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A B S T R A C T

Path-based relational reasoning over knowledge graphs has become increasingly popular due to a variety of
downstream applications such as question answering in dialogue systems, fact prediction, and recommendation
systems. In recent years, reinforcement learning (RL) based solutions for knowledge graphs have been
demonstrated to be more interpretable and explainable than other deep learning models. However, the
current solutions still struggle with performance issues due to incomplete state representations and large
action spaces for the RL agent. We address these problems by developing HRRL (Heterogeneous Relational
reasoning with Reinforcement Learning), a type-enhanced RL agent that utilizes the local heterogeneous
neighborhood information for efficient path-based reasoning over knowledge graphs. HRRL improves the state
representation using a graph neural network (GNN) for encoding the neighborhood information and utilizes
entity type information for pruning the action space. Extensive experiments on real-world datasets show that
HRRL outperforms state-of-the-art RL methods and discovers more novel paths during the training procedure,
demonstrating the explorative power of our method.
. Introduction

Relational reasoning is an important goal of machine learning and
rtificial intelligence [1–4]. In the context of large-scale knowledge
raphs, relational reasoning addresses a number of important applica-
ions, such as question answering [5,6], dialogue systems [7,8], and
ecommender systems [9–11]. Most knowledge graphs are incomplete
nd the problem of inferring missing relations, or knowledge graph
easoning, has become an increasingly important research topic [12].
everal works have treated this as a link prediction problem and
ttempted to solve it using graph embedding or deep learning ap-
roaches [13–20]. These methods embed the knowledge graph into a
ector space and use a similarity measure to identify the entities that
re likely to be connected. However, they are unable to discover multi-
op relations. Besides, they do not provide an explicit explanation for
heir predictions and often rely on other analytical methods to provide
nterpretation for their results. As a result, it is often hard to trust the
redictions made by those embedding-based methods.

Recent advances in the area of deep reinforcement learning (RL)
ave inspired RL-based solutions for the knowledge graph reasoning
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problem [5,6,21–25]. RL-based methods formulate the task of knowl-
edge graph reasoning as a sequential decision-making process in which
the goal is to train an RL agent to walk over the graph by taking a
sequence of actions (i.e., choosing the next entity) that connects the
source to the target entity. The sequences of entities and relations can
be directly used as a logical reasoning path for interpreting model
predictions. For example, in order to answer the query (Reggie Miller,
plays sport, ?), the agent may find the following reasoning path in the
knowledge graph: Reggie Miller

𝑐𝑜𝑚𝑝𝑒𝑡𝑒𝑠 𝑤𝑖𝑡ℎ
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Michael Jordan

𝑝𝑙𝑎𝑦𝑠 𝑠𝑝𝑜𝑟𝑡
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

Basketball. In this case, Reggie Miller, Michael Jordan, and Basketball
are all entities in the knowledge graph, and competes with and plays
sport are relations. The agent is thus learning to navigate the entities
and relations of the knowledge graph. The RL solutions demonstrate
competitive accuracy with other deep learning methods and improve
the interpretability of the reasoning process. However, there remain
some fundamental and open challenges that we will address in this
work:

Large action space. In knowledge graphs, facts are represented as
binary relations between entities. Real-world knowledge graphs contain
vailable online 13 July 2022
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Fig. 1. Given the query (Reggie Miller, plays sport, ?), an RL-based solution may choose
actions that lead to an incorrect answer, such as: Reggie Miller

𝑐𝑜𝑚𝑝𝑒𝑡𝑒𝑠 𝑤𝑖𝑡ℎ
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Michael

Jordan
𝑝𝑙𝑎𝑦𝑒𝑑 𝑓𝑜𝑟
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Chicago Bulls, Reggie Miller

𝑐𝑜𝑚𝑝𝑒𝑡𝑒𝑠 𝑤𝑖𝑡ℎ
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Michael Jordan

𝑏𝑜𝑟𝑛 𝑖𝑛
←←←←←←←←←←←←←←←←←←←←←←←←←←→ New

York City and Reggie Miller
𝑐𝑜𝑚𝑝𝑒𝑡𝑒𝑠 𝑤𝑖𝑡ℎ
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Michael Jordan

𝑚𝑎𝑟𝑟𝑖𝑒𝑑 𝑡𝑜
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Juanita Vanoy). HRRL is

more likely to choose the correct path: Reggie Miller
𝑐𝑜𝑚𝑝𝑒𝑡𝑒𝑠 𝑤𝑖𝑡ℎ
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Michael Jordan

𝑝𝑙𝑎𝑦𝑠 𝑠𝑝𝑜𝑟𝑡
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

Basketball by paying attention to the entity type (entities with the same type are colored
the same) and entity’s neighborhood. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

a large number of entities and relations. As a result, the RL agent often
encounters nodes with large a degree, which increases the complexity
of choosing the next action. In these cases, exploring the possible paths
to determine the optimal action is computationally expensive, and in
many cases beyond the memory limit of a single GPU. Previous studies
have shown that type information can improve the knowledge graph
reasoning performance [26–29] using deep learning approaches. To
improve the search efficiency, we first introduce the type representa-
tion to encode the entity type information, which we include in the
representation of the state space. We then prune the action space based
on the type information. This guides the RL agent to constrain the
search space to the entities whose type best matches the previously
taken actions and, as a result, avoids incorrect reasoning paths. In the
above example of reasoning path for query (Reggie Miller, plays sport,
?), suppose the entity Michael Jordan has a relatively high degree,
and is connected to several other entities through different relations
(e.g., Michael Jordan

𝑝𝑙𝑎𝑦𝑒𝑑 𝑓𝑜𝑟
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Chicago Bulls, Michael Jordan

𝑏𝑜𝑟𝑛 𝑖𝑛
←←←←←←←←←←←←←←←←←←←←←←←←←←←→

New York City, Michael Jordan
𝑚𝑎𝑟𝑟𝑖𝑒𝑑 𝑡𝑜
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Juanita Vanoy). None of these

additional entities are useful for answering the query and may mislead
the agent. However, the RL agent may be able to learn that the next
entity type is a sport rather than a person or a location (Fig. 1).

Accurate representation of entity’s neighborhood. Existing RL-based
methods for knowledge graph reasoning do not capture the entity’s
neighborhood information. Previous studies [30,31] have shown that
the local neighborhood structure can improve the fact prediction per-
formance. This motivated us to apply graph neural network (GNN) [32]
to encode the entity’s neighborhood information and leverage the state
representation with the type and neighborhood information of the
entity. We demonstrate that utilizing the local heterogeneous neigh-
borhood information improves the performance of the RL agent on
the long-tailed relations, which in turn significantly improves model
performance for the knowledge graph reasoning task. In the example
query (Reggie Miller, plays sport, ?), the target entity Basketball is located
within a two-hop distance of the entity Reggie Miller (Fig. 1).
13
We propose Heterogeneous Relational reasoning with
Reinforcement Learning (HRRL) to address the aforementioned chal-
lenges. To summarize, our main contributions as part of HRRL include:

1. Designing an expressive vector representation for entity type-
embeddings and improving the choice of next actions using the
entity type information.

2. Develop an efficient action space pruning strategy using the
entity type information.

3. Incorporating GNN for capturing the local neighborhood infor-
mation in the state representation.

4. Comprehensive evaluation of our method on three public
datasets against several state-of-the-art RL methods.

The rest of the paper is organized as follows. We survey the related
works Section 2, and present the details of our model in Section 3. Sec-
tion 4 presents experimental results and related discussions, followed
by the conclusion and future work discussion in Section 6.

2. Related work

Relational reasoning over knowledge graphs has attracted signif-
icant attention over the past few years. Below we provide a brief
overview of different approaches.

2.1. Rule-based methods

Rule-Based methods such as Neural LP [33], NTP [34], and PoLo
[35] generate reasoning rules and then apply them to fill missing links
based on the extracted rules. Neural LP uses a differential rule learning
system that allows end-to-end training. However, it is computationally
expensive since it works on symbols, and differential memory requires
access to the full memory. Therefore, it does not scale to large-scale
graphs. Neural Theorem Provers (NTP) on the other hand, operates
on vectors (instead of symbols), but it still suffers from computational
complexity as the backward chaining inference can be performed for
any pairs of vectors.

2.2. Embedding methods

Other recent works [13–20,36] approached this problem by embed-
ding the relation and entities into a vector space and identifying related
entities by similarity in the vector space. However, these methods
have some important drawbacks. In particular, they cannot perform
multi-hop reasoning. That is, they only consider pairwise relationships
and cannot reason along a path. Furthermore, they cannot explain the
reasoning behind their predictions. Because they treat the task as a
link prediction problem, the output of their prediction is a probabilistic
value.

2.3. Path-based methods

With the recent success of deep RL such as AlphaGO [37], re-
searchers began to adopt RL to solve a variety of problems that were
conventionally addressed by deep learning methods, such as ad recom-
mendation [9–11], dialogue systems [7,8], and question answering [5,
6]. As a result, more recent methods use RL to solve the relational
reasoning problem in knowledge graphs by framing it as a sequen-
tial decision-making process [5,6,22,24,38,39]. DeepPath [5] was the
first method that uses RL to find relation paths between two enti-
ties in knowledge graphs. It walks from the source entity, chooses
a relation, and translates to any entity in the tail entity set of the
relation. DeepPath was inspired by PRA [40], which is a non-RL
path-finding approach that uses random walk with restart strategies
for multi-hop reasoning. MINERVA [6], addressed the limitations of
DeepPath by jointly selecting an entity-relation pair via a policy net-
work. Li et al. [39] use a multi-agent RL approach where two agents
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are used to perform the relation selection and entity selection itera-
tively. Lin et al. [22] employ reward shaping to address the problem
of the sparse reward signal and action dropout to reduce the effect of
incorrect paths. Xian et al. [25] use relational reasoning for recom-
mender systems and designed both a multi-hop scoring function and
a user-conditioned action pruning strategy to improve the efficiency of
RL-based recommendation. More recent methods [41–44] attempt to
improve the performance by incorporating the attention mechanism,
such as AttPath in [41], which uses attention for knowledge graph
reasoning as memory components to avoid pre-training the entity em-
beddings. Bai et al. [45] leverage temporal information for improving
the reasoning performance, and Liao et al. [46] proposes a solution
by modifying the stop condition during the reasoning process. Because
these RL models treat the knowledge graph reasoning problem as a path
reasoning problem instead of link prediction, they can overcome both
drawbacks of embedding methods that are outlined above. However,
the RL models have drawbacks of their own, the most notable of which
are computational cost and predictive accuracy. Many of these RL
methods have tried to combine the representational power of embed-
dings and the reasoning power of RL by training an agent to navigate
an embedding space. For example, Lin et al. [22] built an agent-based
model on top of pre-trained embeddings generated by ConvE [17].
While we take a similar modular approach, our solution enriches the
state representation with additional information about entity types and
local neighborhood information and improves the efficiency of the RL
algorithm by pruning the action space based on the heterogeneous
context of entities. In light of recent works on heterogeneous networks
that have demonstrated the importance of heterogeneous informa-
tion [26,27,47–49] and local neighborhood information [30,31] in
graph mining, we take a broader approach. We propose to include
entity type information in the state representation to help improve the
search efficiency for the RL agent by taking more informed actions con-
sidering the heterogeneous context. We also learn the heterogeneous
neighborhood information simultaneously with training the RL agent
to improve the predictions by enriching the state representation with
local neighborhood information.

3. Model

In this section, we formally define the problem of relational reason-
ing in a knowledge graph and provide an overview of our RL solution.
We then detail our use of entity type embeddings and a heterogeneous
neighbor encoder. An overview of the model is displayed in Fig. 2.

3.1. Problem formulation

Knowledge graphs consist of facts represented as triples. We for-
mally define a knowledge graph  = {(𝑒𝑠, 𝑟, 𝑒𝑑 )} ⊆  ×× , where  is
a set of entities and  is a set of relations. Given a query (𝑒𝑠, 𝑟, ?), 𝑒𝑠 is
called the source entity and 𝑟 is the query relation. Our goal is to predict
the target entity 𝑒𝑑 ∈  . In most cases, the output of each query is a list
of candidate entities, 𝐸𝑑 = {𝑒1,… , 𝑒𝑛} for some fixed 𝑛 < ||, ranked
in descending order by probability. The prediction can be represented
as a function  ∶  × → 𝑛. We assume that our knowledge graph is
static and no new entities or relations will be added in the future.

In this work, we are not only interested in accurate prediction of
the target entity 𝑒𝑑 , but also in understanding the reasoning path the
model uses to predict 𝑒𝑑 . This is a key advantage that RL methods
offer over embedding-based models which are able to perform relation
predictions but cannot give interpretable justification for them. Rather
than treating this task as a form of link prediction, RL models instead
train an agent to traverse the nodes of a knowledge graph via logical
reasoning paths. We provide the details of our problem formulation in
14

the following. Algorithm 1 describes the workflow of HRRL. 𝐡
3.2. A reinforcement learning solution

Similar to Das et al. [6], Lin et al. [22] and Xiong et al. [5], we
formulate this problem as a Markov Decision Process (MDP), in which
the goal is to train a policy gradient agent (using REINFORCE [50])
to learn an optimal reasoning path to answer a given query (𝑒𝑠, 𝑟, ?).
We denote the RL framework as a set of states, actions, rewards, and
transitions.

States. The state 𝑠𝑡 at time 𝑡 is represented as tuple ((𝑒𝑠, 𝑟), 𝑒𝑡, ℎ𝑡),
where (𝑒𝑠, 𝑟) is the input query, 𝑒𝑡 is the entity at which the agent
is located at time 𝑡 and ℎ𝑡 is the history of the entities and relations
traversed by agent until time 𝑡. The agent begins at the source entity
with initial state 𝑠0 = ((𝑒𝑠, 𝑟), 𝑒𝑠, ℎ0). We refer to the terminal state
as 𝑠𝑇 = ((𝑒𝑠, 𝑟), 𝑒𝑇 , ℎ𝑇 ), where 𝑒𝑇 is the agent’s answer to the input
query and ℎ𝑇 is the full reasoning path. Each entity and relation is
represented by an embedding vector. In our solution, we enrich the
state representation with entity type and neighborhood information,
which we describe in Section 3.3.

Actions. At each time step, the agent performs an action by either
traversing an edge to a neighboring entity, or staying at the current
entity. The action space 𝐴𝑡 ⊆ 𝐴 given state 𝑠𝑡 is thus the set of all
neighbors of the current node 𝑒𝑡, and the node itself, i.e., 𝐴𝑡(𝑠𝑡) = 𝑒𝑡 ∪
{𝑒𝑡}, where 𝑒 is the set of all neighbors from node 𝑒. The inclusion of
he current node 𝑒𝑡 in the action space represents the agent’s decision
o terminate and select 𝑒𝑡 as its answer to the input query. Additionally,
he graph is directed, so  only includes nodes adjacent on out-edges.
ollowing previous work [5,6,51], for each edge (triple) (𝑒𝑠, 𝑟, 𝑒𝑑 ), we
dd an inverse edge (𝑒𝑑 , 𝑟−1, 𝑒𝑠) in order to facilitate graph traversal.

In most real-world knowledge graphs, a small percentage of entities
ave a large degree while the majority of the entities have a small
egree. However, the entities with a high degree are crucial to query
nswering. For performance reasons, many RL models are forced to cap
he size of the action space and do so via a pre-computed heuristic. For
xample, Lin et al. [22] pre-computes PageRank scores for each node,
nd narrows the action space to a fixed number of highest-ranking
eighbors. In this work, we use entity type information to constrain
he search to the entities with best-matching types, given the previous
ctions. We provide more details in Section 3.3.
Rewards. The agent evaluates the quality of an action based on the

xpected reward it will produce. Previous works [5,6] define a terminal
eward of +1 only if the agent reaches the correct answer. However,
ince knowledge graphs are incomplete, a binary reward cannot model
he potentially missing facts. As a result, the agent receives low-quality
ewards as it explores the environment. Inspired by Ng et al. [52] and
in et al. [22], we use pre-trained knowledge graph embeddings for a
oft reward function for the terminal state 𝑠𝑇 :

𝑇 (𝑠𝑇 ) =

{

1 if (𝑒𝑠, 𝑟, 𝑒𝑇 ) ∈ 
𝑆(𝑒𝑠, 𝑟, 𝑒𝑇 ) otherwise

(1)

n other words, if 𝑒𝑇 is the correct answer, the agent receives the
ositive binary reward. Otherwise, the reward is calculated based on
(𝑒𝑠, 𝑟, 𝑒𝑇 ), in which is 𝑆 a fact score function based on pre-trained
mbeddings. We represent 𝑆 in a generic form, and it can be replaced
y an embedding model such as [14,17]. We explore a variety of
mbedding methods on multiple datasets in our experiments. More
etails are provided in Section 4.
Transitions. At state 𝑠𝑡, the agent chooses an action 𝑎𝑡 ∈ 𝐴𝑡 based

n a policy 𝜋 ∶  →  where  and  are the sets of all possible
tates and actions, respectively. The transition function 𝛿 ∶ 𝑆 × 𝐴 → 𝑆
s defined by 𝛿(𝑠𝑡, 𝐴𝑡) = 𝛿(𝑒𝑡, 𝑒𝑠, 𝑟, 𝐴𝑡).

.2.1. Policy network
Following [22], we use an LSTM to encode the history ℎ𝑡 =

𝑒𝑡−𝑘, 𝑟𝑡−𝑘+1,… , 𝑒𝑡−1, 𝑟𝑡} of the past 𝑘 steps taken by the agent in solving
he query. The history embedding for ℎ𝑡 is represented as:
𝐭 = 𝐿𝑆𝑇𝑀(ℎ𝑡−1, 𝑎𝑡−1). (2)
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Fig. 2. Model overview. (a) The type embeddings are first created by max/mean pooling on the entities with a similar type. The type embeddings are then concatenated with the
entity embeddings to create the type-enhanced embeddings. (b) The type-enhanced embeddings are then passed to the neighbor encoder to create the final entity representation
fed to RL. (c) The action-space is pruned using the type-enhanced entity embeddings.
We define the policy network 𝜋 with weight parameters 𝜃 as follows:

𝜋𝜃(𝑎𝑡|𝑠𝑡) = softmax(𝐴′
𝑡 ×𝑊2𝑅𝑒𝐿𝑈 (𝑊1[𝑒𝑡 ⊕ ℎ𝑡 ⊕ 𝑟])), (3)

where ⊕ represents the vector concatenation operator. The transition
to a new state is thus given by:

𝑠𝑡+1 = ((𝑒𝑠, 𝑟), argmax
𝑎′𝑡∈𝐴

′
𝑡

𝜋𝜃(𝑎′𝑡|𝑠𝑡)). (4)

To reduce the potential impact of argmax leading to the overuse of
incorrect paths, we utilize random action dropout as described in [22].

3.2.2. Optimization
The policy network is trained to maximize the expected reward

over all queries. To encourage path diversity, following [6], we add an
entropy regularization term to the cost function scaled by a constant
factor.

𝐽 (𝜃) = E(𝑒𝑠 ,𝑟,𝑒𝑑 )∈𝐺E𝑎1 ,…,𝑎𝑇 ∼𝜋𝜃 [𝑅𝑇 (𝑠𝑇 ) + 𝛽𝐻(𝜋𝜃(𝑠𝑇 ))], (5)

where 𝐻(𝜋𝜃(𝑠𝑇 )) =
∑

𝑎 𝜋𝜃(𝑎|𝑠𝑡) log𝜋𝜃(𝑎|𝑠𝑡) is the entropy term.
We use REINFORCE by Williams [50] to solve the optimization

problem over all queries in the training data and update 𝜃 using the
following gradient (refer to Ahmed et al. [53] for further details):

∇𝜃𝐽 (𝜃) ≈ ∇𝜃
∑

𝑡
[𝑅(𝑠𝑇 |𝑒𝑠, 𝑟) + 𝛽𝐻(𝜋𝜃(𝑠𝑇 ))]𝜋𝜃(𝑎𝑡|𝑠𝑡). (6)

3.3. Type-enhanced entity representation

Many knowledge graphs contain rich heterogeneous context in-
formation as entity types that can be used as prior information to
guide the agent through the reasoning process. We argue that the type
information can help reduce the action space, especially for nodes with
a high degree, by constraining the search only to the entities that best
match the previously visited entities and actions. To achieve this, we
measure the similarity of all possible actions given the entity type
embedding of current and possible target entities and only keep the
top 𝑛 candidates. In order to build the entity type representation 𝑒𝜏 ,
we propose to aggregate the vector representation of the entities with
a similar type. Below we propose two simple mechanisms for doing so:
15
1. Take the average of the embedding vectors for all the 𝑁 entities
𝑒𝑖 that share the same entity type 𝜏 (mean-pooling).

2. Take the maximum value of each element in the embedding
vectors for all the 𝑁 entities 𝑒𝑖 that share the same entity type
(max-pooling).

To measure the similarity of the current entity representation 𝑒𝑡 with
the candidate neighboring entity representation 𝑒𝑘, we use the cosine
similarity of two entity embeddings with respect to their type-enhanced
embedding vectors:

𝑔(𝑒𝑡, 𝑒𝑘) =
⟨

[𝑒𝑡 ⊕ 𝑒𝑡
𝜏 ] + 𝑟𝑡,𝑘, [𝑒𝑘 ⊕ 𝑒𝑘

𝜏 ]
⟩

, (7)

where ⟨⋅, ⋅⟩ is the dot product operation and 𝑒, 𝑟 ∈ R𝑑 are 𝑑-dimensional
vector representations of the entity 𝑒 and relation 𝑟. We call 𝑒𝑡𝜏

′ =
[𝑒𝑡 ⊕ 𝑒𝑡𝜏 ] the type-enhanced entity representation of entity 𝑒𝑡. We then
rank the possible actions and prioritizes the ones that are more likely
to result in a correct answer based on the 𝑔(𝑒𝑡, 𝑒𝑘) score. We thus create
a pruned action space 𝐴′

𝑡 by keeping the nodes with the highest value
of 𝑔.

3.4. Heterogeneous neighbor encoder

After generating the type embeddings, we feed the type-enhanced
embeddings together with the relation embeddings to the heteroge-
neous neighbor encoder to generate the enriched entity representation.
Although many works such as [51,54] have been proposed to learn
entity embeddings using relational information, recent studies such
as [30,31] have demonstrated that explicitly encoding neighborhood
structure can benefit entity embedding learning in knowledge graphs.
Inspired by this, we propose a heterogeneous neighbor encoder to
learn the enriched entity embedding by aggregating entity’s neighbors
information. Specifically, we denote the set of relational neighbors
(𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, 𝑒𝑛𝑡𝑖𝑡𝑦) of a given entity 𝑒𝑡 as 𝑒𝑡 =

{

(𝑟𝑘, 𝑒𝑘)|(𝑒𝑡, 𝑟𝑡,𝑘, 𝑒𝑘) ∈ 
}

,
where  is the background knowledge graph, 𝑟𝑡,𝑘 and 𝑒𝑘 represent the
𝑘th relation and the corresponding neighboring entity embedding of
𝑒𝑡, respectively. Note that we also include the entity 𝑒𝑡 as its zero-hop
neighbor in 𝑒𝑡 . The heterogeneous neighbor encoder should be able
to encode  and output a feature representation of 𝑒 by considering
𝑒𝑡 𝑡
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different relational neighbors (𝑟𝑡,𝑘, 𝑒𝑘) ∈ 𝑒𝑡 . To achieve this goal, we
formulate the enriched entity embedding as follows:

𝑓 (𝑒) = 𝜎

{

1
|𝑒𝑡 |

∑

𝑘

(

𝑟𝑘(𝑟𝑡,𝑘 ⊕ 𝑒𝜏
′

𝑘 ) + 𝑏𝑟𝑘
)

}

, (8)

where 𝜎 denotes activation unit (we use 𝑡𝑎𝑛ℎ), 𝑒𝜏′𝑘 is the type-enhanced
entity embedding of 𝑒𝑘, and 𝑟𝑡,𝑘 ∈ R𝑑×1 is the relation embedding.
Further, 𝑟𝑘 ∈ R𝑑×2𝑑 and 𝑏𝑟𝑘 ∈ R𝑑×1 are parameters of neighbor
encoder. The output of 𝑓 (𝑒) is the entity representation that is seen by
the RL agent as the state representation in Section 3.2.

3.5. Training algorithm

We present the HRRL algorithm as shown in Algorithm 1. We start
by initializing the entity embeddings using pre-trained ConvE [17]
and ComplEx [14] embeddings (depending on the dataset). We then
calculate the type embeddings using max/mean pooling in line 3 and
generate the type-enhanced embeddings in line 4. Lines 5–22 describe
the training procedure for the RL algorithm. After initialization (lines
6–9), we update the entity representation based on its neighborhood
(line 11). We then sample the action from the current policy according
to line 12. If we select an invalid action, we revert to the previous
entity. We terminate the search if we reach the correct answer or if
we reach the maximum number of steps. Line 18 and 22 updates the
policy for invalid actions and valid actions, respectively. The training
stops once we reach a given number of epochs.

Algorithm 1 HRRL algorithm
1: Initialize pre-trained entity embeddings
2: for each entity type do
3: Calculate the type-embeddings by mean/max pooling
4: Generate type-enhanced embeddings using Eq. (7)
5: for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 ← 1 to 𝑁 do
6: Initialize LSTM’s hidden state ℎ0 to 0
7: Initialize GNN with random weights
8: Initialize state vector 𝑠0 = ((𝑒𝑠, 𝑟), 𝑒0, ℎ0)
9: Initialize Num_Steps to 0

10: while Num_Steps < Max_Steps do
11: Update entity representation with Eq. (8)
12: Randomly sample action (with action dropout) 𝑎 ∼ 𝜋𝜃(𝑎𝑡|𝑠𝑡) ⋅

𝐦 (where 𝑚𝑖 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(1 − 𝛼), 𝑖 = 1,⋯ , |𝐴𝑡|)
13: if Action 𝑎 is invalid then
14: Go back to the previous entity
15: Increment Num_Steps
16: if success or Num_Steps = Max_Steps then
17: break
18: Update 𝜃 using 𝑔 ∝

∑

𝑎−
(−1) log𝜋 (𝑎𝑡|𝑠𝑡; 𝜃) for invalid actions.

19: if success then
20: 𝑅𝑇 (𝑠𝑇 ) = 1
21: else 𝑅𝑇 (𝑠𝑇 ) = 𝑓 (𝑒𝑠, 𝑟, 𝑒𝑇 ) (using Eq. (1))
22: Update 𝜃 using Eq. (6) for valid actions.

4. Experiments

In this section, we describe and discuss the experimental results
of our proposed approach. We compare against several baseline meth-
ods: ConvE (embedding-based) [17], ComplEx (embedding-based) [14],
DistMult [16] (embedding-based), MINERVA (agent-based) [6], and Lin
et al. (agent-based) [22]. We also tried different variations of our
model by removing different model components. The type-enhanced
embeddings are removed in HRRL(-T) and the heterogeneous neighbor
16

encoder is removed in HRRL(-N). a
4.1. Data & metrics

The experiments utilize three datasets presented in Table 1. Among
the standard datasets used in the relational reasoning task, NELL-
995 and FB15k-237 are the only ones that explicitly encode entity
types. Therefore, in addition to NELL-995 and FB15k-237, we incor-
porated two datasets from the Amazon e-commerce collection [55].
Each Amazon data contains a set of users, products, brands, and other
information, which the authors of Xian et al. [25] use to make product
recommendations to users. Their task is a specialized instance of knowl-
edge graph reasoning that only focuses on user-product relations, so we
do not include it in our baseline results. Additionally, we found these
datasets were too large for efficient computation in the broader knowl-
edge graph reasoning task, so we shrunk them for our experiments. To
do this, we discarded all entities of type ‘‘RelatedWord’’, then induced
a subgraph on a random selection of 20% of the remaining nodes.
While this might result in a sparser graph that makes predictions more
difficult, this was the best option given the lack of other relevant data
containing type information. For FB15k-237 data, we follow a similar
approach as [29] to extract the type information.

The full knowledge graph is represented by the number of 𝐹𝑎𝑐𝑡𝑠 in
able 1. Before training, we partition 𝐹𝑎𝑐𝑡𝑠 into a training set and a
est set, which we call 𝑄𝑢𝑒𝑟𝑖𝑒𝑠. In NELL-995, this split already exists as
art of the standard dataset. For Amazon datasets, we populate 𝑄𝑢𝑒𝑟𝑖𝑒𝑠
ith 2.5% of the triples in 𝐹𝑎𝑐𝑡𝑠, chosen at random. Each model is then

rained on the set (𝐹𝑎𝑐𝑡𝑠−𝑄𝑢𝑒𝑟𝑖𝑒𝑠), and tested on the set 𝑄𝑢𝑒𝑟𝑖𝑒𝑠. Recall
hat each fact is a triple in the form (𝑒𝑠, 𝑟, 𝑒𝑑 ). Each triple is presented
o the model in the form (𝑒𝑠, 𝑟, ?), and, as described in Section 3.1, the
odel outputs a list of ranked candidate entities 𝐸𝑑 = {𝑒1,… , 𝑒𝑛}. Also

ecall that we describe the prediction as a function  ∶ (𝑒𝑠, 𝑟) → 𝐸𝑑 .
We measure performance for each experiment with the standard

nowledge graph reasoning metrics, namely, Hits@k for k={1,5,10},
ean Reciprocal Rank (MRR), and Hit Ratio. Hits@k is measured as

he percentage of test cases in which the correct entity 𝑒𝑑 appears in
he top 𝑘 candidates in 𝐸𝑑 , i.e.,

𝑖𝑡𝑠@𝑘 =
|{(𝑒𝑠, 𝑟, 𝑒𝑑 ) ∈ 𝑄 ∶ 𝑟𝑎𝑛𝑘(𝑒𝑑 , (𝑒𝑠, 𝑟)) ≤ 𝑘}|

|𝑄|

× 100 (9)

where 𝑄 = 𝑄𝑢𝑒𝑟𝑖𝑒𝑠 and 𝑟𝑎𝑛𝑘(𝑒𝑑 , 𝐸𝑑 ) is a function that returns the
osition of entity 𝑒𝑑 in the set of ordered predictions 𝐸𝑑 . MRR is a

related metric, defined as the multiplicative inverse of the rank of the
correct answer, i,e.:

𝑀𝑅𝑅 = 1
|𝑄|

∑

(𝑒𝑠 ,𝑟,𝑒𝑑 )∈𝑄

1
𝑒𝑑 , (𝑒𝑠, 𝑟)

× 100. (10)

We also measure Hit Ratio, which is equivalent to the average
btained reward over all the queries:

𝑖𝑡𝑅𝑎𝑡𝑖𝑜 = 1
|𝑄|

∑

(𝑒𝑠 ,𝑟,𝑒𝑑 )∈𝑄
𝑅(𝑒𝑠, 𝑟). (11)

Because none of these models generalize to unknown entities, fol-
owed by previous works [6,22], we measure Hits@k and MRR only for
ueries for which both 𝑒𝑠 and 𝑒𝑑 have already been seen at least once
y the model during training. In other words, if either of the query
ntities is missing from the training set (𝐹𝑎𝑐𝑡𝑠−𝑄𝑢𝑒𝑟𝑖𝑒𝑠), we discard it
rom testing. Additionally, we reserve a small portion of the 𝐹𝑎𝑐𝑡𝑠 as a
evelopment set to estimate performance during training.

.2. Parameter selection

For NELL-995 and FB15k-237 datasets, we utilize the same hyper-
arameters described in [22] when training ConvE, ComplEx, Distmult,
nd Lin et al. [22] baselines. For MINERVA, we utilize the same
yperparameters described in [6] and train the model for 3000 epochs.
or the two Amazon datasets, we perform a grid search for our method

nd all baselines and report the best performance for each. For all
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Table 1
Description of the datasets used for our experiments.  is the set of nodes in the knowledge graph, Types is the number of entity types, 

is the set of relations (edge types), and Facts is the set of all edges. Queries is the test set, a subset of Facts which are removed from the
knowledge graph for testing. Queries Discarded is the subset of Queries for which at least one of the entities does not appear in the training
set.
Dataset || |𝑇 𝑦𝑝𝑒𝑠| || |𝐹𝑎𝑐𝑡𝑠| |𝑄𝑢𝑒𝑟𝑖𝑒𝑠| |𝑄𝑢𝑒𝑟𝑖𝑒𝑠𝐷𝑖𝑠𝑐𝑎𝑟𝑑𝑒𝑑|

NELL-995 75,492 268 200 154,213 3,992 1152
Amazon beauty 16,345 5 7 52,516 1,325 174
Amazon cellphones 13,837 5 7 31,034 951 205
FB15k-237 14,505 182 237 272,115 20,466 28
Table 2
Experimental results on NELL-995, FB15k-237, Amazon Beauty, and Amazon Cellphones datasets. @{1, 5, 10} and MRR are standard knowledge graph reasoning metrics and

are described in Section 4.1. The methods are separated into embedding-based (ConvE, ComplEx, and DistMult) and agent-based (MINERVA, Lin et al. and HRRL) groups. Bolded
numbers indicate the best-performing method of the RL-based group and underlined numbers indicate the best-performing method of the embedding-based group.

Dataset NELL-995 FB15k-237 Amazon beauty Amazon cellphones

Metric (%) @1 @10 MRR @1 @10 MRR @1 @10 MRR @1 @10 MRR

ConvE [17] 68.2 88.6 76.1 34.1 62.2 43.5 25.8 55.3 35.2 16.9 44.8 25.7
ComplEx [14] 63.0 86.0 71.8 32.8 61.6 42.5 27.6 58.0 37.5 17.4 45.2 26.6
DistMult [16] 65.1 85.7 73.4 32.4 60.0 41.7 26.7 58.1 37.1 18.8 48.4 28.8

Lin et al. [22] 65.6 84.4 72.7 32.7 56.4 40.7 20.6 39.5 27.1 12.2 27.6 17.5
MINERVA [6] 59.8 82.1 68.9 21.7 45.6 29.3 17.5 38.2 24.3 6.8 22.7 11.6
HRRL(-T) 66.9 85.2 74.1 33.6 57.8 41.9 21.2 40.5 27.9 12.6 28.1 17.9
HRRL(-N) 67.1 85.1 73.1 32.9 57.2 41.2 20.7 39.6 27.2 12.3 27.9 17.6
HRRL 68.9 86.7 74.8 34.0 58.1 42.1 21.8 40.7 28.2 12.9 28.5 18.2
datasets, we train the knowledge graph embedding models (ConvE and
ComplEx) for 1000 epochs each. These embeddings are then used to
make predictions directly but also serve as pre-trained inputs for the
RL agent, which we train for 30 epochs per experiment for all datasets.
We initially test with different embedding methods for the pre-trained
embeddings and settled on those that achieved the best performance:
ComplEx for NELL-995 and FB15k-237 and Distmult for both Amazon
datasets.

Regarding the HRRL hyperparameters, we set entity, relation, and
history embedding dimensions to 200. We set the batch size to 100 and
the learning rate to 𝑒−3. We tune the action drop-out ratio between
.1 and 0.9. We set a maximum limit of 200 for the action-space
runing. We use a two-layer LSTM as the path encoder and set its
idden dimension to 200. We use Adam [56] to optimize the RL agent.

. Experimental results

Our experimental results are described in Table 2. For NELL-
95 and FB15k-237 data, We quote the results reported in [6,22].
mbedding-based methods show an overall better performance com-
ared to the RL-based methods. We can see that in all three datasets,
ur results outperform both RL baselines ([22] and MINERVA [6]).
B15k-237 and Amazon datasets, on the other hand, are far more
hallenging. We notice that even the embedding-based methods are
truggling with low performance on these datasets. On Amazon data,
he performance of all methods is significantly lower. Our method re-
ults in a 4% improvement in MRR (and 5.43% in Hits@1) over the best
L baseline on Amazon Cellphones and a 4% improvement in MRR (and
.8% in Hits@1) on Amazon Beauty. On NELL-995 dataset, our method
esults in 2.9% improvement in MRR and 4.7% improvement in Hits@1
ver the best performing baseline. We achieve 3.4% improvement in
RR and 4% improvement in Hits@1 over [22] on FB15k-237 data. We

lso perform ablation studies to analyze the effect of each module in our
odel. We notice that removing the heterogeneous neighbor encoder

esults in a higher drop in performance in FB15k-237 and Amazon
atasets. This gap is relatively smaller in NELL-955 data.

Our results show that pruning the action space based on the entity
ype information results in a larger boost in performance on Amazon
atasets. We believe due to the sparsity of these two knowledge graphs,
ype information is more effective for action space pruning than entity
age rank (as done in [22]). Note that there are only 5 entity types in
17
Amazon datasets. As a result, the number of entities that can potentially
get discarded due to type mismatch is higher, and this assists the agent
to discover a better path. We generate the type embeddings using
max-pooling for NELL-995 dataset and mean-pooling for both Amazon
datasets. We analyze the speedup of our method with different pruning
strategies in Section 5.2.

5.1. Path diversity and convergence

In order to show the explorative power of our RL agent, we compare
the number of unique paths discovered from the development set dur-
ing the training procedure. Fig. 3 shows that path diversity (top row)
improves across all models as the model performance (bottom row)
improves. For this analysis, we compare our ablation models (HRRL(-
N) and HRRL(-T)) with the best performing RL baseline by Lin et al.
[22]. Our method is more successful in discovering novel paths and
obtains a better hit ratio on the development set. On Amazon Beauty
data, the number of unique paths discovered by HRRL(-T) is higher
than both combined (HRRL) while in Amazon Cellphones the com-
bined model performs better, but similar to Amazon Beauty, HRRL(-
T) performs better than HRRL(-N). NELL-955 and FB15k-237 show a
different trend, where removing the type information results in a larger
drop in the number of unique paths, compared to the heterogeneous
neighbor encoder. This is expected since NELL-955 and FB15k-237
contain far more entity types than Amazon datasets, and the inclusion
of type information may be a positive factor for discovering new paths.
In terms of convergence, Amazon Beauty and Amazon Cellphones
show a similar trend and removing the type information significantly
reduces the hit ratio. This gap is smaller for NELL-995 and FB15k-237
data, though our model still shows improvement in hit ratio on these
datasets. For FB15k-237 data, all our ablation models achieve a higher
hit ratio in the earlier epochs, but as the number of epochs increases
the hit ratio obtained by Lin et al. [22] reaches HRRL(-T).

5.2. Benefit of using the heterogeneous type information

We found that using type information for pruning the action space
is a better strategy compared to using page rank. Although our model
is more complex than [22] due to incorporating GNN, we were able to
achieve relatively same run time using a smaller action space. This is
due to the fact that using heterogeneous type information can result in
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Fig. 3. Performance of our model on the development set at different training epochs. The top figures show the number of unique paths visited during each epoch. The bottom
rows show the hit ratio for the entire development set. For the top row, all the numbers on the 𝑦-axis should be multiplied by the number on the top left corner of the figure.
←←

←←
Table 3
Running time comparison for HRRL (with page rank pruning and entity type-based

pruning) and other RL-based baselines. All values are reported in minutes.
Dataset NELL-995 FB15k-237 Amazon

beauty
Amazon
cellphones

Lin et al. [22] 225.21 2255.84 1145.24 926.55
MINERVA [6] 92.48 495.01 376.23 285.37
HRRL (PR pruning) 315.29 3468.24 1639.53 1261.18
HRRL 163.95 2122.65 1138.45 947.04

more relevant candidates, which allows us to choose a smaller limit
for the maximum action space. This is shown in Table 3. We can
see that MINERVA [6] is the fastest RL method, but it is the lowest-
performing RL baseline. HRRL (with page rank pruning) is a lot slower
than [22], due to the addition of the heterogeneous neighbor encoder.
Finally, we can see that HRRL with entity type-based pruning achieves
a significant speedup since we were able to reduce the maximum action
space size to 100, which is half of what was used in page rank pruning
to achieve the same performance. The speedup is more significant
in NELL-995 (51.7%) and FB15k-237 (61.2%) datasets compared to
Amazon datasets, as NELL-995 and FB15k-237 data have a richer and
more diverse heterogeneous type content, and contain a higher number
of facts.

5.3. Performance on different relations

We evaluate our proposed model on different relation types and
compare our results with the best performing RL baseline. We take
a similar approach as [22] to extract to-many and to-one relations. A
relation 𝑟 is considered to-many if queries containing relation 𝑟 can
have more than 1 correct answer, otherwise, it is considered a to-
one relation. Table 4 shows the MRR values on the development set
for all three datasets. We notice that most relations in FB15k-237
and Amazon datasets are to-many, while a large portion of NELL-995
data consists of to-one relations. Overall, to-many relations show lower
performance, regardless of the model. Our proposed model consistently
shows a better performance than [22]. Both to-one and to-many are
more sensitive to removing the neighbor-encoder rather than removing
the type information. We also compared the ablation models on seen
and unseen queries, and observed the same pattern as the one shown
in Table 4. This is expected, since to-many relations are more likely to
be among the seen queries and to-one relations are more likely to be an
unseen query.
18
5.4. Additional case studies

In this section, we present a few case studies that show the strength
of our proposed method. We first focus on NELL-995 dataset which has
a high number of entity types. Table 5 shows top frequent path types
discovered by HRRL and the best performing RL baseline [22] for a few
example queries in NELL-995 data. In this table 𝑝1 and 𝑝2 show the oc-
currence probability for each path type discovered by HRRL and [22],
respectively. We notice that our method is more successful in discov-
ering better paths as it takes advantage of the heterogeneous content.
As an example, for the query (Knicks, team plays sport, ?), our method
discovers the path: Knicks (sports team) [67]

𝑡𝑒𝑎𝑚 𝑝𝑙𝑎𝑦𝑠 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝑡𝑒𝑎𝑚
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Trail

Blazers (sports team) [30]
𝑎𝑡ℎ𝑙𝑒𝑡𝑒 𝑝𝑙𝑎𝑦𝑠 𝑓𝑜𝑟 𝑡𝑒𝑎𝑚−1
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Steve Blake (athlete) [4]

𝑝𝑙𝑎𝑦𝑠 𝑠𝑝𝑜𝑟𝑡
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ basketball (sport) [242], in which the underlined number in
the bracket shows the entity’s degree. This path matches the first row
in Table 5 for this query, which has the highest probability of selection
by HRRL. Lin et al. method, on the other hand, is more likely to select
the second path type, which cannot reach the correct answer.

As another example, we consider the query: (Amazon, company
sector, ?) for which our method discovers the path: Amazon (company)
[4]

𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑑
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ AbeBooks (company) [2]

𝑐𝑜𝑚𝑝𝑎𝑛𝑦 𝑠𝑒𝑐𝑡𝑜𝑟
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ internet (economic

sector) [26]. Therefore, HRRL is able to infer the company sector using
the sector of the company that was acquired by Amazon. Table 5 shows
the other possible path types. We can see that Lin et al. method has a
higher probability of selecting an incorrect path which leads to a (city)
entity, as opposed to an (economic sector) entity.

The third query in Table 5 shows the top path types for query: (CNN,
journalist works for−1, ?). For this query, HRRL correctly navigates to

the answer using the path: CNN (company) [46]
𝑗𝑜𝑢𝑟𝑛𝑎𝑙𝑖𝑠𝑡 𝑤𝑜𝑟𝑘𝑠 𝑓𝑜𝑟−1
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

Kyra Phillips (journalist) [2]
𝑗𝑜𝑢𝑟𝑛𝑎𝑙𝑖𝑠𝑡 𝑤𝑜𝑟𝑘𝑠 𝑓𝑜𝑟
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ CNN (company) [46]

𝑗𝑜𝑢𝑟𝑛𝑎𝑙𝑖𝑠𝑡 𝑤𝑜𝑟𝑘𝑠 𝑓𝑜𝑟−1
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Anderson Cooper (journalist) [2]. In this case, the
(company) entity has a relatively higher degree, resulting in additional
complexity for selecting the next action. However, by leveraging the
heterogeneous context, HRRL is more likely to select a (journalist)
entity rather than a (city) entity or a (TV station) entity after reaching
the (company) entity.

Finally, for the query: (MSU, located in state, ?), HRRL discovers

the following path: MSU (university) [5]
𝑝𝑒𝑟𝑠𝑜𝑛 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑜𝑟𝑔−1
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Tom Izzo

(coach) [2]
𝑤𝑜𝑟𝑘𝑠 𝑓𝑜𝑟
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Michigan State (sports team) [23]

𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

Michigan (state) [137], corresponding to the first row for the fourth
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Table 4
MRR on three datasets for different relation types. The percentage of one-to-one and one-to-many relations in the development set for each data is shown in the % column. The

numbers in parenthesis indicate the relative performance change compared to the best results.
Dataset NELL-995 FB15k-237 Amazon beauty Amazon cellphones

To-Many To-One To-Many To-One To-Many To-One To-Many To-One

Percentage 12.9% 87.1% 76.6% 23.4% 89.6% 10.4% 95.5% 4.5%

Lin et al. 55.7 81.4 28.3 72 24.2 36.8 16.5 78.2
HRRL 57.4 82.8 29.2 73.4 25.5 39.1 17.8 83.4
HRRL(-T) 56.9 82.0 28.9 72.8 23.8 39.2 15.9 83.4
HRRL(-N) 55.2 81.0 28.1 71.7 21.7 33.5 13.6 66.6
Table 5
Top 3 frequent paths for our method (𝑃 1) and Lin et al. (𝑃 2) along with the occurrence probability. Note that for each query, the number of all possible path types can vary
between 73–277 in these examples. As a result, the probability of each path type is low.

Query Reasoning path types 𝑝1(%) 𝑝2(%)

HRRL path: Knicks [67]
𝑡𝑒𝑎𝑚 𝑝𝑙𝑎𝑦𝑠 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝑡𝑒𝑎𝑚
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Trail Blazers [30]

𝑎𝑡ℎ𝑙𝑒𝑡𝑒 𝑝𝑙𝑎𝑦𝑠 𝑓𝑜𝑟 𝑡𝑒𝑎𝑚−1

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Steve Blake [4]
𝑝𝑙𝑎𝑦𝑠 𝑠𝑝𝑜𝑟𝑡
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ basketball [242]

𝑒𝑠: Knicks sports team
𝑡𝑒𝑎𝑚 𝑝𝑙𝑎𝑦𝑠 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝑡𝑒𝑎𝑚
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ sportsteam

𝑎𝑡ℎ𝑙𝑒𝑡𝑒 𝑝𝑙𝑎𝑦𝑠 𝑓𝑜𝑟 𝑡𝑒𝑎𝑚−1

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ athlete
𝑝𝑙𝑎𝑦𝑠 𝑠𝑝𝑜𝑟𝑡
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ sport 5.92 3.19

𝑟: plays sport sports team
𝑡𝑒𝑎𝑚 ℎ𝑜𝑚𝑒 𝑠𝑡𝑎𝑑𝑖𝑢𝑚
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ event venue

𝑠𝑝𝑜𝑟𝑡 𝑢𝑠𝑒𝑠 𝑠𝑡𝑎𝑑𝑖𝑢𝑚−1

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ sport
𝑝𝑙𝑎𝑦𝑠 𝑠𝑝𝑜𝑟𝑡−1
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ sports team 5.77 5.19

𝑒𝑡: ? sports team
𝑠𝑝𝑜𝑟𝑡𝑠 𝑔𝑎𝑚𝑒 𝑡𝑒𝑎𝑚−1

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ sports game
𝑠𝑝𝑜𝑟𝑡𝑠 𝑔𝑎𝑚𝑒 𝑡𝑒𝑎𝑚
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ sports team 3.79 2.28

HRRL path: Amazon [4]
𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑑
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ AbeBooks [2]

𝑐𝑜𝑚𝑝𝑎𝑛𝑦 𝑠𝑒𝑐𝑡𝑜𝑟
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ internet [26]

𝑒𝑠: Amazon company
𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑑
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ company

𝑐𝑜𝑚𝑝𝑎𝑛𝑦 𝑠𝑒𝑐𝑡𝑜𝑟
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ economic sector 4.88 3.52

𝑟: company company
ℎ𝑎𝑠 𝑜𝑓𝑓𝑖𝑐𝑒 𝑖𝑛 𝑐𝑖𝑡𝑦
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ city

ℎ𝑎𝑠 𝑜𝑓𝑓𝑖𝑐𝑒 𝑖𝑛 𝑐𝑖𝑡𝑦−1
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ company

ℎ𝑎𝑠 𝑜𝑓𝑓𝑖𝑐𝑒 𝑖𝑛 𝑐𝑖𝑡𝑦
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ city 3.71 4.01

sector company
ℎ𝑎𝑠 𝑜𝑓𝑓𝑖𝑐𝑒 𝑖𝑛 𝑐𝑖𝑡𝑦
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ city

ℎ𝑎𝑠 𝑜𝑓𝑓𝑖𝑐𝑒 𝑖𝑛 𝑐𝑖𝑡𝑦−1
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ newspaper

𝑗𝑜𝑢𝑟𝑛𝑎𝑙𝑖𝑠𝑡 𝑤𝑜𝑟𝑘𝑠 𝑓𝑜𝑟−1
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ journalist 2.93 2.32

𝑒𝑡: ?

HRRL path: MSU [5]
𝑝𝑒𝑟𝑠𝑜𝑛 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑜𝑟𝑔−1
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Tom Izzo [2]

𝑤𝑜𝑟𝑘𝑠 𝑓𝑜𝑟
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Michigan State [23]

𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Michigan [137]

𝑒𝑠: MSU university
𝑝𝑒𝑟𝑠𝑜𝑛 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑜𝑟𝑔−1
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ coach

𝑤𝑜𝑟𝑘𝑠 𝑓𝑜𝑟
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ sports team

𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ state 22.65 7.41

𝑟: located in university
𝑝𝑒𝑟𝑠𝑜𝑛 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑜𝑟𝑔−1
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ coach

𝑤𝑜𝑟𝑘𝑠 𝑓𝑜𝑟
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ sports team

𝑡𝑒𝑎𝑚 𝑝𝑙𝑎𝑦𝑠 𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝑡𝑒𝑎𝑚
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ sports team 10.21 8.64

state university
𝑖𝑠 𝑎𝑐𝑟𝑜𝑛𝑦𝑚 𝑓𝑜𝑟
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ university

𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒 𝑜𝑓 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦−1
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ language

𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒 𝑜𝑓 𝑐𝑜𝑢𝑛𝑡𝑟𝑦
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ country 7.52 28.4

𝑒𝑡: ?
Fig. 4. Relation frequencies in the discovered paths of the development set for Amazon datasets. Each item on the 𝑥-axis is a relation, and the 𝑦-axis shows, in log-scale, the
number of discovered paths that include that relation.
query in Table 5. Lin et al. method on the other hand, is more likely to
select a path type that leads to a (country) or a (sport team) entity, as
opposed to a (state) entity. For this query, number of all possible path
types is smaller (75 for HRRL and 73 for [22]). As a result, the top
frequent paths have relatively higher probabilities.

In Amazon datasets, there are fewer entity and relation types. As
a result, we observe several frequent path types that can lead to the
correct answer which all RL baselines are able to discover with similar
probabilities. Therefore, we focus on the diversity of the relations used
in our method and the best performing baseline [22] for the discovered
19
paths in the development set. Fig. 4 displays the inference results. On
Amazon cellphones data, our method uses fewer <null>, produced-by
and also-bought relations while it utilizes more of other relations, in
particular, belongs-to relations. Similarly, on Amazon Beauty data, our
method utilizes fewer also-bought, produced-by and <null> relations,
while it uses other relations more frequently, especially the bought-
together relation. We believe one reason for the success of our method
is the diverse use of different relation types for discovering new path
types.



Information Fusion 88 (2022) 12–21M. Saebi et al.

m
m
s
(
F
m
a
e
f

C

i
S
S
t
W
S

D

c
i

A

t
L
(
t
2
d
r
A
m
p

F

v
I
r
t
A
t
2

6. Conclusion

We proposed HRRL for improving the performance of path-based
reasoning using RL. HRRL addresses the key challenges stemming from
large action space and accurate representation of an entity’s heteroge-
neous neighborhood. The key contributions of HRRL include an effi-
cient vector representation for heterogeneous entity type-embeddings,
pruning the action space for improving the choice of next actions, and
leveraging a GNN for incorporating the neighborhood information.

We evaluate HRRL on four contemporary datasets. Our results show
that incorporating information about the heterogeneous neighborhood
results in improved performance for the query answering task. We
show that the type information is important for faster convergence
and finding more diverse paths, and the neighborhood information
improves the performance on to-many relations. Despite these improve-

ents, HRLL still requires a longer training time than embedding-based
ethods. As part of our future work, we plan to explore more efficient

trategies for action-space pruning and improving GPU performance
such as [57]) to improve the scalability of existing RL solutions.
urthermore, we plan to develop more effective type-embeddings that
odels the hierarchical structure of entity types. Finally, HRRL is un-

ble to handle scenarios in which new entities are added to the knowl-
dge graph dynamically. As a result, we plan to adapt our framework
or inductive question answering to address such scenarios.
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