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Modeling Co-evolution of Attributed and
Structural Information in Graph Sequence

Daheng Wang, Zhihan Zhang, Yihong Ma, Tong Zhao, Tianwen Jiang, Nitesh V. Chawla, Meng Jiang

Abstract—Most graph neural network models learn embeddings of nodes in static attributed graphs for predictive analysis. Recent
attempts have been made to learn temporal proximity of the nodes. We find that real dynamic attributed graphs exhibit complex
phenomenon of co-evolution between node attributes and graph structure. Learning node embeddings for forecasting change of node
attributes and evolution of graph structure over time remains an open problem. In this work, we present a novel framework called
CoEvoGNN for modeling dynamic attributed graph sequence. It preserves the impact of earlier graphs on the current graph by
embedding generation through the sequence of attributed graphs. It has a temporal self-attention architecture to model long-range
dependencies in the evolution. Moreover, CoEvoGNN optimizes model parameters jointly on two dynamic tasks, attribute inference and
link prediction over time. So the model can capture the co-evolutionary patterns of attribute change and link formation. This framework
can adapt to any graph neural algorithms so we implemented and investigated three methods based on it: CoEvoGCN, CoEvoGAT,
and CoEvoSAGE. Experiments demonstrate the framework (and its methods) outperforms strong baseline methods on predicting an
entire unseen graph snapshot of personal attributes and interpersonal links in dynamic social graphs and financial graphs.

Index Terms—Graph Neural Network, Attributed Graph, Graph Sequence, Evolutionary Prediction.
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1 INTRODUCTION

Graphs are ubiquitous in the world and real graphs evolve
over time via individual behaviors. For example, social
network users establish and/or remove links between each
other via the behaviors of following, mentioning, replying,
and etc. The user’s attributes such as textual features from
generated content are also changing. These two types of
dynamics, social links and user attributes, have impact
on each other. Specifically, on academic co-authorship net-
works, researchers are looking for collaborators (reflected
as neighbor nodes) who have similar or complementary
knowledge [1] (which may be reflected as published key-
words, a type of node attributes). And their personal re-
search topics may change according to new collaborations.
The co-evolutionary patterns of node attributes and graph
structure are complex yet valuable, and need to be effec-
tively learned by the model for forecasting future attributes
and structures in graph-based applications.

Graph Neural Networks (GNNs) have been widely stud-
ied for learning representations of nodes from graph data
for various tasks such as node classification [3], community
detection [4], and link prediction [5], [6]. Most of the existing
GNN models assumed that either graph structure or node
attributes were static [7]. Particularly, the input is usually an
attributed graph. If multiple evolving graphs are present,
we can choose to merge all graph snapshots and feed it
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(a) If links at time t appeared previously, more than 29% were at
least two steps earlier (∆ ≥ 2). Researchers may re-collaborate after
one or multiple gap years.
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(b) If links at time t could be created by closing a triad in previous
graphs, more than 45% of the triads were at least two time steps
earlier (∆ ≥ 2). Researchers who had a common co-author would
collaborate in one or multiple years.

Fig. 1. The formation of a new link in co-authorship networks depends
on more than one previous graphs. Repeating a link and/or closing a
triad that occurred more than two time steps earlier is common for link
formation process. Data collected from Microsoft Academic Graph [2].

into one of these models, but the temporal axis would
be collapsed and the evolutionary information would be
lost. There have been dynamic graph learning methods that
explore the idea of combining GNN with recurrent neural
network (RNN) for dynamic attributed graphs. WD-GCN
[8] stacked an LSTM [9] on top of a GCN [3] module and
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CD-GCN [8] added a skip connection above it. GCRN
[10] explored a similar architecture and proposed a modi-
fied LSTM by replacing fully connected layers with graph
convolution layers [11]. However, these pioneering methods
still relied on a fair amount of information in current graphs
(though which can be incomplete) and thus were not capa-
ble of forecasting an entire snapshot of attributed graph.

Recently, EVOLVEGCN [12] was proposed to address this
issue using GRU [13] to learn the parameter changes in
GCN [3] instead of node embedding changes. Specifically,
the GCN’s weight matrices were treated as hidden states
and node embeddings were fed into the GRU at each
time. This method iteratively generated node embeddings
and, in turn, injected temporal information into the GCN
model. However, it has three limitations. First, like other
RNN-based methods, it has inherent difficulty in effectively
compressing long-range dependencies into the hidden states
[14] as well as severe scalability issues as they cannot
be easily parallelized [15]. The time complexity is largely
intractable: the number of times applying the GRU module
grows proportionally with the number of nodes in the data.
Second, it assumes the underlying force driving the graph
evolution solely comes from the changes of links. It is
unaware of the universal co-evolutionary process between
node attributes and graph structure. Third, its design is
specific to the choice of the GCN algorithm. While different
graph neural algorithms (e.g., GCN, GAT [16], GraphSAGE
[6]) have different advantages and deliver data-dependent
performances, we expect to apply the dynamic framework
upon all the algorithms; however, it is unclear how to build
EVOLVEGCN upon any other model that is parameterized
by more than one matrix layer-wise such as GRAPHSAGE.

So, given various attempts that focused around com-
bining RNN and GNN models, modeling the co-evolution
of attributed and structural information in graph sequence
largely remains an open problem. On one hand, Figure 1
shows that the state of current graph is often influenced
by previous graphs multiple steps earlier with a potential
time decay factor; Figure 2 shows that the evolution of
node attributes and that of links are often highly correlated.
So the conventional convolution/aggregation schema along
the axis of graph structural depth cannot meet the demand.
On the other hand, we have some desired properties of the
solution as follows: (1) it should have tractable complexity
and good parallelizability for deployment on real dynamic
graph sequence; (2) it should be able to forecast future
unseen node attributes and graph structure simultaneously;
and, (3) it should be able to incorporate an arbitrary static
GNN algorithm to aggregate nodes information.

To this end, we propose a novel framework Co-
Evolutionary Graph Neural Networks (COEVOGNN). First,
we design an S-stack temporal self attention architecture as
the core component of COEVOGNN. It learns the impact
of multiple previous graph snapshots on the current one
with self-adapting importance so that it can effectively
capture the evolutionary patterns in graph sequence. Its
temporal self-attention mechanism makes the time com-
plexity grow linearly with the increase of training range.
And it remains fully parallelizable compared to existing
RNN-based methods. Second, we devise a multi-task loss
function that optimizes COEVOGNN jointly on predicting

Fig. 2. The evolution of personal attributes (i.e., keyword change) and
the evolution of graph structure (i.e., collaborator change) are highly
correlated. When authors write more different keywords next year, they
will have more different collaborators, and vice versa. More than 60% of
the authors show higher-than-0.3 correlated co-evolution.

node attributes and graph structure over time. This allows
our framework to learn the co-evolutionary interactions be-
tween change of attributes and formation of links, and to
use these valuable information to better forecast an unseen
future graph snapshot. Besides, our framework can utilize
any static graph neural algorithm for aggregating neigh-
bor information along the structural axis. We developed
and investigated three (but not limited to three) methods
based on the proposed framework, named CoEvoGCN,
CoEvoGAT, and CoEvoSAGE. We evaluate the performance
of COEVOGNNS methods on forecasting an entire future
snapshot of co-authorship attributed graph and virtual cur-
rency graph. Experimental results demonstrate it can out-
perform competitive baselines by +9.2% of F1 score on link
prediction, and by −49.1% of RMSE on attribute inference.

The main contributions are summarized as below:
• We propose a new framework for modeling the co-

evolutionary patterns of node attributes and graph
structure leveraging an arbitrary GNN as its underly-
ing structural aggregator.

• We design a novel S-stack temporal self-attention ar-
chitecture that can effectively distill and fuse influ-
ence from multiple previous graph snapshots with self-
adapting importance.

• Extensive studies demonstrate our methods outper-
form strong baselines on forecasting an entire future
snapshot of real-world graphs, and they are efficient
and parallelizable.

Before we define the research problem and introduce
our framework, we present statistical analysis on the long
dependencies and evolutionary patterns in real graph data.

2 THE CO-EVOLUTION PHENOMENON

The co-evolutionary process of node attributes and graph
structure in real dynamic graphs is a fundamentally com-
plex phenomenon and imposes great challenges for learn-
ing. First, the node attributes and structure of a graph snapshot
depend on the states of multiple previous graphs with an effect of
time decay [17]. Take a co-authorship network as an example:
the formation of a collaboration link between two authors
can be traced back to their previous co-authored event
2, or 3, or even 5 years ago. In Figure 1(a), we plot the
distribution of two author nodes developing a future link
at t ∈ {2008, 2009, 2010} if they were linked at t − ∆.
In this case, repeating a link can be seen as realization
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of a link formation process. The proportion of these links
are presented by the minimum interval ∆. As we can see,
though a fair amount of the links occurred in the last year
(∆ = 1), more than 29% of new links can be traced back
to previous years of ∆ > 1. In Figure 1(b), we plot another
important mechanism of link formation – triad closure [18],
which interprets closing a triad as forming a new link. It
is evident that 46% links formed through this process fell
in the range of ∆ > 1, though the number quickly drops at
longer intervals. This intuitively indicates that earlier graphs
before the most recent one contain valuable information
for predicting the future graph state, and their relative
importances should also be carefully considered.

Second, node attributes and graph structure are co-evolving
and mutually influencing each other over time. For example, in
a co-authorship network, forming a new link (i.e., a new col-
laboration) extends research scope and increases the impact
of the authors. And, having new research topics, or having a
higher value of h-index, in turn helps the authors to develop
new collaborations [19]. Figure 2 shows the distribution of
Pearson correlation between attribute and link evolutions.
For every author, we calculate the Jaccard similarity of the
author’s keyword sets and that of his/her collaborators’ sets
between any two consecutive years. Then, we measure the
correlation between these two similarity series over time. If
an author changed his/her keywords dramatically in one
year and his/her collaborators also changed significantly,
the correlation value would be high. We found that more
than 60% of the authors show higher-than-0.3 correlation.
This mutually influencing characteristic between node at-
tributes and graph structure requires both types of infor-
mation to be used for training the model. Existing methods
were not able to learn effective node embeddings for simul-
taneously forecasting node attributes and graph structure.

3 RESEARCH PROBLEM

In this section, we formally define the research problem
and briefly cover the preliminaries on static graph neural
networks. Commonly used notations used throughout this
paper and their descriptions are summarized in Table 1.

3.1 Problem definition
Traditionally, a static graph is represented as G = (V, E),
where V denotes the set of nodes and E denotes the set
of edges. The node attribute matrix of G is denoted as
X ∈ Rn×r, where each row xv describes the r-dimensional
raw attribute vector of node v. However, real graphs evolve
over time. The process of graph evolution manifests in two
aspects mutually influencing each other: (1) the change of
node attributes Xt across time steps t = 0, 1, . . . , T ; and,
(2) the change of graph structure Gt = (V, Et) across time.
For brevity, we use V to denote all unique nodes, i.e.,
V =

⋃T
t=0 Vt, so the change in Gt is reflected as the change

of Et. We define a sequence of dynamic graphs as:
Definition 1 (Dynamic Graph Sequence). A dynamic graph

sequence across time steps from 0 to T contains con-
secutive snapshots (G0,X0), (G1,X1), ..., (GT ,XT ) of
both the graph structure and node attributes. Each single
snapshot (Gt,Xt) for t = 0, 1, . . . , T represents a transi-
tional state of the graph during the evolution.

TABLE 1
Symbols and descriptions

Symbol Description

G a graph
V, E a set of nodes, a set of edges

X,xv node attribute matrix, attribute vector of node v

(Gt,Xt)
a snapshot of G’s graph structure and its node
attribute matrix X at time step t

D a dynamic graph sequence dataset
ht
v latent embedding of node v at time step t

Ht matrix of all nodes embeddings of at time step t

h
(l)
v latent embedding of node v at structural depth l

f
〈s〉
static

a static GNN method as COEVOGNN’s structural
aggregator at temporal depth s

ĥ
〈s〉
v

node v’s neighbor structural information
embedding at temporal depth s

a
〈s〉
v

node v’s temporal self-attention weight at
temporal depth s

S temporal evolution span
W〈s〉 weight matrix at temporal depth s

Γ temporal fusion matrix
M attribute transformation matrix

JXt ,JGt attribute, structure evolutionary loss at time step t
J overall evolutionary loss

σ, [· ; ·] a non-linear function, and concatenation operator

Then, we formally define the research problem as follows:

Problem: Given a dynamic graph sequence, i.e., D =
{(Gt,Xt) | t = 0, 1, . . . , T}, learn a mapping function f(D) :
V × {0, 1, . . . , T} → Rd that embeds each node v ∈ V into
a d-dimensional (typically d � r, |V|) representation vector
ht
v at each time step t that can preserve the co-evolution of

node attributes and graph structure.

This dynamic graph representation learning problem
would degenerate into the classic static graph setting when
T = 0, where the input is a single pair of (G,X). And,
the result latent node embeddings matrix H contains both
the information about the graph structure G and node
attributes X. For a non-trivial dynamic graph sequence
with T ≥ 1, node embeddings at different time steps, i.e.,
{Ht | t = 0, 1, . . . , T}, should not be completely indepen-
dent from each other. Instead, each Ht should not only
contain information about the current snapshot (Gt,Xt),
but also summarize the co-evolution trend from the graphs
in recent past into the near future. Specifically, we aim at
learning Ht can be characterized by following properties:
• Revealing the historical co-evolution trend information

of node attributes and graph structure in previous S
graph snapshots (Gt−S ,Xt−S), . . . , (Gt−1,Xt−1).

• Being highly indicative about the developing co-
evolution trend of node attributes and graph struc-
ture of the next S graph snapshots in the future
(Gt+1,Xt+1), . . . , (Gt+S ,Xt+S).

Next, we briefly review representative static graph neu-
ral network methods, which will latter serve as building
blocks of our framework for dynamic graph sequence rep-
resentation learning.



1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3094332, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID 4

3.2 Preliminaries
Static graph neural network models learn a function
fstatic(G,X) : V → Rd that maps each node v into a
d-dimensional latent embedding hv . The node embedding
matrix H ∈ Rn×d incorporates both information about the
node attribute matrix X and the graph structure G. Spectral
methods like GCN [3] define fstatic as:

H(l+1) = σ(ÂH(l)Θ(l)), (1)

where Â = I + D−
1
2 AD−

1
2 . A is the adjacent matrix of

G, D is degree matrix, and Θ(l) is the model parameters of
the l-th convolution layer. To avoid notational conflicts, we
use superscript (l) in parentheses to denote the structural
depth in a graph throughout this paper. Spatial methods like
GRAPHSAGE [6] defines fstatic as an aggregation operation
applied on a locally sampled neighborhood of nodes:

h
(l+1)
N (v) = AGG(l+1)({h(l)

u ,∀u ∈ N (v)}), (2)

which summarizes attribute information from node v’s sam-
pled neighbors N (v). The aggregated neighbor informa-
tion is then concatenated with the embedding of center
node itself and gets further transformed, i.e., h

(l+1)
v =

σ
(
W(l+1)[h

(l)
v ; h

(l+1)
N (v) ]

)
where W(l+1) contains the param-

eters at depth l + 1. Obviously, these methods are designed
for a single static graph and do not consider the evo-
lutionary patterns of node attributes and graph structure
over time. Conceptually, any fstatic function blends a single
snapshot (G,X) into H. So, directly applying static methods
when the attributed graph G is actively evolving would fail
to capture the valuable temporal trend in evolution.

For a dynamic graph sequence, like the node embed-
dings generated by static methods, Ht ∈ Rn×d should
embed the node attribute information Xt and graph struc-
ture information Gt. In addition, and more importantly, Ht

should embed the influence from multiple previous graph
snapshots and be predictive on future graph snapshots.
Here, the key questions are: (1) How to distill and fuse the
influence of multiple previous snapshots into the current
one? (2) How to effectively capture the co-evolutionary
process of node attributes Xt and graph structure Gt that
exhibits in D across time? To answer these questions, we
propose a novel framework COEVOGNN. It has a S-stack
temporal self-attention architecture and employs a specif-
ically designed multi-task objective for attribute inference
and link prediction over time. Next, we present the algo-
rithm of COEVOGNN model for evolutionary node embed-
ding generation and the evolutionary loss for training.

4 PROPOSED FRAMEWORK

In this section, we present the evolutionary node embedding
generation process of COEVOGNN as illustrated in Figure
3 (a). The pseudocode of our proposed framework is given
in Algorithm 1. COEVOGNN is designed to capture the co-
evolution pattern of node attributes and graph structure in
dynamic graph sequence along the temporal axis.

Given a dynamic graph sequence {(Gt,Xt) | t =
0, . . . , T}, COEVOGNN’s weight matrices {W〈s〉 | s =
1, . . . , S} and its fusion matrix Γ, the temporal evolution
span S, and a set of static models {f 〈s〉static | s = 1, . . . , S},

Algorithm 1: COEVOGNN framework
Input : Dynamic graph sequence

{(Gt,Xt) | t = 0, . . . , T}; parameter
matrices {W〈s〉 | s = 1, . . . , S} and fusion
matrix Γ; temporal evolution span S; and,
static graph neural models
{f 〈s〉static | s = 1, . . . , S}.

Output: Node latent embeddings ht
v , v ∈ V and

1 ≤ t ≤ T .
1 for v ∈ V do
2 // Initialization
3 h0

v ← f
〈1〉
static(v | (G0,X0), 1)

4 for t = 1, . . . , T do
5 // Structural aggregations
6 Let Ĥv[1, . . . ,min (t, S)] and

Ev[1, . . . ,min (t, S)] be new arrays
7 for s = 1, . . . ,min (t, S) do
8 ĥ

〈s〉
v ← f

〈s〉
static(v | (Gt−s,Xt−s), L)

9 e
〈s〉
v ← (ht−s

v )
> · Γ · ĥ〈s〉v

10 Ĥv[s] = ĥ
〈s〉
v and Ev[s] = e

〈s〉
v

11 end
12 // Temporal self-attention
13 Let Av[1, . . . ,min (t, S)] be a new array
14 for s = 1, . . . ,min (t, S) do
15 a

〈s〉
v ← exp (Ev [s])∑min (t,S)

s′=1
exp (Ev [s′])

16 Av[s] = a
〈s〉
v

17 end
18 // Fusion and normalization
19 ht

v ←∑min (t,S)
s=1 Av[s]σ

(
W〈s〉 ·

[
ht−s
v ; Ĥv[s]

])
20 ht

v ← ht
v/‖ht

v‖2
21 end
22 end

COEVOGNN first generates the initial latent embedding of
node from the leading graph snapshot (G0,X0) (Line 3 of
Algo. 1). In practice, we can use an arbitrary static GNN
algorithm (e.g., GCN [3], GAT [16] and GRAPHSAGE [6])
as f 〈·〉static functions. We will examine the choice of f 〈·〉static

in Section 5. In particular, we concatenate the intermediate
node embeddings at different structural depths together,
i.e., h

〈·〉
v = f

〈·〉
static(v | (G,X), L) ∈ RdL×1, where d is the

latent dimensions and L is the structural depth. This can
allow COEVOGNN to retain complete high-order neighbor
structural information from f

〈·〉
static across time [20], [21], and

later determine the relative importance of previous graphs.
After initialization, COEVOGNN generates latent node

embeddings along time steps t = 1, . . . , T in a cascade
mode. For node v at a specific time step t, COEVOGNN
extracts and merges its neighbor structural embeddings
in the last S, or precisely min (t, S), snapshots with self-
adapting importance (Line 4-19 in Algo. 1). The newly fused
ht
v gets l2 normalized and returned as the output node latent

embedding (Line 20 in Algo. 1). Next, we introduce the core
component of COEVOGNN for automatically distilling and
fusing influence from multiple previous graph snapshots.
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Fig. 3. Visual illustration of the framework of COEVOGNN: (a) The evolutionary node embedding generation process dynamically fuses node
latent representations from multiple previous graph into the current one by using the novel S-stack temporal self-attention architecture; and (b) The
co-evolutionary loss function consists of attribute evolutionary loss and structure evolutionary loss for capturing the co-evolutions in graph sequence.

4.1 S-stack temporal self-attention

Equipping with static graph neural methods f 〈·〉static as its
underlying aggregator, COEVOGNN is able to distill struc-
tural information from each single time step independently.
This means the resulting node embeddings Ht are solely
determined by its corresponding graph snapshot (Gt,Xt),
and all evolutionary dynamics of the graph are ignored.
How can we effectively capture the co-evolution of node
attributes and graph structure along the temporal axis? One
straightforward way is to enforce the Markov property [22]
and directly transform node embeddings from the previous
time step Ht−1 into the current one Ht [23]. But this
oversimplified setting does not always hold in real cases.
As an example: in an evolutionary co-authorship graph,
authors collaborate in one year does not necessarily indicate
they will collaborate in the next year; but authors could
be more likely to collaborate if they have collaboration
experience before [24]. Alternatively, we could assume node
embeddings at each time Ht depend on all previous node
embeddings H0, · · · ,Ht−1, following a strict autoregressive
paradigm [25]. Most related methods fall in this category
and utilizes various RNN models to capture the dynamics
of node embeddings [8], [10] or GNN parameters [12].
However, these models have difficulty in compressing long-
range dependencies into hidden state [14], as well as severe
scalability issues as they cannot be easily parallelized [15].

To this end, we design a novel S-stack temporal self-
attention architecture (see Figure 3 (a)) for automatically
distilling and fusing influence from multiple previous graph
snapshots. Particularly, for node v at time step t, we first
leverage static models f

〈·〉
static to obtain its rich neighbor

structural information ĥ
〈·〉
v (where 〈·〉 indicates the temporal

depth from the previous snapshot to the current one) for
each one of the last S, or precisely min (t, S), snapshots
(Line 4-8 of Algo. 1). Each one of these neighbor structural
information embeddings ĥ

〈s〉
v ∈ RdL×1 is also processed

into the pre-attention energy scalar e〈s〉v by feeding it into

a bilinear mapping Γ ∈ Rd×dL along with the node latent
embedding at the same time step ht−s

v ∈ Rd×1 (Line 9
of Algo. 1). Next, node v’s self-adapting weights a〈·〉v for
fusing previous influence are calculated from e

〈·〉
v by taking

softmax over them (Line 12-17 of Algo. 1). Then, for each
one of the previous S-stack, the node latent embedding
ht−s
v and its neighbor structural embedding Ĥv[s] = ĥ

〈s〉
v

are concatenated and transformed the through the weight
matrices W〈s〉 ∈ Rd×(d+dL) (Line 19 of Algo. 1). At last,
the new node embedding ht

v ∈ Rd×1 with self-attention
on transformed previous latent and structural embeddings
according to Av = a

〈1〉
v , . . . , a

〈min (t,S)〉
v are returned.

At a high level, COEVOGNN merges each node’s latent
embeddings and neighbor structural information embed-
dings for up to S previous time steps. This is different from
solely relying on the most recent time step or compressing
information from all previous time steps which can easily
leads to unaffordable efficiency. On one hand, the temporal
evolution span hyperparameter S controls a tradeoff be-
tween the model’s expressive power of co-evolution pattern
and its space complexity; on the other hand, it allows
the adaptability for handling specific data or applications
as increasing S brings diminishing marginal benefits in
practice. We will discuss the choice of S in the experiments.
Furthermore, the temporal self-attention mechanism on S-
stack grants each node the flexibility for judging the relative
importance of previous graph snapshots and dynamically
fusing them into the current node latent embedding.

4.1.1 Inferring future node embeddings

The output of COEVOGNN consists of a sequence of node
latent embeddings Ht, t = 1, · · · , T , summarizing the train-
ing dynamic graph sequence. At inference phase, beyond
the training range, COEVOGNN generates an arbitrary
number of node latent embeddings at future time steps
(e.g., HT+1, HT+2, . . . ). These future node embeddings
directly reflect COEVOGNN’s forecasting capability on the
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co-evolutoin trend of node attributes and graph structure
learned from the observed graph snapshots. Forecasting into
far future would be really challenging. In this paper, we
only focus on predicting node embeddings of the next time
step (T + 1) after the training evolutionary graph snapshots
and leave forecasting multiple time steps as future work.
Next, we introduce the multi-task co-evolutionary objective
of COEVOGNN as well as the training procedure.

4.2 Training on multi-task co-evolutionary loss
In this section, we present the approach for training the
COEVOGNN model. The overall co-evolutionary loss func-
tion is defined in Eqn. (3) and the training procedure of
COEVOGNN is presented in Algorithm 2.

To learn the COEVOGNN model on a dynamic graph
sequence for forecasting into future, we carefully devise a
multi-task loss function supervising generated node latent
representations ht

v over training time steps t = 1, . . . , T .
In a forward pass, we adopt the mini-batch training mode
for stochastic optimization [26]. For each randomly sam-
pled mini-batch of nodes V ′ ⊂ V , the result embeddings
gets evaluated by the overall loss. During backpropagation,
we use stochastic gradient descent with ADAM updating
rule [27] to update the set of weight matrices {W〈s〉 | s =
1, . . . , S}, the fusion matrix Γ, and attribute transformation
matrix M (see Section 4.2.1), which parameterizes the pro-
posed COEVOGNN model.

min
ht

v,v∈V′,t=1,...,T
J =

T∑
t=1

∑
v∈V′

αJXt(ht
v) + (1− α)JGt(ht

v).

(3)
This multi-task evolutionary objective is mainly com-

posed of two terms: the attribute evolutionary loss JXt ,
and the structure evolutionary loss JGt . A mixture hy-
perparameter α is used to balance the magnitude of these
two terms. Particularly, the attribute loss JXt evaluates
the quality of generated embeddings on node attribute
inference. It transforms node embeddings back into the
raw attribute space and encourages the resulting vector to
approximate the node’s true attribute distribution. And, the
graph structure loss JGt evaluates the quality of generated
node embeddings on graph link prediction. It encourages
nodes linked by observed edges to have similar latent repre-
sentations and pushes disconnected nodes to have distinct
representations. Figure 3 (b) visualizes an example of this
multi-task evolutionary loss (S = 3). Next, we provide more
details on these two evolutionary objectives.

4.2.1 Attribute evolutionary loss for attribute inference
The attribute evolutionary loss JXt is defined as below:

JXt(ht
v) = ‖σ(M · ht

v)− xt
v‖

2

F , (4)

where M is the attribute transformation matrix and σ is
non-linear function such as ReLU or sigmoid. Given a node
latent embedding ht

v ∈ Rd×1, the attribute transformation
matrix M ∈ Rr×d is used for mapping ht

v back into the r-
dim raw attribute space. Node v’s remapped attribute infer-
ence vector σ(M · ht

v) ∈ Rr×1 is then compared against the
true node attribute vector xt

v by measuring the L2 distance.
Note that parameter matrix M, which is irrelevant to T or S,

Algorithm 2: Training procedure of COEVOGNN

1 Initialize model parameters {W〈s〉 | s = 1, . . . , S}, Γ,
and M

2 repeat
3 Sample minibatch of nodes V ′ from all nodes V
4 // Generate evolutionary embeddings
5 H1, . . . ,HT ← COEVOGNN(V ′) . see Algo. 1
6 // Compute evolutionary losses
7 JX1 , . . . ,JXT ← Compute the attribute

evolutionary loss . see Eqn. (4)
8 JG1 , . . . ,JGT ← Compute the structure

evolutionary loss . see Eqn. (5)
9 J ← Compute overall loss . see Eqn. (3)

10 // Update parameters
11 W〈·〉 +← −∇W〈·〉(J )

12 Γ
+← −∇Γ(J )

13 M
+← −∇M(J )

14 until finish;

describes the transformation from latent embedding space
back to raw attribute space across time, also gets updated
with back propagation. This can easily be generalized to
other choices such as MLP at the cost of additional model
parameters. In practice we find M generally suffices given
high quality node latent embeddings. Additionally, in case
of node classification that xt

v is one-hot vector, we can set σ
as softmax function and compute the cross entropy.

4.2.2 Structure evolutionary loss for link prediction

The structure evolutionary loss JGt is defined as below:

JGt(ht
v) = − log

(
σ
(

(ht
v)> · ht

u

))
−Q · Eu′∼Pn(v) log

(
σ
(
−(ht

v)> · ht
u′

))
,(5)

where node u is one of the 1st-order neighbors of node v.
This can be relaxed to that node u co-occurs near node v on
a fixed-length random walk. Node u′ is a negative sample
node, i.e., disconnected node with v, drawn according to
the negative sampling distribution Pn(v). Q is the num-
ber of negative samples and σ is the non-linear function.
Intuitively, Eqn. (5) pulls similar nodes closer and pushes
dissimilar nodes away in the latent space. Taken together
with Eqn. (4), the multi-task evolutionary loss function (Eqn.
(3)) captures the co-evolution patterns of node attributes and
graph structure in a dynamic graph sequence over time.

4.3 Complexity Analysis

Assuming the per-batch time complexity of COEVOGNN’s
underlying static methods f 〈·〉static is O

(
ΠL

l=1sl
)

in principle
[6] (where L is the structural depth and sl is the neighbor
sampling size at the l-th layer) and they can be parallelized
in the S-stack temporal self-attention architecture, the CO-
EVOGNN’s per-batch time complexity is O

(
T ΠL

l=1sl
)
. The

computation cost only increases linearly with training range
T and is regardless of the temporal evolution span S.
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5 EXPERIMENTS

In this section, we evaluate the effectiveness of COEVOGNN
on two forecasting tasks: (1) node attribute prediction, and
(2) graph link prediction. Forecasting an entire future snap-
shot, instead of completing a partially seen graph, requires
the understanding of evolutionary patterns. In all experi-
ments, we test on predicting the next graph snapshot.

5.1 Datasets
We used 4 datasets from two type of evolutionary graphs.

Evolutionary co-authorship graph. We built a sequence of
yearly co-authorship graphs by collecting 226, 611 papers
from 2001 to 2010 in computer science from Microsoft
Academic Graph [2]. Authors were ranked by their number
of papers. The top 2, 000 and 10, 000 were used to make
two datasets denoted by D2K

AU and D10K
AU . The venues and

the paper title’s words were used as node attributes after
filtering out infrequent ones. As a result, we have 316
venues and 3, 549 words in D2K

AU ; and 448 venues, 6, 442
words in D10K

AU . The detailed statistics on each one of the
graph snapshots in D2K

AU and D10K
AU are presented in Table 2.

Evolutionary virtual currency graph. We used 2 bench-
mark datasets Bitcoin-OTC and Bitcoin-Alpha of Bitcoin
transaction networks [28] denoted by Dotc

BC and Dalp
BC . These

are two who-trusts-whom network of Bitcoin users trading
on two major platforms1. To earn reputation and prevent
transactions with fraudulent and risky users, members in
the graph rate other members in a scale of -10 (total distrust)
to +10 (total trust) in steps of 1. We followed the treatments
described in [12] to form two sequences of graphs with 138,
and 136, time steps, respectively (each for about 2 weeks);
and, used node in/out degree as input node features. For
fair comparison, we also adopted the strategy of maintain-
ing a window of size of 10 time steps for the existence of
an edge in the graph sequence since its initial creation to
alleviate the graphs’ over-sparsity problem.

5.2 Experimental settings
Baseline methods: We compare COEVOGNN’s variants
using different representative static methods against a spec-
trum of dynamic graph neural methods:
• GCN [3], GAT [16] and GRAPHSAGE [6]: We in-

corporate each one of these static method as CO-
EVOGNN’s underlying operation and denote them
as COEVOGCN, COEVOGAT, and COEVOSAGE, re-
spectively. We also directly compare against these
static methods taking different merged graphs
as input: (i) the most recent graph snapshot
(Gttest−1,Xttest−1), (ii) K most recent graph snapshots
(Gttest−1,Xttest−1), . . . , (Gttest−K ,Xttest−K), and (iii)
all the graph snapshots before ttest. Then, each model
was applied for inferring node embeddings at ttest.

• DYNAMICTRIAD [29]: This dynamic network embed-
ding method only models the evolutionary pattern of
graph structure and cannot handle node attributes. All
graphs Gttest−1, Gttest−2, . . . , G0 before ttest are fed for

1. https://www.bitcoin-otc.com/ and https://btc-alpha.com/

TABLE 2
Evolutionary co-authorship datasets over 10 years.

D2K
AU D10K

AU

Year |V| |E| #V. #W. |V| |E| #V. #W.

2001 874 1633 316 3549 4325 8080 448 6442
2002 1041 2390 251 2764 5235 11330 364 5253
2003 1211 3049 293 2945 6013 14632 414 5411
2004 1344 3847 262 3125 6873 18050 375 5702
2005 1405 4187 293 3172 7328 20752 424 5757
2006 1425 4182 266 3178 7582 21592 389 5826
2007 1467 4563 292 3245 7659 22690 420 5921
2008 1482 4705 267 3282 7707 22705 396 5937
2009 1452 4689 283 3283 7386 21924 412 5934
2010 1406 3907 265 3246 7146 19992 382 5888
Total 1928 316 3549 9854 448 6442

training, and we focus on the task of future graph link
prediction on Gttest .

• DYSAT [30]: The treatment is similar to DYNAMIC-
TRIAD except that we use X0 for initializing the input
node embeddings.

• DCRNN [31]: For training, we use all node attributes
Xttest−1,Xttest−2, . . . ,X0 and the most recent graph
Gttest−1. The final prediction matrix outputted at ttest
is directly used for future node attribute prediction, and
the node embeddings outputted by the diffusion convo-
lutional layer are used for future graph link prediction.

• STGCN [32]: The treatment is similar to DCRNN ex-
cept that the node embeddings outputted by the last
spatio-temporal convolutional block are used for future
graph link prediction.

• EVOLVEGCN [12]: The input includes all graph snap-
shots (Gttest−1,Xttest−1), . . . , (G0,X0) before ttest. We
use the link prediction loss for training the model, and
use the node embeddings outputted by the evolving
graph convolution unit for future graph link prediction.

For GRAPHSAGE and EVOLVEGCN, we compute their
attribute inference matrix as Httest ·

(
Httrain T ·Xttrain

)
. The

last node embeddings matrix Httest−1 from training graph
snapshots and the last training attribute matrix Xttest−1

are treated as Httrain and Xttrain for EVOLVEGCN. The
core hyper-parameters of all baselines are set following the
recommendations from their inventors or otherwise selected
using the grid search strategy: β0 and β1 of DYNAMICTRIAD
are found in {0.01, 0.1, 1, 10}; wn of DYSAT is found in
{0.01, 0.1, 1}; the number of recurrent layers for DCRNN
and the number of spatio-temporal convolutional blocks for
STGCN are found in {1, 2}. All deep models are trained by
a maximum of 100 epochs. The embedding size is 256 for
D10K

AU and 512 in other cases.

Evaluation metrics: For node attribute prediction, we
use Mean Average Error (MAE) and Root Mean Squared
Error (RMSE); for link prediction, we use Area Un-
der the precision-recall Curve (AUC), F1 measure, and
Precision@50, 100, 200. Because the raw attributes were very
sparse in D2K

AU andD10K
AU , for all methods, we subsample the

same number of close-to-zero predictions as the number of
bigger-than-1 predictions during test to make it comparable.
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TABLE 3
On co-authorship graph sequence, COEVOGNN outperforms baselines on forecasting node attributes of X2010 and graph structure G2010.

D2K
AU D10K

AU

Attributes X2010 Links in G2010 Attributes X2010 Links in G2010

Method MAE RMSE AUC F1 P@50, 100, 200 MAE RMSE AUC F1 P@50, 100, 200

GCN [3]
0.649 1.297 0.082 0.196 0.34, 0.42, 0.36 0.742 1.566 0.034 0.071 0.30, 0.40, 0.34

±0.018 ±0.029 ±0.008 ±0.011 ±0.02, 0.03, 0.05 ±0.020 ±0.037 ±0.004 ±0.004 ±0.03, 0.03, 0.04

GAT [16]
0.658 1.342 0.075 0.192 0.34, 0.36, 0.36 0.758 1.628 0.028 0.053 0.32, 0.30, 0.32

±0.021 ±0.036 ±0.012 ±0.013 ±0.03, 0.05, 0.04 ±0.022 ±0.040 ±0.003 ±0.002 ±0.02, 0.02, 0.04

GRAPHSAGE [6]
0.643 1.265 0.084 0.201 0.38, 0.44, 0.41 0.729 1.438 0.039 0.078 0.36, 0.40, 0.42

±0.014 ±0.021 ±0.007 ±0.011 ±0.02, 0.03, 0.02 ±0.019 ±0.025 ±0.004 ±0.003 ±0.03, 0.04, 0.02

DYNAMICTRIAD [29]
N/A N/A 0.112 0.241 0.76, 0.62, 0.60 N/A N/A 0.058 0.147 0.60, 0.59, 0.57

- - ±0.014 ±0.017 ±0.03, 0.02, 0.03 - - ±0.007 ±0.012 ±0.05, 0.06, 0.05

DYSAT [30]
N/A N/A 0.120 0.222 0.54, 0.46, 0.38 N/A N/A 0.036 0.127 0.48, 0.43, 0.36

- - ±0.012 ±0.020 ±0.06, 0.07, 0.06 - - ±0.005 ±0.011 ±0.06, 0.06, 0.05

DCRNN [31]
0.458 0.960 0.019 0.073 0.12, 0.10, 0.10 0.423 0.853 0.006 0.027 0.09, 0.06, 0.03

±0.012 ±0.042 ±0.002 ±0.009 ±0.01, 0.00, 0.01 ±0.008 ±0.023 ±0.000 ±0.001 ±0.01, 0.00, 0.00

STGCN [32]
0.478 1.127 0.006 0.027 0.04, 0.02, 0.04 0.567 1.589 0.001 0.007 0.04, 0.04, 0.02

±0.010 ±0.029 ±0.001 ±0.002 ±0.00, 0.00, 0.01 ±0.015 ±0.040 ±0.000 ±0.000 ±0.01, 0.00, 0.00

EVOLVEGCN [12]
0.684 1.279 0.133 0.256 0.78,0.80, 0.67 0.768 1.603 0.069 0.161 0.69, 0.74,0.59

±0.015 ±0.025 ±0.009 ±0.014 ±0.07, 0.06, 0.05 ±0.022 ±0.039 ±0.004 ±0.021 ±0.06, 0.07, 0.06

COEVOGCN
0.452 0.944 0.147 0.269 0.82, 0.76, 0.69 0.414 0.831 0.076 0.167 0.78,0.76, 0.54

±0.007 ±0.014 ±0.007 ±0.009 ±0.02, 0.03, 0.04 ±0.009 ±0.021 ±0.008 ±0.008 ±0.04, 0.03, 0.04

COEVOGAT
0.453 0.946 0.143 0.271 0.78, 0.74, 0.66 0.415 0.831 0.075 0.167 0.78,0.76, 0.54

±0.008 ±0.012 ±0.006 ±0.010 ±0.02, 0.03, 0.03 ±0.009 ±0.020 ±0.010 ±0.009 ±0.03, 0.04, 0.05

COEVOSAGE
0.449 0.938 0.151 0.274 0.82,0.80,0.72 0.410 0.828 0.079 0.170 0.80,0.76, 0.58

±0.005 ±0.008 ±0.004 ±0.005 ±0.02, 0.01, 0.02 ±0.004 ±0.007 ±0.005 ±0.004 ±0.02, 0.02, 0.01

5.3 Overall performance

Table 3 presents results on co-authorship graphs D2K
AU

and D10K
AU . We report the performance of static methods

GCN, GAT and GRAPHSAGE trained using all historical
graph snapshots. But simply merging and feeding all pre-
vious graph snapshots into a static model loses the co-
evolutionary patterns and thus underperforms almost all
dynamic methods. It verifies that static methods cannot
accurately forecast node attributes and graph structure.
Three variants of COEVOGNNS perform similar to each
other; COEVOSAGE makes slightly lower RMSE values
and higher F1 values on both datasets. Without causing
ambiguity, we refer COEVOSAGE as COEVOGNN for
comparison in this section. Figure 4 presents the results on
evolutionary virtual currency graphs Dotc

BC and Dalp
BC .

Both dynamic network embedding methods DYNAMIC-
TRIAD and DYSAT give comparable performance to CO-
EVOGNN on the task of future graph link prediction. And,
DYNAMICTRIAD can perform slightly better than DYSAT.
However, these two models only consider the dynam-
ics of evolving graph structure instead of capturing the
co-evolution of node attributes and graph structure. The
“N/A” in Table 3 means they are not applicable, and they
are also excluded from Figure 4(a). In contrast, by fus-
ing influence from multiple previous states, COEVOGNN
can give F1 scores of 0.274 and 0.170 on two of the co-
authorship datasets D2K

AU and D10K
AU , which is +13.7% and

+15.6% relatively over DYNAMICTRIAD. The similar trend
on Dotc

BC and Dalp
BC can be observed in Figure 4(b). This

tells considering node attribute evolution is beneficial for
modeling the change of graph structure as they are mutually
influencing each other. They should be jointly modeled as a

(a) Models’ performance on the task of future node attribute prediction.
Lower RMSE is better. (DYNAMICTRIAD and DYSAT not applicable)

(b) Models’ performance on the task of future graph link prediction.
Higher F1 is better. (DCRNN and STGCN excluded)

Fig. 4. COEVOGNN outperforms baseline methods on forecasting an
entire future snapshot of virtual currency graph.

holistic co-evolutionary pattern.
For spatiotemporal forecasting methods DCRNN and

STGCN, they are designed for modeling the change of
node attributes assuming the graph structure remains static.
DCRNN outperforms all other baseline methods on the task
of future node attribute prediction. It can score RMSEs of
0.960 and 0.853 on D2K

AU and D10K
AU (0.754 and 0.835 on
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TABLE 4
Forecasting node attributes and links in D2K

AU and D10K
AU with different

values of temporal evolution span S.

D2K
AU D10K

AU

Attributes Links in Attributes Links in
X2010 G2010 X2010 G2010

Depth RMSE F1 RMSE F1

S = 1
0.988 0.236 0.897 0.149

±0.033 ±0.015 ±0.031 ±0.012

S = 2
0.952 0.259 0.863 0.162

±0.015 ±0.011 ±0.019 ±0.007

S = 3
0.938 0.274 0.832 0.170

±0.008 ±0.005 ±0.009 ±0.004

S = 4
0.940 0.270 0.828 0.170
±0.007 ±0.005 ±0.007 ±0.004

S = 5
0.941 0.269 0.829 0.168

±0.008 ±0.004 ±0.006 ±0.004

S = 6
0.941 0.271 0.830 0.167

±0.010 ±0.005 ±0.007 ±0.006

S = 7
0.945 0.266 0.833 0.164

±0.012 ±0.007 ±0.009 ±0.006

S = 8
0.951 0.262 0.840 0.160

±0.014 ±0.009 ±0.011 ±0.010

Dotc
BC and Dalp

BC ). But DCRNN cannot produce acceptable
performance on the task of future graph link prediction
(scoring F1s of 0.073 and 0.027 onD2K

AU andD10K
AU and being

excluded from Figure 4(b) because of low performance).
The proposed COEVOGNN is able to score RMSEs of 0.938
and 0.828 on D2K

AU and D10K
AU (−2.3% and −2.9% relatively

over DCRNN); and, at the same time, perform much better
on the task of future graph link prediction. This again
demonstrates the advantage of COEVOGNN by modeling
the co-evolutionary pattern of node attributes and graph
structure as they are mutually influencing each other.

The most competitive baseline EVOLVEGCN achieves
the best performance for predicting future graph links
among all others. It scores F1s of 0.256 and 0.161 on D2K

AU

and D10K
AU (0.414 and 0.422 on Dotc

BC and Dalp
BC ). Although

its input also includes all historical graph snapshots, one
fundamental difference between EVOLVEGCN and our CO-
EVOGNN is that EVOLVEGCN assumes the underlying
force driving the graph evolution only comes from the
changes in graph structure. It can be trained under its node
classification mode but that requires the class information
for each node at each time step which is commonly un-
available. In either way, EVOLVEGCN is unaware of the
co-evolution process between node attributes and graph
structure. So, EVOLVEGCN can only generate future node
attribute predictions of similar quality as the static model
GRAPHSAGE. As a result, COEVOGNN outperforms it by
−26.6% and −48.3% in terms of RMSE on D2K

AU and D10K
AU

(−44.3% and −49.1% on Dotc
BC and Dalp

BC ); and COEVOGNN
scores +7.0% and +5.6% relatively higher F1 on D2K

AU and
D10K

AU (+8.2% and +9.2% on Dotc
BC and Dalp

BC ). We also note
that all methods have slightly larger standard deviation
values of error on D10K

AU compared with D2K
AU because of the

increased sparsity. And, COEVOGNN can give more stable
performance compared with baselines across datasets.
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(a) Node attribute prediction.
Lower RMSE value is better.
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(b) Graph link prediction. Higher
F1 indicates better performance.

Fig. 5. Forecasting node attributes and links in bitcoin graphs with
different values of temporal evolution span S.

(a) Node attribute prediction.
Lower RMSE value is better.

(b) Graph link prediction. Higher
F1 indicates better performance.

Fig. 6. Standard COEVOGNN with self-attention performs better than
Max or Avg aggregators.

5.4 Effect of S-stack temporal self-attention

To understand COEVOGNN’s advantage, we further exam-
ine the effectiveness of the S-stack temporal self-attention
architecture which is the core component for distilling and
fusing influence from multiple previous graph snapshots.
In particular, we examine different choices of the temporal
evolution span S, and conduct ablation studies to verify the
contribution of the temporal self-attention mechanism.

5.4.1 Choice of temporal evolution span S
COEVOGNN is designed to fuse the influence from multiple
previous graph snapshots, and we set the temporal evolu-
tion span S as a model hyperparameter controlling how
many previous snapshots to be fused at each time step. This
design grants the freedom of balancing between efficiency
and model capability to users. On one hand, setting S = 1
enforces COEVOGNN to follow the Markov property [22]
and generate new node embedding relying only on the
previous one. This would limit COEVOGNN’s expressive
power on the co-evolution pattern since each time step is
being modeled by directly transforming the previous one.
On the other hand, setting S to a large value brings in
additional computational burden since real evolutionary
graph exhibits a time decay effect (see Section 2). We test
different settings of S from the value of 1 up to 8 and present
the results in Table 4 and Figure 5.

For evolutionary co-authorship graphs D2K
AU and D10K

AU ,
increasing the value of S from 1 up to 3 can make CO-
EVOGNN achieving better performance on both of the two
tasks: the RMSE decreases from 0.988 to 0.938 onD2K

AU (from
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TABLE 5
Performance of COEVOGNN on evolutionary co-authorship graphs
D2K

AU and D10K
AU with different of training length T . Training over time for

more years performs better on both tasks.

D2K
AU D10K

AU

Attributes Links in Attributes Links in
X2010 G2010 X2010 G2010

Training RMSE F1 RMSE F1

01− 09
0.938 0.274 0.828 0.170

±0.008 ±0.005 ±0.007 ±0.004

02− 09
0.937 0.266 0.845 0.158

±0.010 ±0.007 ±0.010 ±0.06

03− 09
0.943 0.258 0.846 0.145

±0.013 ±0.010 ±0.015 ±0.012

04− 09
0.954 0.249 0.860 0.138

±0.019 ±0.014 ±0.022 ±0.020

05− 09
0.958 0.230 0.883 0.121

±0.023 ±0.017 ±0.024 ±0.024

06− 09
0.961 0.211 0.896 0.105

±0.030 ±0.026 ±0.035 ±0.038

07− 09
0.972 0.182 0.912 0.087

±0.032 ±0.031 ±0.037 ±0.042

08− 09
1.054 0.169 0.945 0.078

±0.041 ±0.038 ±0.039 ±0.042

0.897 to 0.828 onD10K
AU ) for future node attribute prediction;

and the F1 improves from 0.236 to 0.274 on D2K
AU (from

0.149 to 0.170 on D10K
AU ) for future graph link prediction.

After that, further increasing S brings little improvement
and the performance slightly drops at S = 8 probably
due to too much noise brought in from farther graphs. The
similar trend can also be observed on evolutionary virtual
currency graphsDotc

BC andDalp
BC and the diminishing marginal

benefits of increasing S are noticeable. But different from
co-authorship graphs, the elbow point appears at S = 5.
This can be explained by the fact that these two virtual
currency graphs contains longer time steps (138 and 136
vs. 10 of D2K

AU and D10K
AU ) and each graph is also sparser. So,

COEVOGNN needs more historical information in generat-
ing node embeddings. In practice, we suggest using a grid
search strategy to find the optimal S in the range of [2, 8].

5.4.2 Contribution of temporal self-attention

On graph level, COEVOGNN fuses influence from up to S
previous time steps; and, on the node level, it is natural to
assume each node have different dependency strengths to
its previous states. Another critical aspect of COEVOGNN
is the design of temporal-self-attention (see Line 9 and 12-
17 of Algo. 1) allowing each node to independently deter-
mine the relative importance of previous S snapshots when
generating its new embedding. To validate the effectiveness
of this design, we build two variants of the model: (1)
COEVOGNN-MAX that takes the max pooling operation on
node’s previous states; and, (2) COEVOGNN-AVG that takes
mean vector of node’s previous states (see Line 19 of Algo.
1). We compare the improvements of COEVOGNN and its
variants against DCRNN for the task of node attribute
prediction, and against EVOLVEGCN for future graph link
prediction. The results are represented in Figure 6.

It is evident that COEVOGNN significantly outperform
the other two variants and producing much lower RMSE
values on the task of future node attribute prediction and
higher F1 values on the task of graph link prediction. We
can also observe that COEVOGNN-MAX performs slightly
better than COEVOGNN-AVG probably because it is able
to extract the most salient latent embeddings from previous
states instead of averaging the information. By automati-
cally learning the relative importances of pervious graphs
and dynamically adapting to those weights, COEVOGNN is
able to produce lower RMSE (−1.3% on D2K

AU and −0.9% on
D10K

AU relatively over COEVOGNN-MAX) for node attribute
prediction and higher F1 (+1.9% on D2K

AU and +1.3% on
D10K

AU relatively over COEVOGNN-MAX) for graph link
prediction. The similar findings can also be observed on evo-
lutionary virtual currency graphs Dotc

BC and Dalp
BC but are not

presented here due to space limit. These observations con-
firm that the design of temporal self-attention over node’s
previous states is successful in dynamically fusing influence
from multiple previous states. Taken together with a reason-
able choice of the temporal evolution span S, COEVOGNN
is able to model the co-evolution of node attributes and
graph structure with self-adapting importance over time.

5.5 Effect of training length T

Since COEVOGNN generates node embeddings along the
training time steps, we examine the effect of the training
length T on the performance of COEVOGNN. Specifically,
we vary the number of graphs in the training sequence from
all historical graphs to the only one before the test graph.
Table 5 presents the results on two of the evolutionary co-
authorship graphs D2K

AU and D10K
AU .

On dataset D2K
AU , COEVOGNN achieves the best per-

formance for predicting graph links in G2010 when using
all historical graph snapshots from 2001 to 2009; and has
comparable good performance for predicting node attribute
in X2010 if being fed graph snapshots starting from 2002.
The trend is consistent on the D10K

AU dataset: COEVOGNN
achieves its best performance for both tasks when trained
using all historical graph snapshots. This indicates that
longer training ranges lead to better performance of CO-
EVOGNN, which follows our intuition that longer training
range provides more information and can make the model
yield better performance.

5.6 Qualitative analysis

The goal of COEVOGNN is to model dynamic attributed
graph sequence for forecasting change of node attributes
and evolution of graph structure at future time. We provide
concrete examples on the predictions made by COEVOGNN
to better illustrate its effectiveness and practical utilities.

Specifically, we first examine the forecasted keywords
(i.e., node attributes) at the last time step on the evolutionary
co-authorship graph D10K

AU . One representative example is
Dr. Jennifer Rexford from Princeton University. She is an in-
fluential researcher working in areas of computer networks
and internet routing. Her most popular keywords from 2001
to 2007 include “network”, “safe”, “modular”, “hierarchy”,
“cooperative” and etc. And, the forecasted keywords given
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Fig. 7. Effiency of COEVOGNN on Dalp
BC with different values of training

length T and temporal evolution span S.

by COEVOGNN at 2008 cover most of her previously as-
sociated keywords but also include some new ones such
as “decentralized”, “virtualized”, and “seamless”. They ap-
peared in her collaborators’ top keywords and turned out to
be associated with an impactful paper entitled “OpenFlow:
Enabling Innovation in Campus Networks” published at
SIGCOMM Computer Communication Review in year 2008.

Similarly, we also examine the forecasted collaborations
(i.e., links) given by COEVOGNN on D10K

AU . Another good
example is Dr. Kevin Skadron from the University of Vir-
ginia. He works in areas of computer architecture and par-
allel computing. We found COEVOGNN can successfully
forecast all six links to his co-authors of an impactful paper
entitled “Rodinia: A Benchmark Suite for Heterogeneous
Computing” published at IEEE International Symposium on
Workload Characterization in 2009. The paper’s title word
“heterogeneous” did not appear in his previous associated
keywords but did appear in the keywords of his collabora-
tors. This verifies the captured impact from node attributes
to graph structure. We conclude that COEVOGNN can pre-
serve the co-evolutionary patterns of attribute change and
link formation in real dynamic graph sequence. These pat-
terns can then be effectively utilized for forecasting future
unseen node attributes and graph structure information.

5.7 Efficiency and sensitivity

We test the time efficiency of COEVOGNN through different
values of training length T and temporal evolution span
S. All experiments are conducted on single server with
dual 12-core Intel Xeon 2.10GHz CPUs with single NVIDIA
GeForce GTX 2080 Ti GPU. Figure 7 shows the model’s
per epoch training time is generally linear to the length of
the training graph sequence and is insensitive to different
values of temporal evolution span. This is also confirmed
by our analysis on the complexity of COEVOGNN given in
Section 4.3.

We also investigate the hyperparameter α of CO-
EVOGNN for balancing the attribute and structure evolu-
tionary losses. Empirical analysis shows that the model is
able to achieve optimal performance when setting α to mix
those two evolutionary losses differing by no more than one
order of magnitude.

TABLE 6
Capability of dynamic methods on (i) capturing the evolution of graph

structure G, (ii) capturing the evolution of node attributes X, (iii)
forecasting future graph structure G, and (iv) forecasting future node
attributes X. COEVOGNN meets requirements in all four categories.

Method

Capability C
T

D
N

E

D
Y

N
A

M
IC

T
R

IA
D

D
Y

SA
T

W
D

/
C

D
-G
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N

G
C

R
N

D
C

R
N

N

ST
G

C
N

E
V

O
LV

E
G

C
N

C
O

E
V

O
G

N
N

Evolution of G X X X X X X X

Evolution of X X X X X X X

Forecasting G X X X X X

Forecasting X X X X

6 RELATED WORK

Graph neural networks. The convolution operation for
graph from spectral domain using the graph Laplacian
matrix was first proposed in [4]. An extension of a simple
max/mean pooling at the beginning of the network to re-
duce the cost of graph Fourier transform operation was pro-
posed in [33]. In [3], the authors proposed the spectral-based
GCN model for semi-supervised node classification on
graph. PATCHY-SAN [34] generalized the convolution op-
eration to multiple graphs using graph labeling procedure
to assign a unique order of nodes. R-GCN [35] extended
the idea of GCN on knowledge graphs by training different
weights for different relation types. GRAPHSAGE [6] was
the first inductive graph representation learning method
which aggregates attribute information from the sampled
neighborhood of a node. PINSAGE [36] later adapted the
the former one to a web-scale recommender system. In [37],
the authors provided theoretical explanations to the expres-
sive power of graph neural networks. Some recent reviews
on methods and applications of representation learning on
graphs were provided in [38], [39], [40]. All these models
assume a single snapshot of static graph structure and node
attributes as input. They cannot be directly applied on a
sequence of evolutionary graphs.

Dynamic graph representation learning. Dynamic network
embedding methods aim at modeling the temporal pattern
of graph structure change without considering node at-
tributes. CTDNE [41] proposed to model temporal structure
dependencies in continuous-time dynamic networks by con-
ducting temporal random walks. DYNAMICTRIAD [29] pre-
served the dynamic structural information by modeling the
triadic closure process in network. DYSAT [30] employed
a self-attention mechanism over both neighbor nodes and
historical representations. TIMERS [42] minimized the mar-
gin between reconstruction loss of incremental updates and
the minimum loss in incremental SVD. DYNGRAPH2VEC
[43] modeled the temporal transitions using a deep ar-
chitecture composed of dense and recurrent layers. DYN-
GEM [44] used a deep autoencoder to preserve the first-
order and second-order proximities. DNE [45] adapted the
Skip-gram embedding model for dynamic network. And,
DYNNODE2VEC [46] extended the static network embedding
method NODE2VEC [47] into the dynamic setting. These
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methods were not designed to handle node attributes. They
can neither capture the evolution pattern of node attributes
nor forecast future attribute information.

The set of spatiotemporal traffic forecasting methods
aim at capturing the evolutionary pattern of node attributes
given a fixed graph structure. DCRNN [31] modeled the
traffic flow as a diffusion process on a directed graph and
adopted an encoder-decoder architecture for capturing the
temporal attribute dependencies. STGCN [32] modeled the
traffic network as a general graph and employed a fully
convolutional structure [11] on the temporal axis. These
methods assume the graph structure remains static all the
time, thus being incapable of capturing the evolution of
graph structure or forecasting into future graph structure
[48]. LRGCN [49] was proposed for predicting path failure
in time-evolving graphs. It generates node embeddings by
using an architecture combining the RNN and the GCN,
and then employs a self-attention mechanism to merge
node embeddings into path embeddings for binary failure
classification. Similar to our COEVOGNN, the input also
includes all historical graph snapshots. However, it also
needs the path composition and label information which
are highly traffic domain specific. This method cannot be
applied in modeling dynamic graph in other domains such
as an evolutionary co-authorship network.

When the graph structure and node (or edge) attributes
are jointly evolving, dynamic graph can be generally cate-
gorized into continuous graphs and discrete graphs. Con-
tinuous graphs retain detailed temporal information of each
edge formation [22]. DYREP [50] utilized the temporal point
processes. TEDIC [51] and TGNS [52] proposed various
local temporal aggregation operators. They are not applica-
ble when the detailed event timestamps are not available.
We focus on discrete graphs in this work which present
as an ordered sequence of graph snapshots. Each snapshot
contains aggregated dynamic information of a fixed time
interval [17]. Some existing work on discrete graphs follow
the idea of combining RNN model for capturing tempo-
ral changes with GNN as feature extractor [8] [10] [12].
VGRNN [53] combined variational graph inference [54]
with GCRN [10] for learning probabilistic representations
and capturing the potential variability observed in discrete
graphs. Similar to the proposed COEVOGNN, DYSAT [55]
and TGAT [56] also used the self-attention mechanism
for learning temporal node representations. However, these
two methods can only handle changing graph structures
and do not model the co-evolution of node attributes and
graph structure in real dynamic graphs. Thus, they cannot
preserve the complex co-evolutionary patterns in dynamic
graph sequence. A survey on dynamic graph learning can
be found in [57].

Another recent work JODIE [58] aimed at learning the
trajectory of embeddings in dynamic bipartite graph of
users and items. It was designed to model the temporal
interactions between two components of the dynamic bipar-
tite graph where each interaction is marked by a timestamp
and characterized by a feature vector. So, this method cannot
be directly applied on general graph for capturing the
co-evolutionary patterns. The capability of these dynamic
methods and our COEVOGNN is summarized in Table 6.

Graph evolution analysis. There exists a line of work study
the fundamental dynamics driving the evolution of graphs.
The phenomenon of densification and shrinking diameters
during graph evolution was studied in [17]. A frequency-
based pattern describing the evolution of large networks
over time was proposed in [59]. In [60], the authors searched
for typical patterns of structural changes in dynamic net-
works for predicting the evolution of social networks. In
[60], the authors searched for typical patterns of structural
changes for predicting the evolution of social networks.
[61] studied the structure and evolution of online social
networks. A evolutionary model for graph classification
was proposed in [62]. The cohesive co-evolution patterns
in dynamic attributed graphs was studied in [63], and
[64] studied mining heavy subgraphs in time-evolving net-
works. The trend mining in dynamic attributed graphs was
studied in [65]. A comprehensive survey on evolutionary
network analysis was provided in [22].

7 CONCLUSIONS

In this work, we proposed a new framework for learning
node embeddings from evolutionary attributed graph and
inferring future node representations. It aggregated the in-
formation in previous snapshots to the current one using
temporal self-attention and employed a multi-task loss func-
tion based on attribute inference and link prediction over
time. Experimental results demonstrated our method out-
performed strong baselines on forecasting an entire future
snapshot of co-authorship and virtual currency network.
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