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ABSTRACT

Given a project plan and the goal, can we predict the plan’s success
rate? The key challenge is to learn the feature vectors of billions
of the plan’s components for effective prediction. However, exist-
ing methods did not model the behavior outcomes but component
proximities. In this work, we define a measurement of behavior
outcomes, which forms a test tube-shaped region to represent “suc-
cess”, in a vector space. We propose a novel representation learning
method to learn the embeddings of behavior components (includ-
ing contexts, plans, and goals) by preserving the behavior outcome
information. Experiments on real datasets show that our proposed
method significantly improves the performance of goal prediction
as well as context recommendation over the state-of-the-art.
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1 INTRODUCTION

Every human being wants success. Every data scientist wants to
publish in the KDD conference. This is one of the reasons that we
make project plans, write codes, do experiments, and work days
and nights. Once the goal is determined, it has been time to predict
the success rate of the project plan: if the goal was less likely to be
achieved, we would look for ways to adjust the plan towards an
increase of the rate. But how do we predict the success?

Suppose you are a reviewer on a project plan. The goal is to
write a paper as the project’s outcome and publish it in KDD. Some
information about the plan will be given to you as follows, and
please assess the success rate (i.e., going up or down):

• This project’s topic is “social media”;
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Figure 1:We propose to learn the representation of behavior

contexts (e.g., authors, keywords) and goals (e.g., venues) by

preserving the outcomes of behavior plan. A behavior plan

consists of the contexts as its components, represented as a

combination of the contexts in the vector space. If the plan

was effective (i.e. accepted to the venue), it would fall in the

ε-region of the goal (shaped like a test tube), where ε is the
distance from the plan to the goal’s direction; otherwise, it

would be outside of the region. This is a 2-D visualization of

our results, showing two successful behaviors (i.e., accepted

papers) in the vector space though losing some dimensions.

• The leading author will be a Stanford student;
• The last author will be Prof. Jure Leskovec (Stanford);
• The research problem is to predict tweet popularity...

We have no idea about your assessment but here is ours. First,
“social media” is absolutely a popular topic in KDD community but
it does not mean it is a strong paper. Second, if the project is led by
a Stanford’s lab, it means something – the leading author is likely
to be smart, creative, and hard-working, as being from the highly
recognized and reputed institution, but it does not mean the paper
will be accepted! When we come to the third point, the success
rate significantly goes up: It is not only because Prof. Leskovec is
of great renown in the KDD community and has published many
highly-cited papers but also because he is an expert in “social media”
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Figure 2: p1 and p2 are

two behavior plans. g
is a behavior goal. ε
is the distance from a

plan to the goal’s direc-

tion (ray), forming a test

tube-shaped region of ef-

fective plans. A smaller

ε means higher plan

effectiveness and better

behavior outcomes.

and he belongs to the same institution with the leading author. The
fourth point makes our prediction more positive. It turns out to be
a paper called SEISMIC published in KDD’15.

Open academic datasets (such as AMiner [20] and Microsoft
Academic Graph [18]) make hundreds of millions of successful
examples (i.e., published papers) available, and the above clues we
assess the success are lying beneath the huge data. In this work,
we aim at proposing a data mining approach to predict the success
of a plan towards a goal. This research problem is not limited to
the paper-publishing behavior and can be found for many other
behavior tasks, e.g., selecting instructional materials for effective
K12 education, recruiting players and staff for sports teams, or
finding resources and strategies for military purposes.

The key point is to turn billions of plan’s components (called
context items later, such as authors, keywords, and references in a
paper) into numerical representations fed into predictive models.
Existing approaches formulate the behavior data as an information
network and the papers or components or venues as nodes. Then
network embedding methods have been widely applied for learn-
ing the node’s feature vectors by preserving the pair-wise node
proximity, neighborhood, or global structure [4, 7, 8, 14, 19, 21].
Unfortunately, the outcomes of behavior, or say, the underlying
patterns of the components forming an (un-)successful plan to-
wards the goal, were not preserved in the embeddings, and thus not
effective for predicting the success (as shown in the experiments).

To reach the aim, we have three challenges. First, the behavior’s
components, which have different roles (i.e., context items, behavior
plans, behavior goals), need to be represented in a low-dimensional
vector space. Second, the behavior plan’s outcome measurement
needs to be defined in the vector space. The network-based struc-
tural metrics would not longer be applicable. Third, failures (i.e.,
negative examples) may not be observable from the data in many
behavior domains. For example, the public academic datasets have
tons of accepted papers but no rejected ones.

To address the above challenges, we propose a novel approach,
named TUBE, that Embeds Behavior oUTcomes for success predic-
tion. Our idea is to use the vector space in a new way: As shown in
Figure 1, TUBE navigates decision makers in the vector space to the
point of success, starting from the origin, adding existing context
items (green or red arrows, e.g., the first author, a term of target
problem) into the route, looking for complementary context items
(e.g., collaborators, important keywords, necessary references), and
approaching the point of the behavior goal (yellow stars).

In TUBE, behavior plans (p1 and p2) as well as the behavior
goal (д) are represented as points in the vector space (as shown in
Figure 2). A plan is a combination of its context items. TUBE learns
the feature vectors of the context items and goals in the behavior
data. Next, we propose the measurement of behavior outcomes:

Definition 1.1 (Plan effectiveness). Given p, g ∈ Rd as the feature
vectors of a plan p and a goal д in a d-dimensional vector space, the
goal’s success is defined as the ray that starts from the point g and
goes off in a particular direction to infinity. The plan’s distance to
success ε (p | д ) ∈ [0,+∞) is defined as the distance from p to the
success (i.e., ray from g). The plan effectiveness is a transformation of
ε (p | д ), denoted by e (p | д ) ∈ [0, 1]: when ε (p | д ) = 0, e (p | д ) =
1. The rigorous mathematical definitions will be given in Section 3.

Note that the success is not defined as a point but a ray in the
vector space. It gives flexibility of defining a successful plan’s level
of achievement (or plan achievement). As shown in Figure 2, the
plan achievement γ (p | д ) is defined as the norm of the plan point’s
projection on the ray over the norm of the goal point. This factor of
behavior outcomes does exist in real life: we do have highly-cited
papers, awarded papers, and ground-breaking papers.

It is worthwhile to highlight that these new definitions of be-
havior modeling form an ε-region of effective plans for each goal,
in which any plan’s distance to success is not bigger than ε . The
ε-region looks like a test tube filled with “effective liquid.”

Then, we propose a representation learning method that jointly
learns the embeddings of behavior contexts and goals by preserving
the behavior outcomes. We assume that the positive examples (i.e.,
paper records in the datasets) have an effectiveness of 1 (and thus a
distance ε of 0). We adopt the negative sampling strategy, which has
widely been applied to word embeddings [13], to generate negative
examples and assume they have an effectiveness of a small value.

Figure 1 presents a 2-D visualization of ten behavior goals (i.e.,
conferences) and two successful behavior plans (a KDD’15 paper
and a NIPS’11 paper) losing some dimensions in the embedding
results. The venue points were located in fields without prior knowl-
edge. The authors are the most important factors of the plans, com-
pared to keywords and references. Senior researchers may obtain
long vectors with a direction to their expertise. In the future, we will
study more concrete contexts of the papers such as years, datasets,
and paper styles (e.g., tables, figures, formulas).

The main contributions of this paper are summarized as follows.
• A novel problem: We propose to represent the behavior com-
ponents (i.e., contexts, plans, goals) in a vector space and
learn the embeddings for success prediction.

• New measurement: We propose a measurement of behavior
outcomes as well as a new concept of (test tube-shaped)
ε-region to represent “success” in the vector space.

• A novel representation learning method: TUBE preserves the
behavior outcome information in the context and goal em-
beddings. Experimental resutls demonstrate the effectiveness
and efficiency of the algorithm.

2 PROBLEM DEFINITION

In this section, we first introduce basic concepts used in this paper,
and then formally define the research problem. Table 1 presents
the symbols and their descriptions.
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Table 1: Symbols used in this paper and their descriptions.

Symbol Description

д; G A behavior goal; the set of goals
c; C A behavior context item; the set of context items
p; P A behavior plan; the set of plans
b = (д,p); A behavior (including a goal and a plan);
B the set of behaviors
d Number of dimensions of the vector space
g, c, p Vector of goal д, context item c , and plan p
ε (p | д ) “Distance to success” of plan p given goal д
γ (p | д ) “Achievement” of plan p given goal д
e (p | д ) Estimated “effectiveness” of plan p given goal д
ê (p | д ) Observed “effectiveness” of plan p given goal д

Definition 2.1 (Goal, Plan, Context, and Behavior). A goal д is the
objective, or desired result, that a behavior commits to achieve. A
plan p = {c1, c2, ..., cn } is a set of context items organized together
to achieve the goal. A behavior b = (д,p) indicates a process of
executing plan p and targeting at goal д.
Taking paper-publishing behavior as an example. The goal is a spe-
cific venue. The contexts include authors, keywords, references, and
many other items if possibly extracted. The plan is the manuscript
that integrates all the contexts with dedicated efforts.

Definition 2.2 (Observed plan effectiveness). Given a behavior
b = (д,p), the observed effectiveness of plan p is the probability of
the plan p achieving the goal д, denoted by e (p | д ) ∈ [0, 1].
As in the above example, if the behavior was either a success (i.e.,
accepted) or a failure (i.e., rejected) in the data, the observed ef-
fectiveness would be either 1 or 0. When the review scores were
available, the effectiveness could be set as the mean or median value
of the scores. Unfortunately, usually we only have successful cases
in real datasets. We will deal with this issue in our approach.

Now we formally define the problem of learning behavior em-
beddings for preserving the effectiveness information as follows.

Problem. Given behavior data D = (G,P,C,B), where G, P, C,
and B are the sets of goals, plans, contexts, and behaviors, learn (1)
a goal embedding function fд(D) : G → Rd and (2) a context em-
bedding function fc (D) : C → Rd , where d ≪ min (|G|, |C|) is the
number of dimensions, preserving the observed plan effectiveness
information e (p | д ) for any behavior b = (д,p) ∈ B.

We will evaluate the behavior embeddings on two interesting tasks:

Task 1 (Goal prediction). Given a plan p, predict the goals д ∈ G

that the plan p is likely to achieve (i.e., of good effectiveness).
For example, given a paper plan with authors, keywords, and ref-
erences, predict the venue this paper is most likely to be accepted
to. The performance on this task reflects the plan effectiveness
information preserved in the embedding space.
Task 2 (Context recommendation). Given a goal д and a plan p,
recommend a context item c to be added into p that maximizes
the effectiveness of p w.r.t. д.
For example, given a project plan and a target venue, recommend
a co-author, keyword, or reference to make it more likely to be
accepted. In our experiments, we hide one of the context items and
use embeddings to predict the missing item.

3 THE PROPOSED APPROACH

In this section, we introduce the proposed TUBEmodel for learning
behavior embeddings and then present the optimization in detail.

3.1 The TUBE Model for Behavior Embedding

We denote the embedding vector of behavior goal д, context c , and
plan p, by g, c, p ∈ Rd , respectively. For a plan p ∈ P, we assume
its embedding is the sum of the embeddings of its context items:

p =
∑
c ∈p

c. (1)

We define the (potential) plan achievement of plan p w.r.t. a given
goal д as follows:

γ (p | д ) =
∥p∥ cosθ

∥g∥
, (2)

where θ refers to the angle between the plan’s vector p and the
goal’s vector g:

cosθ =
p · g

∥p∥∥g∥
, (3)

and γ ∈ (−∞,∞). As shown in Figure 2, when the plan achieve-
ment γ ≥ 1, the projection of the plan’s vector p on the the goal’s
direction locates on the ray starting from g.

Next, we define the distance to success ε (p | д ) of plan p w.r.t.
goal д as follows:

ε (p | д ) =

{
∥p∥ sinθ , for γ (p | д ) ≥ 1,
∥p − g∥, for γ (p | д ) < 1,

(4)

where ε ∈ [0,+∞). As shown in Figure 2, the distance from a plan to
its goal depends on the plan achievement γ (p | д ): (1) for a plan of
low plan achievement (e.g., p1 in the figure), we have γ (p | д ) < 1,
so the distance is exactly the Euclidean distance between the plan’s
point p and the goal’s point g; (2) for a plan of high plan achievement
(e.g., p2 in the figure), we have γ (p | д ) ≥ 1, so the value of ε is
defined as the distance from the plan’s point p to the ray starting
from the goal’s point g.

Each goal д has a region in which any point has a not-larger-
than-ε distance to success, which is called the ε-region of the goal
д. The shape of ε-region looks like a test tube, as shown in Figure 2.

Then, we define the plan effectiveness of p w.r.t goal д as:

e (p | д ) = tanh
(

1
2 ε 2 (p | д )

)
∈ (0, 1]. (5)

It transforms the distance to success ε (p | д ) into a (0, 1]-space for
learning so that when ε (p | д ) = 0, e (p | д ) = 1; when ε (p | д ) =
+∞, e (p | д ) = 0. This is an estimation on the observed plan effec-
tiveness ê (p | д ). To preserve the behavior outcomes, the embed-
ding learning is to optimize the following objective function:

O = d (ê ( · | · ) , e ( · | · )) , (6)

where d ( · , · ) is the distance between two distributions. We choose
to minimize the KL-divergence of the observed and estimated effec-
tiveness distributions. By replacing d ( · , · )with the KL-divergence,
we have:

O = −
∑

p∈P,д∈G

ê (p | д ) log e (p | д ). (7)
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Finally, by substituting Eq. (1), (2), (4) and (5) into Eq. (7), we can
rewrite the objective function as:

O =



−
∑
p∈P,д∈G ê (p | д ) log tanh

(
1

2 ∥
∑
c∈p c∥2 sin2 θ

)
,

for ∥
∑
c ∈p c∥ cosθ − ∥g∥ ≥ 0,

−
∑
p∈P,д∈G ê (p | д ) log tanh

(
1

2 ∥
∑
c∈p c− g∥2

)
,

for ∥
∑
c ∈p c∥ cosθ − ∥g∥ < 0.

(8)

3.2 Optimization

We adopt the asynchronous stochastic gradient algorithm (ASGD)
[15] for optimizing Eq. (8). In each step, the ASGD algorithm sam-
ples one positive behavior and t negative behaviors and updates
the model parameters, where t is called the rate of negative sam-
pling (t ≥ 1). We present the objective functions for both positive
examples O+ and negative examples O− where O ′ = O+ + t ×O−.
Then, we derive the the gradients ofO+ andO−, w.r.t. context items
c and goal g, respectively. To make it clear, the final optimization
objective is to minimize the function O ′.
Learning with positive examples: Given a positive example (i.e.,
observed behavior) b with goal д and plan p, the objective function
can be specified as:

O+ = −ê (p | д ) log tanh
(

1
2 ε 2 (p | д )

)

=



−ê (p | д ) × log tanh
(

1
2 ∥

∑
c∈p c∥2 sin2 θ

)
,

for ∥
∑
c ∈p c∥ cosθ − ∥g∥ ≥ 0,

−ê (p | д ) × log tanh
(

1
2 ∥

∑
c∈p c− g∥2

)
,

for ∥
∑
c ∈p c∥ cosθ − ∥g∥ < 0,

(9)

where cosθ can be re-written from Eq. (1) and (3):

cosθ =
∑
c ∈p c · g

∥
∑
c ∈p c∥∥g∥

. (10)

The gradient w.r.t. the embedding vector c of a context item c in
plan p can be derived as follows:

∂O+
∂c =



−2 ê(p | д )

sinh
(

∥g∥2

∥p∥2 ∥g∥2−(p·g)2

) ×
(p·g) ∥g∥2 g−∥g∥4 p(
∥p∥2 ∥g∥2−(p·g)2

)2 ,

for ∥
∑
c ∈p c∥ cosθ − ∥g∥ ≥ 0,

−2 ê(p | д )

sinh
(

1
∥p∥2+∥g∥2−2 p·g

) ×
g−p

( ∥p∥2+∥g∥2−2 p·g)2
,

for ∥
∑
c ∈p c∥ cosθ − ∥g∥ < 0,

(11)

and, the gradient w.r.t. the goal’s embedding vector g can be derived
as follows:

∂O+
∂g =



−2 ê(p | д )

sinh
(

∥g∥2

∥p∥2 ∥g∥2−(p·g)2

) ×
(p·g) ∥g∥2 p−(p·g)2 g(
∥p∥2 ∥g∥2−(p·g)2

)2 ,

for ∥
∑
c ∈p c∥ cosθ − ∥g∥ ≥ 0,

−2 ê(p | д )

sinh
(

1
∥p∥2+∥g∥2−2 p·g

) ×
p−g

( ∥p∥2+∥g∥2−2 p·g)2
,

for ∥
∑
c ∈p c∥ cosθ − ∥g∥ < 0.

(12)

Learning with negative examples: During negative sampling,
the goal of negative behavior b ′ is sampled from the set of all goals
G just like the goal of positive behavior, but the plan for negative
behavior b ′ does not necessarily come from the set of observed
plans P. The plan space for negative behaviors is a combination
(with replacement) of context items in C of arbitrary size.

In practice, we find two useful strategies: (1) keeping the plan
fixed as the plan for positive behavior and randomly sample a
different goal; and, (2) keeping the goal fixed as the goal for positive
behavior and randomly sample a subset of positive behavior’s plan.
Basically, the first strategy means, in the positive behavior, the plan
should be tailored for the specific goal; and, the second strategy
means, in the positive behavior, any context item is indispensable
for the plan to achieve its goal.

If a sampled pair of p and д, constituting a behavior b ′ = (д,p),
does not exist in the observed behavior data, the objective function
can be specified as follows:

O− = − log tanh
(
ε 2 (p | д )

2

)
,

=



− log tanh
(
∥
∑
c∈p c∥2 sin2 θ

2

)
,

for ∥
∑
c ∈p c∥ cosθ − ∥g∥ ≥ 0,

− log tanh
(
∥
∑
c∈p c−g∥2

2

)
,

for ∥
∑
c ∈p c∥ cosθ − ∥g∥ < 0.

(13)

The gradient w.r.t. the embedding vector c of a context item c in
plan p of behavior b ′ can be derived as follows:

∂O−

∂c =



−2
sinh

(
∥p∥2 ∥g∥2−(p·g)2

∥g∥2

) ×
∥g∥2 p−(p·g) g

∥g∥2 ,

for ∥
∑
c ∈p c∥ cosθ − ∥g∥ ≥ 0,

−2
sinh ( ∥p∥2+∥g∥2−2 p·g) × (p − g),

for ∥
∑
c ∈p c∥ cosθ − ∥g∥ < 0,

(14)

and, the gradient w.r.t. the goal embedding vector g of behavior b ′
can be derived as follows:

∂O−

∂g =



−2
sinh

(
∥p∥2 ∥g∥2−(p·g)2

∥g∥2

) ×
(p·g)2 g−(p·g) ∥g∥2 p

∥g∥4 ,

for ∥
∑
c ∈p c∥ cosθ − ∥g∥ ≥ 0,

−2
sinh ( ∥p∥2+∥g∥2−2 p·g) × (g − p),

for ∥
∑
c ∈p c∥ cosθ − ∥g∥ < 0.

(15)
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Figure 3: Synthetic D̄3 generation: (1) we generated skill

point distributions for each context; (2) the plan combined

skill points from all its contexts; (3) a proper goal, of badges,

was assigned to the plan. Predicting the goal for a plan is

non-trivial when the skill or badge information is hidden.

Table 2: Statistics of synthetic datasets

Dataset #Skill #Goal, #Context #Plan #Valid behavior

k = |S̄k | |Ḡk | = |C̄k | |P̄k | |B̄k |

D̄3 3 19 4.25 × 104 3,082
D̄4 4 34 5.76 × 105 11,416
D̄5 5 55 5.46 × 106 30,830
D̄6 6 83 3.92 × 107 68,480
D̄7 7 119 2.25 × 108 133,322
D̄8 8 164 1.08 × 109 236,112
D̄9 9 219 4.49 × 109 389,406

4 EXPERIMENTS

In this section, we set up an interesting scenario (including synthetic
data and task definition) to evaluate the proposed idea. Then we
do the prediction and recommendation tasks on real datasets. The
empirical analysis covers effectiveness, robustness, and sensitivity.
Our open-source code package and datasets are available on Github:
https://github.com/dmsquare/tube.

4.1 Results on Synthetic Datasets

This section includes (1) dataset generation and task definition, (2)
results on method performance, and (3) embedding visualization.

4.1.1 Dataset generation. We simulate a “game” scenario of making
plans to achieve goals. We will explain the following concepts used
in the data generation: skill, context, plan, badge, and goal. Figure 3
illustrates how a synthetic dataset D̄k was generated through the
game setting (where k = 3 in the figure):

(1) Suppose there are k skills. If k = 3, we name the three skills
“a”, “b”, and “c”. You may consider them as “Strength”, “Dexterity”,
“Vitality”, the character attributes in Diablo (developed by Blizzard).

(2) Each context item (like a character) has at mostm skill points.
A context may assign multiple points to the same skill type. For
example, the first context in the figure has 3 skill points: two on skill
“a” and one on skill “b”. We denote this context by caab . So the other
four context items are denoted by caa , cb , cbbc , cabc , respectively.

Table 3: With a small number of dimensions d (4 or 5), our

proposed TUBEmodel has been able to achieve higher-than-

0.9 accuracy on predicting the goal for synthetic plans. Note

that for dataset D̄9, the task is rather challenging, that is to

classify a plan into one category among as many as 219!

Dataset

Number of dimensions d

3 4 5 6 7 8 9

D̄3 0.8857 0.8931 0.9109 0.9117 0.9221 0.9097 0.9149
D̄4 0.8755 0.9167 0.9273 0.9240 0.9336 0.9315 0.9336
D̄5 0.8572 0.9136 0.9461 0.9515 0.9568 0.9562 0.9557
D̄6 0.8386 0.9133 0.9315 0.9618 0.9621 0.9693 0.9686
D̄7 0.8384 0.9062 0.9300 0.9600 0.9709 0.9635 0.9638
D̄8 0.7769 0.9081 0.9354 0.9612 0.9660 0.9672 0.9680
D̄9 0.7249 0.9012 0.9339 0.9621 0.9660 0.9697 0.9714

Intuitively, the point number of a specific skill given to a context
item represents the level of the character’s expertise .

(3) Each plan (like a team) has at most n context items. (n is like
the maximum team size.) In the figure, the plan has 5 contexts. This
plan, or this team, is going to achieve a specific goal in the game.

(4) To achieve a goal (or say, to pass a game stage), the plan has
to earn a specific set of badge. In the figure, the goal is named “AB”
and it consists of two badges, “A” and “B”.

(5) Each badge corresponds to a skill type, and it takes x points
of the skill to earn one badge. A plan may earn multiple badges of
the same skill type. For example, if the number of points on skill
“a” is between 5 and 9, the plan earns one “A” badge; if the number
is between 10 and 14, the plan earns two “A” badges. We name the
goal with its badges: if the goal requires two “A” badges and one
“B” badge, the goal is “AAB”.

So, when (i) the distributions of contexts’ skill points and (ii) the
plan’s composition are determined, we can assign a specific, proper
goal to the plan. As shown in Figure 3, the plan has 5 points on skill
“a”, 6 points on “b”, and 2 points on “c”, so the goal is “AB”.

When the number of skill types k is determined, or say, the set
of skills S̄k is finalized, we can generate the set of context items
C̄k , the set of plans P̄k , and the set of goals Ḡk ; and finally, make
a synthetic dataset D̄k = (Ḡk , P̄k , C̄k , B̄k ). We vary k from 3 to 9.
Table 2 presents the statistics of the synthetic datasets.

We setm = 3 and n = x = 5. The number of plans |P̄k | increases
exponentially from 42,503 (k = 3) to almost 4.5 billion (k = 9). We
build a set of valid behaviors B̄k by pairing each plan with a goal
and filtering out a plan when (i) the goal is not valid, say, has no
badge; or (ii) the plan contains more thanm extra skill points that
could not turn into badges.

4.1.2 Results on goal prediction. For each synthetic dataset, the
task is to predict a plan’s goal. Note that (i) the skills, badges, or
skill/badge point distributions are hidden, and (ii) the contexts and
goals are anonymized. So the algorithms would just be aware of the
plan’s composition (as context ids) and goal (as identifier as well)
in the training data. This is extremely challenging: it is a |Ḡk |-class
classification task (when k = 9, the number of classes is 219)!

We use the TUBE method to learn the context and goal embed-
dings and simply calculate and rank the effectiveness of test plans
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Figure 4: The context and goal embeddings were learned

from synthetic data w/o prior knowledge of skills or badges.

The relations between these embeddings in the vector space

are identical to their names as expected.

w.r.t the goals for prediction. We use 10-fold cross validation. Ta-
ble 3 presents the classification accuracy and our observations are
as follows: (i) The accuracy increases as the embedding size d does
because higher dimensionality encodes more information. It meets
a plateau when d becomes equal to, or slightly bigger than the num-
ber of skills k (say, the model complexity is equal to or higher than
the data complexity). (ii) When d is bigger than 4, the accuracy is
always higher than 0.9. Surprisingly that it is even higher when k is
bigger (and thus the number of classes is bigger). This demonstrates
TUBE’s model effectiveness and capability.

4.1.3 Visualizing context and goal embeddings. Figure 4 presents
the context embeddings (as black arrows) and goal embeddings
(as yellow stars) that were learned from the synthetic dataset D̄3
when d = 3. Note that the learning process did not use any prior
knowledge about the skills, skill points, or badges. None of the em-
bedding was calculated based others. When looking at the relations
between these embeddings, we have observations as follows.

First, the contexts that have one point of a skill type (i.e., ca ,
cb , cc ) tend to be orthogonal with each other in the vector space:
ca · cb = 0.08, ca · cc = 0.02 and cb · cc = 0.07. And they have
similar lengths: ∥ca ∥ = 0.46, ∥cb ∥ = 0.54, and ∥cc ∥ = 0.43.

Second, the embeddings of the contexts of multiple skill points
are similar with a composition of the embeddings of each skill point.
For example, we find the distance between cab and ca + cb is tiny:

∥cab − (ca + cb )∥ = 0.04. (16)

Third, the relation between a goal embedding and the corre-
sponding context embedding matches our setting on the number
of skill points a badge requires (x = 5):

∥gA − 5 × ca ∥ / ∥gA∥ = 0.09, (17)
∥gAB − 5 × cab ∥ / ∥gAB ∥ = 0.08. (18)

We conclude that the proposed TUBE method can discover the
underlying features (i.e., the skills) hidden in the behavior data and
encode into the context and goal embeddings.

4.2 Results on Real Datasets

Here we first give data description and experimental settings. Then,
we present results on the prediction and recommendation tasks.

Table 4: Statistics of paper-publishing behavior datasets: the

dataset was named based on the number of goals (venues).

Dataset

Context item Goal Behavior

#Author #Keyword #Reference #Venue #Paper

D2K 103,460 9,962 254,402 2,000 806,211

D5K 222,991 20,785 293,771 5,000 1,003,614

D10K 409,504 28,670 463,959 10,000 1,133,443

4.2.1 Data description. We collected 1.3M papers published in
13,081 venues from the Microsoft Academic Graph. Based on this
raw collection, we built 3 behavior datasets D2K , D5K , and D10K
by limiting the number of venues (ranked by their relevance with
“data mining”) included to 2, 000, 5, 000 and 10, 000, respectively. For
each paper, its authors, keywords, and references are considered as
context items forming the paper plan; and, its venue is considered
as the goal. The statistics of the three datasets are given in Table 4.

4.2.2 Baseline methods. We compare our TUBE method against
the state-of-the-art network embedding methods, and a very recent
method for success prediction:

(1) LINE [19]: It preserves both local and global structure of the
network by conducting edge sampling. We use the advanced
version that concatenates the 1st order and the 2nd order
representations to get the final representations of nodes.

(2) node2vec [8]: This method uses biased randomwalks to cap-
ture the homophily and structural equivalence properties of
network. We also considered the DeepWalk [14] model here.
Since DeepWalk can be seen as a special case of node2vec
that uses truncated uniform random walks, we only report
the better performance among them in experiments.

(3) VERSE [21]: It is able to preserves the distributions of a se-
lected vertex-to-vertex similarity measure in homogeneous
network such as Personalized PageRank, SimRank and etc.

(4) BiNE [7]: This method aims at learning the representations
of vertices in a bipartite network. It conducts biased random
walks to preserve the long-tail distribution of vertices.

(5) Metapath2vec [4]: It is the state-of-the-art method for het-
erogeneous network embedding. It samples meta path-based
random walks for learning. We use the advanced version
Metapath2vec++ which also conducts heterogeneous neg-
ative sampling in network.

(6) LearnSuc [24]: It is a recent work that formulates behavior
as a multi-type itemset instead of a node in networks, and
learns item embeddings collectively for success prediction.

4.2.3 Parameter settings. The embedding size d is set as 128 for all
methods. To make the comparisons fair, we fix the sampling size
s = 500M for all methods: (1) for random walk based methods, s =
r ·l · |V|, where r is repetition of walks per node, l is walk length, and
V is the set of vertices (contexts, goals, behaviors); (2) for LearnSuc
and TUBE, s =

∑
b ∈R |b |, where R is the set of all training samples.

The rate of negative sampling t is 5. We conducted reasonable
amount of tuning on critical parameters using grid search: for
node2vec, p,q are found in {0.25, 0.50, 1, 2, 4} as suggested by
authors; for BiNE, p, β,γ are found in {0.01, 0.05, 0.1, 0.5, 1}; for
VERSE, we use the recommended Personalized PageRank as the
network similarity measure; for metapath2vec, meta-path scheme
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Table 5: Our proposed TUBE outperforms the state-of-the-art models on predicting the goal (i.e., venue), given the behavior

plan (i.e., paper’s components), in terms of recall scores (higher is better) and harmonic mean of ranks (HMR) (smaller is better)

on the three datasets (2000/5000/10000-class classification).

Method

D2K D5K D10K
R@1 R@5 R@10 R@20 HMR R@1 R@5 R@10 R@20 HMR R@1 R@5 R@10 R@20 HMR

LINE [19] 0.49% 2.22% 3.88% 6.70% 49.61 0.37% 1.58% 2.67% 4.57% 71.80 0.30% 1.28% 2.18% 3.89% 84.06
node2vec [8] 0.55% 2.06% 3.09% 4.30% 66.64 0.50% 1.90% 2.77% 3.85% 73.75 0.40% 1.91% 3.05% 4.04% 78.99
VERSE [21] 0.82% 2.41% 4.57% 6.16% 52.66 0.62% 2.20% 4.19% 4.91% 68.26 0.51% 1.84% 3.87% 4.64% 74.85
BiNE [7] 1.19% 2.78% 5.13% 6.83% 44.23 1.10% 2.61% 4.78% 6.53% 59.19 0.98% 2.09% 4.34% 5.60% 68.50
Metapath2vec [4] 1.54% 2.90% 5.62% 6.89% 41.74 1.26% 2.62% 4.86% 6.42% 58.61 0.92% 2.15% 4.21% 5.69% 69.38
LearnSuc [24] 0.25% 3.75% 10.06% 20.08% 27.87 0.12% 2.22% 7.22% 14.37% 38.84 0.05% 1.26% 5.41% 10.20% 58.28
TUBE 5.10% 11.82% 14.93% 18.32% 11.60 3.43% 9.62% 12.43% 15.17% 15.32 1.02% 1.66% 4.17% 10.68% 51.57

“KAPVPAK” is used to guide random walks; for LearnSuc, item
type weight schemes are picked from {(3, 1, 1), (1, 3, 1), (1, 1, 3)}. All
other parameters are set to typical values used in previous studies.

4.2.4 Goal prediction. In this task, we feed the behavior/network
embeddings into a logistic regression model to predict the proba-
bility of each goal a paper plan achieves, or the probability of the
goal being assigned to a paper node as a label. We use 10-fold cross
validation and two evaluation metrics:

• Recall@i (i=1, 5, 10, 20): A paper has only one venue in the
ground truth though it may be qualified to be accepted to some
other venue. This metric is to check whether the top-i predictions
can find the true venue. A higher recall means better performance.

• Harmonic Mean of Ranks (HMR) [24]: This metric is to see
whether the method ranks the true venue at the top. A smaller
value of HMR indicates better performance.

Table 5 presents the results of baseline methods and our TUBE
model on goal prediction. Our observations are as follows.
Overall performance. The best-performed network embedding
method is metapath2vec, achieving HMRs of 41.74, 58.61, and
69.38 on D2K , D5K and D10K , respectively. But the best baseline
method is the itemset embedding-based LearnSuc. Despite that
its R@1 values are a bit lower than metapath2vec, it achieves
HMRs of 27.87, 38.84 and 58.28 on the three datasets, which rela-
tively decreasing the rank over metapath2vec by 33.2%, 33.7%,
and 16.0%, respectively. So, the network representation was not
able to preserve the set structure of behavior plan. We observe that
our TUBE model performs the best over all baseline methods: it
achieves HMRs of 11.60, 15.32, and 51.57 (58.4%, 60.6%, and 11.6%

lower than LearnSuc). It is not easy: it means that for a classifica-
tion task of as many as 2,000 labels, we can find the truth within
the top 12; for 10,000 labels, we can find the truth within the top
52. And it makes R@1 scores (%) of 5.10, 3.43, and 1.02 (relatively
231.2%, 172.2%, and 11.0% higher than metapath2vec). The im-
provemenets are consistent across three datasets, although it is
more salient on D2K because of the relative high data density.
Comparing with network embedding methods. The best ho-
mogeneous network embedding method, VERSE, that reserves Per-
sonalized PageRank property, can have HMRs of 52.66, 68.26, and
74.85 on the three datasets. It performs better than node2vec and
LINE indicating the choice of similarity measure affects the perfor-
mance. Since bipartite network is a special case of heterogeneous

network, the BiNEmodel benefits from incorporating partial hetero-
geneity information and thus performs better than homogeneous
network embedding methods. It scores HMRs of 44.23, 59.19, and
68.50, respectively. The heterogeneous network embedding method
metapath2vec performs the best with R@1s (%) of 1.54, 1.26, 0.92,
and with HMRs of 41.74, 58.61, and 69.38. Compared with meta-
path2vec, our TUBE model further improves R@1s to 5.10, 3.43,
and 1.02, and has lower HMRs by 72.2%, 43.29%, and 25.70%.
Comparing with LearnSuc [24]. LearnSuc is the most compet-
itive baseline model. It formulates behavior as an itemset and learns
the item embeddings prserving the set structure. Here, LearnSuc
score HMRs of 27.87, 38.84, and 58.28 on the three datasets, lower
than those of metapath2vec by 33.2%, 33.7%, and 16.0%, respec-
tively. LearnSuc makes the highest scores of R@20 on D2K and
R@10 on D10K . However, for most of the metrics, our proposed
TUBE outperforms LearnSuc with a big margin (relatively 58.4%,
60.6%, and 11.6% as given in the overall comparison). This is be-
cause LearnSuc was not able to model the conditional success
of a behavior plan w.r.t. a goal. LearnSuc considers the goal of a
behavior as a context item in the behavior. There was no distinc-
tion from other contexts such as authors, keywords, or references.
TUBE explicitly defines and preserves the conditional outcome of
a behavior plan w.r.t. its goal, thus making superior performance
in predicting the goal. We observe that TUBE yields much higher
R@1 and R@5 values compared with LearnSuc. This is because
TUBE learns the goal embeddings that maintain the information of
the goal’s difficulty level in the context of plans.

4.2.5 Context recommendation for plan effectiveness. This task is to
hide one of the context items from a positive plan and see whether
the models can predict the hidden one given the goal. The idea
is to find the best context from tons of remaining to improve the
plan effectiveness. We focus on the dataset D2K and use 10-fold
cross validation. We also use the two kinds of evaluation metrics: (1)
Recall@i (i=10, 20, 50, 100) and (2) Harmonic Mean of Ranks (HMR).
The task is muchmore challenging than goal prediction, because the
size of label set becomes huge: we have 103,460 author candidates,
9,962 keyword candidates, and 254,502 reference candidates.

Table 6 presents the performance of all methods on this task.
Our observations are as follows.
Recommending a co-author. TUBE makes an HMR of 59th on
finding the true, hidden co-author from 103,460 author candidates.
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Table 6: Our proposed TUBE performs the best on predicting a hidden author/keyword/reference when given a plan (paper’s

components) and goal (venue), in terms of recall scores (higher is better) and harmonic mean of ranks (HMR) (smaller is better)

on the dataset D2K (103460/9962/254502-class classification). It can put the best collaborator at the top 59 among 103K authors.

Method

Author Keyword Reference

R@10 R@20 R@50 R@100 HMR R@10 R@20 R@50 R@100 HMR R@10 R@20 R@50 R@100 HMR

LINE [19] 0.28% 0.39% 1.22% 2.05% 626.51 0.21% 0.49% 1.14% 2.36% 568.57 0.05% 0.05% 0.44% 0.53% 2772.57
node2vec [8] 0.30% 0.48% 0.96% 1.61% 840.49 0.36% 0.63% 1.09% 2.12% 454.66 0.05% 0.10% 0.25% 0.34% 4031.51
VERSE [21] 0.37% 0.44% 0.67% 1.22% 666.68 0.42% 0.66% 1.20% 2.11% 415.35 0.08% 0.09% 0.40% 0.51% 2555.39
BiNE [7] 0.72% 0.83% 1.17% 2.30% 418.37 0.81% 1.15% 1.48% 2.20% 218.33 0.12% 0.19% 0.40% 0.55% 1798.33
Metapath2vec [4] 0.81% 1.02% 1.15% 2.46% 367.92 1.03% 1.68% 3.41% 5.35% 162.79 0.13% 0.17% 0.41% 0.54% 1863.20
LearnSuc [24] 1.33% 1.78% 2.65% 4.07% 231.25 0.80% 1.17% 1.72% 3.24% 199.00 0.15% 0.31% 0.46% 0.82% 1280.42
TUBE 2.96% 3.64% 5.57% 8.74% 59.09 1.25% 1.90% 3.34% 5.07% 146.80 0.24% 0.54% 0.93% 1.37% 649.54
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Figure 5: The proposed model is NOT sensitive to #Dimen-

sion d (left) or the number of #Negative sample t (right).

This is such a challenging task that the best baseline method Learn-
Suc can only score an HMR of 231. TUBEmodel improves relatively
by 122.6% on R@10 and decreases by 74.4% on HMR, compared to
LearnSuc. It demonstrates that TUBE is effective on recommending
collaborators for a paper plan and a target venue.
Recommending a keyword. TUBE makes an R@10 of 1.25% and
an HMR of 146.80 given a set of 9, 962 keyword candidates. Over the
best baseline method LearnSuc, the R@10 is increased by 56.3%

and the HMR is decreased by 26.3%. TUBE is more effective on
recommending keywords and co-authors for a project plan.
Recommending a reference. This is the most challenging task
because we have 254, 502 reference candidates. TUBE ranks the real
reference at the HMR of 649th , whereas the best baseline LearnSuc
ranks it at the HMR of 1280th . This shows TUBE performs the best
but we still have a long way to go for real use of saving the author’s
time on finding proper references.

4.2.6 Case study and visualization. Figure 1 use a 2-D plane to visu-
alize 10+ venues in the field of computer science and 2 true positive
predictions (i.e., predicted to be accepted by certain conferences
and were accepted). We can see the venues (goals) form several
groups in the vector space w/o prior knowledge: ACL with EMNLP
(natural language processing), CIKM with WSDM and WWW (web
sciences), ICCV with NIPS and IJCAI (artificial intelligence, ma-
chine learning, and computer vision), etc. though some dimensions
are not presented.

The two true positives are as follows: one was published in
KDD’15 by Zhao et al. [28], shown as a green path and vectors;

the other paper was published in NIPS’11 by Delalleau et al. [2],
shown as red vectors. The paper’s point starts from the origin,
includes the vectors of contexts step by step (some big and some
small), and finally, falls into a venue’s small test tube-shaped success
region. The influence of each author on the paper are reflected
by the length of his/her embedding vector (though may not have
to be the contribution to the paper): Leskovec and Bengio play
important roles in the “success” of these papers. The keywords
make the paper’s point aligns closer to the orientation of the goal’s
position, while the references contribute some though comparably
small amount to the success of these papers.

4.2.7 Parameter sensitivity. We test the sensitivity of TUBE on two
parameters: (1) the number of dimensions d and (2) the negative
sampling rate t . In Figure 5, we report the HMR of predicting venues
(goals) and recommending authors (contexts) on the dataset D2K .
We observe that TUBE has stable performance when d is bigger
than 23 which is too small to model real paper-publishing behaviors.
For different negative samples t , TUBE performs well even when t
is as small as 2. The best setting is between 5 and 15. We conclude
that TUBE is insensitive to d and t .

5 RELATEDWORK

In this section, we review methods of related topics to our work.
Representation learning. Learning representations of network
data, or network embedding, aims at learning the low-dimensional
vector representations of nodes in network while preserving the
pair-wise proximities [1, 9–11]. LINE [19] first introduced the no-
tion of 1st and 2nd order proximity to preserve both local and global
structure of the network by conducting edge sampling. DeepWalk
[14] used truncated uniform random walks to explore the neigh-
borhood of a node and expected nodes with higher proximity yield
similar representations. node2vec [8] extended it to use biased
random walks to capture the homophily and structural equivalence
properties of network. VERSE [21] was designed to preserve the
distributions of a selected pair-wise similarity measure in network
such as Personalized PageRank or SimRank. Besides methods fo-
cusing on homogeneous networks, BiNE [7] was able to learn the
representations of vertices in a bipartite network by conducting bi-
ased random walks to preserve the long-tail distribution of vertices.
For heterogeneous network embedding, Metapath2vec [4] was
based on meta-path-based random walks and the heterogeneous
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Skip-gram model. There is another line of methods that utilized
deep models [6, 22, 23, 26]. However, none of these existing meth-
ods has an effective formulation of behavior and does not preserve
the outcome information of behaviors. A recent work LearnSuc
[24] formulated behavior as a multi-type itemset structure instead
of nodes in network and preserved the behavioral success property.
But this model does not have an explicit definition of behavior
outcomes. Our TUBEmodel learns behavior embeddings via formu-
lating a behavior as a goal-plan pair and preserving the well-defined
plan effectiveness and achievement.
Quantifying success. There exists a wide line of research on quan-
tifying success in various fields and areas [12, 16, 17, 27]. Wang et
al. [25] proposed a model for predicting long-term scientific impact
by collapsing the citation histories of papers from different journals
and disciplines into a single curve to model the citation dynamics of
individual papers. To predict the success in art, Fraiberger et al. [5]
used a Markov model to predict the career trajectory of individual
artists and documents the strong path and history dependence of
valuation in art. Yucesoy et al. [27] proposed a model aiming at pre-
dicting which books will become bestsellers. And, Deville et al. [3]
studied quantifying the career choices such as changing institutions
affecting scientific outcomes. However, the definition of success,
or outcome, in previous studies varies greatly from paper citations
number to art value. Our TUBE model gives out a mathematical
definition of the estimated behavior outcomes in a vector space and
is capable of working with behavior data from different areas.

6 CONCLUSIONS

Given a project plan and the goal, in this work, we tried to predict
the plan’s success rate. We defined a measurement of behavior
outcomes, which formed a test tube-shaped region to represent
“success”, in a vector space. We proposed a novel representation
learning method to learn the embeddings of behavior components
(including contexts, plans, and goals) by preserving the behavior
outcome information. Experiments on real datasets demonstrated
that our proposed method significantly improved the performance
of goal prediction as well as context recommendation over the
state-of-the-art.
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