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Abstract—In this paper, we discuss a tensor decomposition
method for imputing similarity scores between individual clinical
pictures at predefined patient age intervals in order to construct
a dynamic similarity network of patients with respect to early
childhood anthropomorphic development. The method leverages
Canonical Polyadic Decomposition (or PARAFAC) to compute
missing Euclidean similarity scores between pairwise growth
pictures, made up of height and weight measurements. We con-
struct a tensor made up of serial affinity matrices to model how
the similarities between different patients change over different
trajectory snapshots. We intend to use this method to aid Un
Kilo de Ayuda (UKA), a non-governmental organization located
in Mexico that is made up of facilitators seeking to identify
children at risk for malnutrition and suboptimal development.
This tensor completion strategy will assist UKA with determining
pairs of children with similar clinical pictures, so that they can
better assist with selecting treatment strategies and ultimately
build better programs tailored to specific families’ needs.

Index Terms—Tensor Decomposition, Tensor Factorization,
Canonical Polyadic Decomposition, Data Imputation, Time-Series
Data, Data Sparsity

I. INTRODUCTION

The rate of generated health data has grown exponentially
in recent years due to the expansion of electronic medical
records, wearable technologies, and health tracking applica-
tions. As a result, healthcare providers are investing their
resources into building platforms that can leverage this data
to improve patient health. The trend in healthcare is shifting
from cure to prevention. Hospitals and healthcare systems
house useful repositories of big data (like patient records, test
reports, medical images, etc.) that can be leveraged to cut
the costs of healthcare, to improve reliability and efficiency,
and to provide more effective treatments to patients [19].
Applying data science methods to health data has been proven
to assist with such advances. Some success stories include
using wearable technologies to monitor and prevent health
problems, advancing pharmaceutical research to help find
cures for diseases, and reducing hospital readmissions to cut
healthcare costs, among many others [2, 7, 20]. Leveraging
patient-patient similarity is the backbone behind many of

these models. However, patients do not always comply with
appointment schedules, and occasionally measurements are
missed during routine checkups. These events leave gaps in
patient records, which hinder machine learning methods that
take these values into consideration when making predictions.

In this paper, we leverage similarities between patient trajec-
tory snapshots to develop a dynamic similarity network of pa-
tients across a predefined age-span. Specifically, we intend to
predict missing similarity scores between pairwise patients at
any given age, only using existing similarity scores at other age
snapshots via a tensor decomposition approach. This method
has been tested on a child development database from Un Kilo
de Ayuda (UKA), a Mexican non-governmental organization
made up of facilitators who aim to identify children at risk
of malnutrition and suboptimal development. By identifying
children with similar growth development, UKA can better
assist families to promote health and build better development
programs tailored to specific children’s needs.

One key challenge associated with this method is data
sparsity, as many children may not have acquired measure-
ments within the majority of age intervals (for our experiments
sparsity is in excess of 85%). This sparsity increases the
difficulty of constructing an accurate approximated tensor from
the tensor factorization. Another key challenge associated with
this method includes computational complexity. Tensors may
become unwieldy as children are added to the system. We
combat these challenges by creating smaller subsets of the
data such that a tensor is constructed using children who
meet a measurement threshold requirement (i.e. the number
of measurements acquired by a given child must surpass a
particular value in order for that child to be included in
the tensor). In this way, we can reduce the sparsity of the
tensor and the computational complexity of the factorization.
Additionally, the data subsets will target the children who
receive measurements most frequently and are therefore most
active in the UKA program.

The experimental results associated with our naive base-
line computational methods show that imputing similarity
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scores between pairwise children with missing measurements
requires further consideration than simply computing varia-
tions of random or average existing similarity scores. The
experimental results of the tensor decomposition method,
on the other hand, show that there is a clear advantage to
leveraging the ”knowledge of the pack” when computing
similarity scores between pairwise children at varying age
snapshots, as the tensor decomposition approach outperforms
all naive baselines, including a baseline in which we fit growth
curves to individual child trajectories and use values from
these curves to predict missing similarity scores. Note that
the development of our method and the code can be found at:
https://github.com/RyanKarl/HealthBehaviourModeling.

The contributions of this paper include the following:
• We adapt affinity matrices to fit a tensor completion

approach for patient-patient similarity imputation.
• We adapt methods typically used on behavioral datasets

(such as recommendation systems) on a profile dataset
(child health records).

• We show that a tensor decomposition imputation ap-
proach takes advantage of knowledge of the population
and outperforms simpler methods that only consider
knowledge of the individual.

II. RELATED WORK

When it comes to multi-way data, researchers have come to
understand that high-order tensors have clear advantages over
standard matrices in terms of data representation, as tensors
allow for less information loss, better uniqueness properties,
and overall interpretability [6]. Tensor decomposition methods
are often used within the contexts of image processing tasks,
such as facial recognition [26], biomedical signal detection,
such as epileptic seizure structures [1], multiple recommen-
dation systems settings [9] [14], and social network analysis,
such as modeling semantic relationships of tweets [23].

Within the field of healthcare analytics, tensor decom-
position has become a reliable tool to uncover trends in
electronic medical records (EMR) to improve the quality of
care delivered by medical professionals. High dimensionality
is a key issue within the EMR, as patients receive various
vital measurements, lab tests, diagnoses, and procedure results.
Methods such as TaGiTeD [29] have been created to capture
high order interactions in EMR data by combining tensor
decomposition with representation learning. Researchers have
also used tensor decomposition to cluster patients with similar
clinical profiles [22]. This strategy not only assists with
diagnosis but also helps with treatment and prescription.
Finally, tensor decomposition has been utilized to impute
missing medical data in patient questionnaires [5]. Specifically,
canonical polyadic decomposition (CPD) was used to predict
survey responses that patients neglected to answer by learning
the inherent collaborative relationship structure present in the
existing data. To the best of our knowledge, our paper is
the first to leverage CP decomposition for data imputation in
the healthcare domain with a dataset with extreme levels of
sparsity (≥ 85%) and very few features (≤ 2).

Tensor decomposition research is a mature field with several
notable results. A seminal paper in reconstructing missing
values [11] demonstrated via robust experiments that using
alternating least squares (ALS) is superior to computing the
covariances between pairs of variables and applying these
covariances in constructing a system of normal equations
during optimization. Early work by [24] introduced dynamic
tensor analysis (DTA) to provide a compact summary for high-
order and high-dimensional data and reveal hidden correla-
tions. DTA is scalable, space efficient, and fully automatic
with no need for user defined parameters. Later, [13] built
a method that is robust to the challenges of computing over
high-dimensional, sparse data, where most of the entries of
the tensor are zero. Their method, Memory-Efficient Tucker
(MET), is based on Tucker decomposition, but after analyzing
the available memory, is able to adaptively select the right
execution strategy during the decomposition to achieve over
1000X space reduction without sacrificing speed. Also, [10]
built a method that can be used to simultaneously recover the
true low-rank tensor as well as the sparse corruption tensor
even in the presence of arbitrarily large amounts of noise; this
is similar to existing work [3].

The work of [15] developed an important parallelizable
method ParCube for efficiently decomposing a tensor into
sparse factors, that scales to very large datasets. ParCube
provides theoretical guarantees for the algorithm’s correct-
ness, and has been extensively validated through experiments.
Notably, the work of [25] designed a method to summarize
high-order data cubes (tensors), and incrementally update
these patterns over time. This framework for incremental
tensor analysis (ITA) is able to efficiently compute a compact
summary for high-order and high-dimensional data, and reveal
hidden correlations for dynamic, streaming, and window-based
tensors. Also of note is [21], which used related techniques
to aid with tagging content on websites, and constructing
recommender systems that can help to suggest a user the tags
he might want to use for tagging a specific item. They present
a factorization model PITF (Pairwise Interaction Tensor Fac-
torization) which is a special case of the TD model with linear
run-time both for learning and prediction. PITF explicitly
models the pairwise interactions between users, items, and
tags. See [12],[16] for a broader overview of this subject.

III. PROBLEM DEFINITION

The formal definition of the problem is as follows: Given
the UKA database containing n children, c1, c2, ..., cn, we
define the height measurement (in centimeters) and the weight
measurement (in kilograms) of child ci at age a as h

(a)
i and

w
(a)
i , respectively, where 0 ≤ a ≤ 59 months and 1 ≤ i ≤ n.
We construct a third-order tensor, T ∈ Rn×n×60, in which

an entry in the tensor is given by:

Ti,j,a =

{
s
(a)
i,j if ∃〈h(a)

i , w
(a)
i 〉 ∧ ∃〈h(a)

j , w
(a)
j 〉

NaN if �〈h(a)
i , w

(a)
i 〉 ∨ �〈h(a)

j , w
(a)
j 〉,

(1)
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where s
(a)
i,j is the Euclidean similarity between the clinical

pictures of children ci and cj at age a, with 0 ≤ a ≤ 59 and
1 ≤ i, j ≤ n. Euclidean similarity, s(a)i,j , is defined as:

s
(a)
i,j =

1

1 +
√

(h
(a)
i − h

(a)
j )2 + (w

(a)
i − w

(a)
j )2

. (2)

Thus, the tensor T is made up of a sequence of 60
n× n affinity matrices between pairwise children at each age
snapshot. We seek to predict the missing Euclidean similarity
measures between pairwise children at each of these age
snapshots. Formally, for Ti,j,a = NaN , we will predict
T̂i,j,a = ŝ

(a)
i,j ∈ (0, 1].

IV. SOLUTIONS

A. Tensor Factorization Methods

In order to impute missing similarity scores between pair-
wise children at each growth snapshot, we utilize tensor factor-
ization methods in order to construct an approximation, T̂ , of
our original tensor T . The method by which we construct this
approximation is through canonical polyadic decomposition
(CPD), which breaks down a single tensor into the sum of
component rank-one tensors [18] [6]. This allows for a more
compact representation of a rank R tensor, as follows:

T ≈ T̂ =
R∑

r=1

ar ◦ br ◦ cr, (3)

T ∈ RI×J×K ,a ∈ RI , b ∈ RJ , c ∈ RK ,

where a, b, and c are rank-one tensors. We seek to minimize
the difference between the original tensor and the approxima-
tion, minT̂ ||T − T̂ ||. In particular, we utilize Non-Negative
Canonical Polyadic Decomposition (NCPD) optimized with
hierarchical alternating least squares (HALS), described in [4].

NCPD is particularly useful for this application since all
values in our tensor T , represent similarities between pairwise
children, and thus must be greater than or equal to 0. HALS
transforms the tensor decomposition method into a convex
problem by reducing error with respect to a single mode of the
tensor at a time while holding the others fixed. Furthermore,
HALS has been demonstrated to be robust with respect to
noise and suitable for large scale problems, such as this
tensor decomposition [8]. We do not discuss the full details
of the implementation and mathematical correctness of the
method here, but more information can be found in the surveys
[12, 17, 28].

For completeness, we discuss another tensor factorization
method, known as Tucker decomposition, in which the original
high-order rank-R tensor T , is decomposed into multiple
matrices and a single core tensor [18] [6], as shown:

T ≈ T̂ =
P∑

p=1

Q∑
q=1

R∑
r=1

Gpqrar ◦ br ◦ cr, (4)

T ∈ RI×J×K ,G ∈ RP×Q×R,

a ∈ RI×P , b ∈ RJ×Q, c ∈ RK×R.

where G is the core tensor and a, b, and c are matrices.
While Tucker approximation is especially useful for dimen-
sionality reduction and estimation of signal subspaces, we
favor CP decomposition due to known disadvantages of Tucker
decomposition [27]. Tucker is generally considered to be
slower than CP. Also, the decomposition from Tucker is
invariant to rotations in the factor matrices, and when using
Tucker, the core tensor becomes difficult to visualize. Since
we intend to deploy the tensor decomposition method within
the UKA organization, it is crucial to maintain visualization
of latent factors and interpretability of the model. Also, for
our application, there is no need to generate the core tensor as
is done during a Tucker decomposition. As a result, we favor
CP decomposition for generating the tensor approximation, as
this method aims at identifying latent factors that are directly
meaningful in constructing the dynamic similarity network of
early child development pictures.

V. EXPERIMENTS

In this section we outline the dataset specifications, vali-
dation settings, evaluation methods, and experimental results
associated with the initial baseline methods and the CP de-
composition approach.

A. DATA SOURCES

The database used in these experiments comes from Un Kilo
de Ayuda (UKA), a non-governmental organization based in
Mexico, seeking to promote early childhood development by
tracking child growth and assisting families without conve-
nient access to healthcare services gain perspective on their
children’s health. The data consists of 486, 926 unique children
with over 3 million total measurement records spanning the
years 2000 − 2018. Measurements primarily include height
(centimeters) and weight (kilograms) associated with a given
measurement date. Since not all children necessarily receive
both a height and a weight measurement on the same date
due to UKA workflow, we generated a subset of the data in
which a height and a weight measurement was recorded on the
same date for a given child. The resulting subset consists of
444, 142 unique children, 227, 465 of which are male, while
216, 677 are female. The average number of combined height
and weight measurements per child is 2.95, meaning that on
average, a given child acquires approximately 3 height and
weight measurements on the same date within the first 5 years
life through the UKA system. Note that we normalize the
height and weight measurements to values in the range of
[0,1] using min-max normalization.

In order to combat the sparsity associated with generating
tensors, given the low measurement frequency as described
above, we constructed tensors by taking subsets of the UKA
data such that a child is included in a given tensor only if
the number of measurements that the child has acquired has
surpassed a given threshold. Specifically, we constructed 4
tensors that include children who have acquired at least 14,
16, 18, and 20 measurements, respectively. Table I outlines
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TABLE I: Tensor Sparsity Statistics

Tensor (Min # Measurements per Child) Number of Children Included Tensor Size (Total Entries) Non-Empty Entries Tensor Sparsity

14 634 24,117,360 1,948,323 91.92%
16 302 5,472,240 546,143 90.02%
18 108 699,840 88,436 87.36%
20 46 126,960 18,804 85.19%

the subsets derived from the UKA database according to a
minimum number of measurements required per unique child
along with the corresponding tensor size and sparsity, given
that a tensor consists of 60 n× n similarity matrices, one for
each age snapshot (0 to 59 months).

B. Naive Baselines

For our naive baselines, we implemented four methods
to analyze the difficulty of predicting children’s pairwise
similarity scores without explicitly knowing weight and height
measurements at any given age:

• Baseline 0 computes the overall average similarity score
for children of the same age (rounded to the nearest
month) and uses this value as the prediction for missing
similarity scores between pairwise children.

• Baseline 1 uses a similarity score of 0.5 as a prediction
for missing similarity scores between pairwise children.

• Baseline 2 uses a randomly selected number between
0 and 1 as a prediction for a missing similarity score
between pairwise children.

• Baseline 3 fits a logarithmic curve to each unique child’s
height and weight trajectories over 0-59 months of life.
Similarity scores between pairwise children are computed
at a given age by extrapolating height and weight values
from these curves at this age value.

• Baseline 4 computes the overall average for children of
the same age (rounded to the nearest month) within the
same residential location.

C. Validation Settings

We utilized leave-p-out validation, similar to holdout vali-
dation, where we held out a percentage of data for testing our
method following training. For each constructed tensor, we
conducted CP decomposition experiments using four valida-
tion settings with respect to known tensor entries, specifically
1) 90% training and 10% testing 2) 80% training and 20%
testing 3) 70% training and 30% testing and 4) 60% training
and 40% testing. We also experimented with four different
training error tolerances in order to fit the approximated tensor
generated from the CP decomposition to the original tensor
with respect to known entries and analyze when potential
overfitting may occur. Specifically, we use tolerances 1×10−3,
1× 10−5, 1× 10−7, and 1× 10−9.

For each train-test validation setting and training error
tolerance outlined above, we conducted 10 runs of the CP
decomposition algorithm in which tensor entries used for
training and testing were randomly chosen from existing tensor
entries. Note that error and standard deviation was averaged

for all trials. The results of all experiments are provided in
Figure 1 and Table II.

D. Evaluation Methods

In order to measure the accuracy of our methods, we utilize
the root mean squared error (RMSE) and mean absolute
error (MAE) to determine the overall difference between
the observed similarities and the predicted similarities of the
children’s clinical pictures. These measures are defined as

RMSE =

√√√√ n∑
i=1

(ŷi − yi)2

n
(5)

MAE =
1

n

n∑
t=1

|ŷi − yi| (6)

where yi represents an observed similarity and ŷi represents
a predicted similarity between a pair of children, while n
represents the total number of observed similarities. The MAE
and RMSE will determine how close our approximated tensor
computation gets to the original tensor, with respect to the
known entries.

E. Experimental Results

In this section, we provide a comparison between the results
of our baseline computational methods and the CP decompo-
sition approach with respect to predicted similarity scores for
pairwise children who possess ground truth measurements. In
Table II, we computed the Root Mean Squared Error (RMSE)
and the Mean Absolute Error (MAE) between the predicted
values outputted from the methods and the actual ground truth
for these values. The results show that the CP decomposition
approach outperforms all experimental baselines in predicting
similarity scores between pairwise children with varying train-
test holdout settings for every tensor size. In particular, the
CP decomposition method outperforms Baseline 3, in which
height and weight values were extracted from individual curves
fit to unique children’s growth trajectories and then used to
compute similarity scores. This result implies that there is
an advantage to leveraging the “knowledge of the pack” that
CPD provides over “knowledge of the individual” that the
curve-fitting provides. This is further supported by the fact
that baselines 1 and 4, that do try to leverage “knowledge
of the pack” by computing average similarities of groups of
children, outperform baseline 3.

Another interesting finding from these experiments involves
the relationship between tensor size and the RMSE and MAE
results. From Table II and Figure 1, it is evident that as
tensor size (and therefore sparsity) increases, RMSE and
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TABLE II: Error Score Comparison

Method
Minimum
Measure-

ments/Child

60% Train 70% Train 80% Train 90% Train

RMSE MAE RMSE MAE RMSE MAE RMSE MAE
CPD 14 0.01239±0.00038 0.00181±6.79E-05 0.01072±0.00043 0.00136±6.56E-05 0.00863±0.00037 0.00089±4.69E-05 0.00591±0.00022 0.00043±1.98E-05

Baseline 0 14 0.01650±0.00023 0.00289±0.00073 0.01814±0.00013 0.00275±0.00043 0.02187±0.00033 0.00269±0.00011 0.03189±0.00026 0.00281±0.00046
Baseline 1 14 2.88291±0.00005 0.49635±0.00057 3.27354±0.00003 0.50642±0.00025 4.01942±0.00021 0.50226±0.00014 5.72176±0.00030 0.50407±0.00003
Baseline 2 14 2.93610±0.00002 0.49798±0.00057 3.30157±0.00020 0.50514±0.00031 4.09572±0.00001 0.50591±0.00072 5.76821±0.00021 0.49378±0.00033
Baseline 3 14 0.81402±0.04264 5.41842±0.08281 0.68028±0.02510 3.94524±0.05652 0.52938±0.02805 2.49025±0.04945 0.35142±0.01271 1.09818±0.03532
Baseline 4 14 0.15105±0.02470 0.05806±0.00317 0.15273±0.02057 0.05578±0.00396 0.15051±0.08718 0.05674±0.00372 0.14942±0.03260 0.05621±0.00313

CPD 16 0.01311±0.00045 0.00211±9.16E-05 0.01122±0.00046 0.00156±7.83E-05 0.00911±0.00021 0.00103±2.98E-05 0.00634±0.00012 0.00051±1.11E-05
Baseline 0 16 0.01642±0.00793 0.00280±0.00060 0.02039±0.00600 0.00302±0.00411 0.02404±0.00623 0.00289±0.00241 0.03349±0.00597 0.00287±0.00055
Baseline 1 16 2.88291±0.00098 0.49870±0.00003 3.26701±0.00406 0.50815±0.00057 3.98634±0.00190 0.50131±0.00068 5.66567±0.00725 0.50518±0.00017
Baseline 2 16 2.92469±0.00247 0.49912±0.00083 3.29663±0.00170 0.50093±0.00020 4.11176±0.00165 0.50224±0.00054 5.78615±0.00702 0.49279±0.00080
Baseline 3 16 0.55654±0.02094 2.67566±0.04130 0.47192±0.01514 1.98017±0.03160 0.37838±0.02097 1.21901±0.02810 0.27040±0.00768 0.67500±0.02205
Baseline 4 16 0.18564±0.04403 0.05936±0.05220 0.18416±0.04928 0.05944±0.00696 0.17978±0.05857 0.05874±0.00856 0.17820±0.06163 0.05916±0.00789

CPD 18 0.01264±0.00021 0.00221±7.77E-05 0.01082±0.00027 0.00164±4.44E-05 0.00896±0.00028 0.00111±4.03E-05 0.00626±0.00017 0.00055±1.96E-05
Baseline 0 18 0.01599±0.00301 0.00280±0.00066 0.01777±0.00022 0.00269±0.00013 0.02234±0.00058 0.00275±0.00055 0.03371±0.00521 0.00296±0.00049
Baseline 1 18 2.86401±0.00805 0.49790±0.00082 3.27980±0.00079 0.50452±0.00011 4.02051±0.00811 0.50277±0.00019 5.66567±0.00537 0.50453±0.00029
Baseline 2 18 2.90985±0.00127 0.50254±0.00075 3.30987±0.00393 0.50133±0.00023 4.14868±0.00663 0.49791±0.00032 5.78557±0.00146 0.49537±0.00008
Baseline 3 18 0.32475±0.02623 0.93287±0.02810 0.27213±0.03422 0.65890±0.03680 0.20888±0.00824 0.44290±0.02416 0.14111±0.01589 0.18504±0.01938
Baseline 4 18 0.21945±0.04686 0.06379±0.00812 0.21303±0.04958 0.06329±0.01055 0.21720±0.04974 0.06329±0.01055 0.21407±0.05936 0.06285±0.01174

CPD 20 0.01387±0.00036 0.00258±5.77E-05 0.01195±0.00022 0.00194±5.08E-05 0.00961±0.00027 0.00127±4.26E-05 0.00685±0.00019 0.00064±1.63E-05
Baseline 0 20 0.01647±0.00170 0.00288±0.00049 0.01925±0.00165 0.00292±0.00078 0.02305±0.00702 0.00284±0.00042 0.03294±0.00040 0.00289±0.00061
Baseline 1 20 2.85601±0.00526 0.49985±0.00082 3.29462±0.00285 0.49987±0.00033 4.05989±0.00051 0.49982±0.00011 5.68329±0.00730 0.49983±0.00031
Baseline 2 20 2.88991±0.00072 0.49880±0.00038 3.33286±0.00401 0.49869±0.00030 4.10882±0.00423 0.49886±0.00037 5.74821±0.00422 0.49856±0.00054
Baseline 3 20 0.20881±0.03411 0.37661±0.03163 0.17756±0.03999 0.27186±0.03181 0.12746±0.00934 0.15968±0.01865 0.08006±0.00837 0.06574±0.01066
Baseline 4 20 0.33257±0.09769 0.09019±0.02859 0.33297±0.09777 0.09026±0.02713 0.32784±0.11877 0.09072±0.02938 0.32885±0.11397 0.09026±0.02878

Fig. 1: CP Decomposition Average RMSE and MAE Results

MAE decrease. We attribute this finding to be the result of
CP decomposition relying on a richer set of patterns when
determining latent relationships between child growth and age.
More explicitly, when more children are introduced to the
tensor, the decomposition is more successful at capturing the
latent characteristics available within the similarity network,
and therefore the reconstruction more accurately represents
true similarities between pairwise children at varying age
snapshots. One might expect that tensor sparsity would nega-
tively impact a tensor decomposition approach; however, the
opposite result is found.

Finally, and expectedly, the experimental findings show that
as we increase the proportion of training data and decrease
the acceptable training error tolerance, we obtain a more

successful tensor reconstruction, as evidenced by lower RMSE
and MAE. However, as we decrease the maximum error
tolerance allowed for tensor reconstruction during the fitting
process, we find that RMSE and MAE decreases are minimal
once the error value of 1× 10−9 is reached. This implies that
overfitting begins to occur at this threshold and suggests we
may be able to utilize regularization to further improve the
method. We leave this for future work.

VI. CONCLUSION

In this paper, we presented a CP decomposition approach for
imputing missing similarity scores between pairwise children
at varying age snapshots with respect to the children’s growth
trajectories. The CP decomposition approach outperforms all
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tested baselines, including a baseline in which individual
curves are fit to unique children’s height and weight trajec-
tories over the age-span from birth to 59 months. Further-
more, the CP decomposition approach proved to be most
successful when more children (and therefore more growth
patterns) were introduced to the tensor. These results show
that leveraging “knowledge of the pack” proves to be a
better strategy than leveraging “knowledge of the individual”
when imputing these similarity scores. Given the completed,
approximated tensor generated from the CP decomposition
method, we have constructed a dynamic similarity network
that relates unique children based on their early development
patterns. The similarity network will assist UKA workers
by identifying children at risk for a decline in health, and
providing families with resources that have helped children
with similar developmental tendencies. More specifically, this
technique will help UKA fill in the gaps for missing data
in child health profiles to better understand if their health
trajectory indicates they are at risk and need intervention from
a social worker or a medical specialist. This way, poor health
conditions can be better identified and addressed before they
lead to chronic ailments that persist into adulthood.
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