

If no higher-order dependencies exist in the risk network, the SF-HON and SF-FON would

be similar. However, this is not the case for ballast or biofouling SF-HON. Table 1 summarizes

the properties of the two risk networks. The ballast SF-HON expands significantly (relative to

the SF-FON) due to the inclusion of significant higher-order patterns: the number of nodes

and edges grow 37.56 and 5.08 times larger than SF-FON, respectively. This increase is not as

large in the biofouling SF-HON: the number of nodes and edges in SF-HON becomes 9.39

and 3.13 more than SF-FON, respectively. This indicates that there are significantly more

higher-order pathways of species transfer via ballast discharge compared to biofouling. For

example, species are likely to get introduced from Singapore to Busan via path: Singapore!
Shanghai! Tokyo! Busan, while in biofouling SF-HON species mostly get introduced via

first-order paths, (e.g. Singapore! Shanghai, or Tokyo! Busan). However, network density

and network average clustering coefficient [38] is overall higher in ballast SF-HON compared

to biofouling SF-HON. We observe the same pattern between ballast SF-FON and biofouling

SF-FON. Furthermore, nodes in ballast networks have an overall higher betweenness centrality

[40] compared to biofouling networks (both SF-HON and SF-FON). For more detailed com-

passion of network degree distribution, and clustering coefficient refer to S3 Fig in S1 File.

These differences between the ballast and biofouling SF-HONs have implications for global

NIS spread patterns. To compare large-scale patterns of species flow in both SF-HONs, we cal-

culated the NIS spread risks between realms (large-scale biogeographical regions) by averaging

over all the ports within a realm. We visualize the results as two heatmaps for ballast SF-HON

(Fig 3(a)) and biofouling SF-HON (Fig 3(b)). We notice that in ballast SF-HON, realms are

more likely to introduce species to each other, while in biofouling SF-HON the main high-risk

connections are intra-realm ones. The main high-risk inter-realm connections in biofouling

SF-HON are Temperate Northern Pacific! Tropical Atlantic, Tropical Atlantic!Western

Table 1. Comparison of basic properties of the four networks. CC refers to the connected components of the graph.

Risk Network Models

Network properties Ballast SF-FON Ballast SF-HON Biofouling SF-FON Biofouling SF-HON

Number of nodes 2,336 90,087 2,017 20,967

Number of edges 41,400 251,718 20,510 84,904

Avg degree 17.72 2.79 10.16 4.04

Avg clustering coefficient 0.2410 0.0128 0.1956 0.0522

Density 0.0118 0.0007 0.0081 0.0003

Num of weakly CC 1 1,107 5 104

Num of strongly CC 530 64,789 596 13,915

Avg betweenness Centrality 0.2172 0.0424 0.1592 0.0388

https://doi.org/10.1371/journal.pone.0220353.t001
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Fig 3. A heat-map of higher-order species flow resulting from ballast water (a) and biofouling (b) across major

realms (a larger geographic scale that the ecoregion scale underlying other analyses). The y-axis indicates target

realms and the x-axis are the source realms (x-axis is shared). The risks are normalized to be in the range of [0, 1]. The

inter-realm risk is overall higher in ballast SF-HON (a), while most high-risk connections in biofouling SF-HON are

within the same realms (b). Eastern-Indo Pacific has the highest risk of NIS introduction to Temp Southern Africa in

ballast SF-HON (a), while in biofouling SF-HON the highest target realm for Eastern-Indo Pacific is Central Indo-

Pacific (b). Temperate Northern Atlantic has a significantly high risk of introduction to Eastern-Indo Pacific in

biofouling SF-HON (b).

https://doi.org/10.1371/journal.pone.0220353.g003
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Indo-Pacific, Tropical Eastern Pacific! Eastern Indo-Pacific, Western Indo-Pacific! Central
Indo-Pacific, and Arctic! Temperate Northern Atlantic (Fig 3(b)). This provides an overall

index of the inter-realm NIS spread risk for global management plans. For a breakdown of

dependency orders across major realms refer to S5 Fig in S1 File.

3.2 Clustering of ballast and biofouling SF-HONs

Clustering allows us to identify partitions of the networks in which ports are tightly coupled by

species flow. It also provides a high-level view of interactions of the clusters. Major differences

of clustering exist between the ballast and biofouling SF-HONs in terms of geographical orga-

nization of clusters, cluster overlap, and distribution of the ports within each cluster. The top 5

clusters in biofouling SF-HON cover 16.49% of all ports, while this number is 12.85% for bal-

last SF-HON.

Even though the same shipping data is used in both networks, Fig 4(a) shows that small,

overlapping, and globally connected clusters predominate in the ballast SF-HON (Fig 4(a))

while larger, more isolated clusters characterize the biofouling SF-HON (Fig 4(b)).

Furthermore, Fig 4 shows that ballast SF-HON contains significantly more higher-order

ports than biofouling SF-HON. Specifically, only 8.64% of the ports in the biofouling SF-HON

belong to more than one cluster, while 65.14% of the ports in the ballast SF-HON belong to

multiple clusters, which implies that they are more likely to introduce NIS to each other.

Overall, for the ballast SF-HON, the European cluster, the Southeast Asian cluster, and the

Indian cluster contain the largest portion of higher-order nodes (Fig 4(a)). In biofouling

SF-HON, only a few clusters contain significant higher-order nodes, namely, the Southeast

Asian cluster, the Indian cluster, and the North African cluster (Fig 4(b)). Ports with the high-

est NIS spread risk and the number of clusters that they belong to are also different between

the two networks (Table 2). For example, only 5 ports rank among the top 12 high-risk ports

in both the ballast SF-HON and biofouling SF-HON. Additionally, the top 12 high-risk ports

in the ballast SF-HON belong to 59-191 clusters, while those in the biofouling SF-HON belong

in only 13-80 clusters. T2 2 lists the highest risk ports for ballast and for biofouling.

3.3 Evolution of SF-HONs and NIS spread risk

Shipping activity, ship characteristics, trade patterns, and even environmental conditions

evolve over time, and the risk of species invasions would change as these factors change. In

this section, we employ the entire shipping data available to us (six years of data spanning

1997-2012) to analyze changes in network structure and the NIS spread risk for ballast and

biofouling SF-HONs. In both networks, the average NIS spread risk is highly correlated with

the number of higher-order nodes in the network over time (Pearson correlation value: 0.8362

(p-value< 10−5)). This indicates that higher-order nodes generally have a higher risk of NIS

spread. Large changes in risk occurred over time, however. For example, in 2008 the number

of higher-order nodes and average risk declined in the ballast SF-HON while they both

reached their peak in the biofouling SF-HON (Fig 5). Furthermore, Fig 6(a) shows that while

the number of nodes in ballast and biofouling SF-FONs change similarly over time, the num-

ber of nodes in ballast SF-HON and biofouling SF-HON change in opposing directions. More-

over, Fig 6(b) shows that the number of edges in SF-HONs change in the opposite direction of

SF-FONs. Both observations demonstrate the intrinsic differences in SF-HON and SF-FON as

a result of higher-order patterns. For more details about changes in network density over time

refer to S4 Fig in S1 File.
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3.4 Evaluation of SF-HON and SF-FON predictions

To evaluate the accuracy of the ballast and biofouling SF-HONs against the first-order and All-

Paths models [25], we tested their predictions on real NIS introduction data. For each model,

we calculated the Mean Square Error (MSE) with respect to previously reported NIS introduc-

tions to the USA and Europe (Fig 7). We performed a two-tailed t-test to evaluate the statistical

significance of the errors between SF-HON and other models. For ballast NIS predictions,

Fig 4. The diverse higher-order clustering of shipping ports based on the ballast discharge risks (a) and higher-

order clustering of biofouling risks (b). The coloring of the ports indicates the port cluster. Ports which belong to

multiple clusters through the higher-order patterns are shown as a pie chart with multiple colors. The pie chart size

indicates the relative NIS spread risk for the port. The top ports with the highest risk are labeled by name.

https://doi.org/10.1371/journal.pone.0220353.g004

Table 2. Percentage of each ship type in the data for calculation of ballast and biofouling risk. Percentage values for ship types with an overall higher NIS introduction

risk (as identified in Fig 8) are marked as bold. We notice that most ship types with higher introduction risk (via ballast or biofouling) do not make a large portion of the

records.

Auto Bulk General Other Ref-Cargo Research Chemical Container Gas Passenger Oil Fishing Yacht

Ballast risk 7.92 22.0 19.37 0.58 2.29 0.05 5.99 31.76 2.39 2.01 8.53 0.09 0.03

Biofouling risk 4.23 24.83 23.49 0.82 2.43 0.13 8.96 23.49 3.14 0.34 11.86 0.17 0.08

https://doi.org/10.1371/journal.pone.0220353.t002
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although SF-HON yielded the lowest MSE for all three datasets, we did not find the difference

in predictions of SF-HON and the two other models to be statistically significant in all datasets

(refer to S2 Table in S1 File for the p-values). For biofouling predictions, however, SF-HONs

predictions were statistically more accurate than both SF-FON and All-Paths models in

Fig 5. Variation of number of higher-order nodes and average NIS spread risk for (a) ballast SF-HON and (b)

biofouling SF-HON. The average risk in both cases is normalized for easier comparison. In 2008 the average risk and

number of higher-order nodes in ballast SF-HON drops, while they both increase in biofouling SF-HON.

https://doi.org/10.1371/journal.pone.0220353.g005
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AquaNIS and NEMESIS datasets (S2 Table in S1 File). In NAS data, the difference between

SF-HON and All-Paths predictions is statistically significant (p-value = 0.036), but for

SF-HON and SF-FON the difference was not significant (p-value = 0.147). Overall, biofouling

SF-HON improves the predictions of NIS spread significantly compared to All-paths and

SF-FON. While ballast SF-HON’s predictions on average results in more accurate predictions,

Fig 6. SF-HONs show significantly larger changes in both number of nodes (a) and edges (b) compared to

SF-FONs.

https://doi.org/10.1371/journal.pone.0220353.g006
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the improvement is not statistically significant, except on the NAS data (between SF-HON and

SF-FON) and the NEMESIS data (between SF-HON and All-Paths).

We investigated the performance of each model further by looking at individual country/

state predictions for all models. Both All-Paths models over-estimated the risk in 76% of all

cases. The first-order models, however, under-estimated the risk in 80% of all cases (S7 Fig in

S1 File).

We performed the same analysis over other years as well. SF-HONs show an overall better

performance than both first-order and All-Paths models, in particular for biofouling NIS

spread risk. We provided a map of high-risk introduction pathways in Europe based on bio-

fouling SF-HON and main introduction pathways in North America based on ballast

SF-HON in S6 Fig in S1 File.

3.5 Analysis of different ship types

Given the observation that SF-HONs provide a better estimate of NIS spread risk (section 3.4),

we analyze individual voyages –regardless of the shipping traffic of the ports—to understand

how different ship types contribute to ballast and biofouling NIS introduction risk. Bulk and

Auto carriers contribute the greatest risk for NIS introductions through ballast water (Fig 8(a)).

However, looking at Table 2 we can see that Bulk and Auto carries are only 22% and 7.92% of

the records. On the other hand, the percentage of the records for Container (31.76%) and Gen-

eral (19.37%) carriers is about the same or even higher (Table 2), but the ballast NIS risk for

these ships are significantly lower than Bulk and Auto carries (Fig 8(a)). The reason is directly

related to ship Gross Weight Tonnage (GWT), which is a good measure of ship size. Container

and General carriers have a significantly smaller GWT compared to Bulk, Auto and Passenger

carriers (Fig 8(a)).

For biofouling risk, many different carriers are responsible for introduction (Fig 8(b)). In

particular, Fishing, Other, Research, and Yacht carriers are the main contributors to biofouling

introduction. Again, Table 2 indicates that these main contributors are not a large portion of

Fig 7. Validation results on the three data sets available. Comparison of the SF-HONs versus SF-FONs and All-Paths models shows

that SF-HONs have generally ballast SF-HON yields lower MSE (suggesting more accurate results) on the NAS and NEMESIS datasets,

while biofouling SF-HON yields lower MSE (more accurate results) on the AquaNIS data.

https://doi.org/10.1371/journal.pone.0220353.g007
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all the risk records. Fishing carriers are only (0.17%) of the records. Research (0.13%), Yacht

(0.08%), and Other (0.82%) carriers each consist of a small portion of all the records while

Container (23.49%), Bulk (24.83%), and General (23.49%) carriers are the major portion of the

data. In this case, we realized that based on our model, the average duration of stay at source

port is a key factor in biofouling risk. Fig 8(b) shows that ship types with higher average stay

duration have a higher NIS risk through biofouling.).

Recall that biofouling clusters are more localized. Many high-risk ports are distributed

across these clusters. Fishing, Research, Yacht, (and possibly the “Other” category) correspond

Fig 8. Box plots represent the NIS introduction risk for all voyages by different ship types for ballast water (a) and

biofouling (b). For ballast water, GWT and for biofouling, duration of stay at port display the same pattern as the NIS

introduction risk.

https://doi.org/10.1371/journal.pone.0220353.g008
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to several small ships traveling through shorter distances which do not carry a large amount of

cargo and have fewer regulations imposed on them for using an antifouling system [36]. As a

result, these local ships can easily transfer species locally within the small clusters in Fig 4(b).

4 Discussion

We integrated global spatial patterns of ship voyages, characteristics of different ship types that

affect species vectoring, aquatic environmental conditions, and biogeography into predictive

models of NIS spread risk. Without the understanding provided by such models, it will be dif-

ficult to evaluate existing policies or design more effective and efficient future policies and

management actions to reduce species invasions by two of the most important NIS vectors

globally, ballast and biofouling. We have shown for the first time that incorporating significant

higher-order patterns of the shipping network significantly improves the accuracy of predic-

tions of NIS spread for biofouling transfer. Furthermore, with the first-ever global species flow

model for biofouling, we have shown that the spatial patterns of species introductions via bio-

fouling, which have been much less studied than ballast-mediated introductions, are likely to

differ greatly from those of ballast. This has important implications for future policies and

management to address biofouling. Below we discuss these points further and highlight needs

for future research.

Incorporating higher-order shipping patterns improves the accuracy of

NIS risk predictions

This work advances the understanding of ship-borne invasive species risk by demonstrating

that incorporating recurrent higher-order patterns into models of the shipping network

improves the accuracy of predictions of global ship-born NIS spread. For all three species data-

sets for both ballast and biofouling models, our SF-HON outperformed SF-FON and a previ-

ously published higher-order model [24]. This improvement was statistically significant for

biofouling prediction. These results strongly suggest that ship-borne species introductions

conform to a higher-order process, the structure of which depends on the incomplete release

of all propagules at each port, and on the specific and repeated ordering of shipping voyages

(and not on every higher-order pattern). Both phenomena, incomplete propagule release and

repeated patterns of ship voyages are well known (see for ballast discharge patterns in the US

and [43] for global voyage patterns), but have not previously been incorporated into network

models in this way. This study confirms their importance to accurate prediction of ship-borne

NIS introductions globally.

Our SF-HON models, which included only significant higher-order connections, provided

the most accurate results and therefore represent an improvement over previous global spread

models [44, 8, 24]. We found that including the entire ship trajectories for risk calculation

likely overestimated risk from longer pathways, resulting in over-estimation of the overall NIS

spread risk. This result is consistent with another evaluation of the All-Paths ballast model

which found that, while its accuracy in predicting the distribution of 40 NIS was very good

(77%), it tended to over-predict NIS spread [25]. First-order models, on the other hand, do not

consider any pathways beyond first-step connections and therefore ignore significant higher-

order connections, likely under-estimated risks in most cases according to our results. While

introductions from both ballast and biofouling are best characterized by Sf-HONs, the pre-

dicted spatial patterns of species introductions via these two vectors exhibit important
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differences from each other that must be considered to develop effective policy, which we dis-

cuss further below.

Higher-order patterns of spread differ by vector and over time

Analyzing ballast and biofouling SF-HON models using six years of data spanning 15 years of

shipping activity highlights how the temporal dynamics of the shipping network can affect the

NIS spread risk in different ways through these two main shipping introduction vectors. The

lengths of higher-order connections differed between ballast water and biofouling vectors, as

well as within these vectors overtime during the years covered by our study. In general, the bal-

last SF-HON had more nodes and more edges than the biofouling SF-HON, but the numbers

of nodes and edges changed over time for both ballast and biofouling SF-HONs (Fig 6). The

most marked changes coincided with the global recession (2007-2009), during which a signifi-

cant reduction in trade and shipping activities occurred. Specifically, during 2008, we revealed

increases in average voyage distance (1.9 times more than the average), voyage duration (1.4

times longer than average), and ship stay duration at ports (4.8 times more than the average).

In contrast, the number of voyages per port (60% less than the average) and edges in both bal-

last and biofouling SF-HONs decreased, indicating lower shipping activity. As ships spent

more time at the ports, more biofouling species likely accumulated on the ship hull in greater

numbers, causing modeled biofouling risk to peak in 2008. On the other hand, modeled ballast

risk dropped with increased voyage duration and voyage distance, corresponding to longer

connections. We hypothesize that global recession likely decreased introductions via the ballast

vector and increased introductions via the biofouling vector, but without more years of data

and a better sense of inter-annual variability, our confidence in this causal interpretation is

limited.

Temporal changes in the shipping network over time resulted in dramatically different

modeled invasion risks for the ballast and biofouling SF-HONs, highlighting the need to con-

sider these two transport mechanisms separately when forecasting risk under different ship-

ping scenarios. Based on the data-driven parameterization of our models, biofouling risk is

highly affected by the duration of stay at the source port, while ballast transfer risk is mostly

affected by the shipping traffic of the destination port. These insights can help us predict ship-

born species introduction patterns for both vectors under different global socioeconomic sce-

narios that effect global trade and shipping, such as, for example, those currently being evalu-

ated by the International Panel on Climate Change [45].

Clustering of ports differs between ballast and biofouling networks

Clustering analysis of ballast and biofouling SF-HONs revealed fundamental differences in

large-scale species spread patterns via each vector, which indicates the necessity of considering

both vectors both separately and in tandem in order to develop effective aquatic invasions pol-

icy [10]. Species spread via ballast results in significantly more higher-order ports and more

clusters than via biofouling (Fig 4). Clusters in the biofouling SF-HON are more geographi-

cally localized, with fewer inter-cluster connections. Ballast clusters, on the other hand, have a

high inter-cluster connection, and are less defined by geographical proximity. Therefore, a

management hypothesis to test in future work would be that targeting the inter-cluster links

would likely be a more effective and efficient strategy for reducing biofouling risk than for bal-

last risk. Ballast management is more likely to require global prevention strategies like those

required in the recently in force UN BWM agreement, but would also benefit from manage-

ment interventions targeting the inter-cluster connections or major hubs receiving diverse

shipping traffic (see Xu et al. 2014 for examples of network-informed policy strategies).
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Opportunities for future research

The development and evaluation of our models for the spread of species by ballast and biofoul-

ing were based on the availability of data on a global scale. Opportunities for future model

improvement include: the incorporation of more complete ship data, including military [46,

47] and recreational ships [48], when such data become available; incorporation of the likely

effect on biofouling risk of ambient ocean temperature and salinity along voyage routes [49,

50]; more information on the determinant of fouling in niche areas [51, 52]; and more com-

plete data on species occurrence such as can be provided by eDNA surveys [53]. However even

with existing shipping data and without all such possible improvements, opportunities for

important policy-relevant advances exist by incorporating greater detail on ship-voyage spe-

cific NIS management practices including ballast water exchange, ballast water treatment, and

anti-fouling practices [36, 52]. Our results particularly highlight the potential importance of

future work on how alternative management strategies tailored to ship types and voyages

might efficiently reduce overall invasion risk, based on the large differences in NIS risk posed

by different ship types, different voyage routes, and the different characteristics of the ballast

SF-HON relative to the biofouling SF-HON.
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