
Introduction to Compilers and Language Design
Copyright © 2023 Douglas Thain.
Paperback ISBN: 979-8-655-18026-0
Second edition.

Anyone is free to download and print the PDF edition of this book for per-
sonal use. Commercial distribution, printing, or reproduction without the
author’s consent is expressly prohibited. All other rights are reserved.

You can find the latest version of the PDF edition, and purchase inexpen-
sive hardcover copies at http://compilerbook.org

Revision Date: August 24, 2023

149

Chapter 10 – Assembly Language

10.1 Introduction

In order to build a compiler, you must have a working knowledge of at
least one kind of assembly language. And, it helps to see two or more
variations of assembly, so as to fully appreciate the distinctions between
architectures. Some of these differences, such as register structure, are
quite fundamental, while some of the differences are merely superficial.

We have observed that many students seem to think that assembly lan-
guage is rather obscure and complicated. Well, it is true that the complete
manual for a CPU is extraordinarily thick, and may document hundreds
of instructions and obscure addressing modes. However, it’s been our ex-
perience that it is really only necessary to learn a small subset of a given
assembly language (perhaps 30 instructions) in order to write a functional
compiler. Many of the additional instructions and features exist to handle
special cases for operating systems, floating point math, and multi-media
computing. You can do almost everything needed with the basic subset.

We will look at two different CPU architectures that are in wide use to-
day: X86 and ARM. The Intel X86 is a CISC architecture that has evolved
since the 1970s from 8-bit to 64-bit and is now the dominant chip in per-
sonal computers, laptops, and high performance servers. The ARM pro-
cessor is a RISC architecture that began life as a 32-bit chip for the personal
computer market, and is now the dominant chip for low-power and em-
bedded devices such as mobile phones and tablets.

This chapter will give you a working knowledge of the basics of each
architecture, but you will need a good reference to look up more details.
We recommend that you consult the Intel Software Developer Manual [1]
and the ARM Architecture Reference Manual [3] for the complete details.
(Note that each section is meant to be parallel and self-contained, so some
explanatory material is repeated for both X86 and ARM.)

149

150 CHAPTER 10. ASSEMBLY LANGUAGE

10.2 Open Source Assembler Tools

A given assembly language can have multiple dialects for the same CPU,
depending on whether one uses the assembler provided by the chip ven-
dor, or other open source tools. For consistency, we will give examples
in the assembly dialect supported by the GNU compiler and assembler,
which are known as gcc and as (or sometimes gas).

A good way to get started is to view the assembler output of the com-
piler for a C program. To do this, run gcc with the -S flag, and the
compiler will produce assembly output rather than a binary program. On
Unix-like systems, assembly code is stored in files ending with .s, which
indicates “source” file.

If you run gcc -S hello.c -o hello.s on this C program:

#include <stdio.h>

int main(int argc, char *argv[])

{

printf("hello %s\n","world");

return 0;

}

then you should see output similar to this in hello.s

.file "test.c"

.data

.LC0:

.string "hello %s\n"

.LC1:

.string "world"

.text

.global main

main:

PUSHQ %rbp

MOVQ %rsp, %rbp

SUBQ $16, %rsp

MOVQ %rdi, -8(%rbp)

MOVQ %rsi, -16(%rbp)

MOVQ $.LC0, %rax

MOVQ $.LC1, %rsi

MOVQ %rax, %rdi

MOVQ $0, %rax

CALL printf

MOVQ $0, %rax

LEAVE

RET

150

10.2. OPEN SOURCE ASSEMBLER TOOLS 151

(There are many valid ways to compile hello.c and so the output of
your compiler may be somewhat different.)

Regardless of the CPU architecture, the assembly code has three differ-
ent kinds of elements:

Directives begin with a dot and indicate structural information use-
ful to the assembler, linker, or debugger, but are not in and of themselves
assembly instructions. For example, .file simply records the name of
the original source file to assist the debugger. .data indicates the start of
the data segment of the program, while .text indicates the start of the
program segment. .string indicates a string constant within the data
section, and .global main indicates that the label main is a global sym-
bol that can be accessed by other code modules.

Labels end with a colon and indicate by their position the association
between names and locations. For example, the label .LC0: indicates that
the immediately following string should be called .LC0. The label main:
indicates that the instruction PUSHQ %rbp is the first instruction of the
main function. By convention, labels beginning with a dot are temporary
local labels generated by the compiler, while other symbols are user-visible
functions and global variables. The labels do not become part of the result-
ing machine code per se, but they are present in the resulting object code
for the purposes of linking, and in the eventual executable, for purposes
of debugging.

Instructions are the actual assembly code like (PUSHQ %rbp), typically
indented to visually distinguish them from directives and labels. Instruc-
tions in GNU assembly are not case sensitive, but we will generally upper-
case them, for consistency.

To take this hello.s and turn it into a runnable program, just run
gcc, which will figure out that it is an assembly program, assemble it, and
link it with the standard library:

% gcc hello.s -o hello

% ./hello

hello world

It is also interesting to compile the assembly code into object code, and
then use the nm utility to display the symbols (”names”) present in the
code:

% gcc hello.s -c -o hello.o

% nm hello.o

0000000000000000 T main

U printf

This displays the information available to the linker. main is present in
the text (T) section of the object, at location zero, and printf is undefined

151

152 CHAPTER 10. ASSEMBLY LANGUAGE

(U), since it must be obtained from the standard library. But none of the
labels like .LC0 appear because they were not declared as .global.

As you are learning assembly language, take advantage of an existing
compiler: write some simple functions to see what gcc generates. This can
give you some starting points to identify new instructions and techniques
to use.

10.3 X86 Assembly Language

X86 is a generic term that refers to the series of microprocessors descended
from (or compatible with) the Intel 8088 processor used in the original IBM
PC, including the 8086, 80286, ’386, ’486, and many others. Each genera-
tion of CPUs added new instructions and addressing modes from 8-bit to
16-bit to 32-bit, all while retaining backwards compatibility with old code.
A variety of competitors (such as AMD) produced compatible chips that
implemented the same instruction set.

However, Intel broke with tradition in the 64-bit generation by intro-
ducing a new brand (Itanium) and architecture (IA64) that was not back-
wards compatible with old code. Instead, it implemented a new concept
known as Very Long Instruction Word (VLIW) in which multiple concur-
rent operations were encoded into a single word. This had the potential for
significant speedups due to instruction-level parallelism but represented
a break with the past.

AMD stuck with the old ways and produced a 64-bit architecture
(AMD64) that was backwards compatible with both Intel and AMD chips.
While the technical merits of both approaches were debatable, the AMD
approach won in the marketplace, and Intel followed by producing its
own 64-bit architecture (Intel64) that was compatible with AMD64 and its
own previous generation of chips. X86-64 is the generic name that covers
both AMD64 and Intel64 architectures.

X86-64 is a fine example of CISC (complex instruction set computing).
There are a very large number of instructions with many different sub-
modes, some of them designed for very narrow tasks. However, a small
subset of instructions will let us accomplish a lot.

10.3.1 Registers and Data Types

X86-64 has sixteen (almost) general purpose 64-bit integer registers:

%rax %rbx %rcx %rdx %rsi %rdi %rbp %rsp
%r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15

These registers are almost general purpose because earlier versions of
the processors intended for each register to be used for a specific purpose,
and not all instructions could be applied to every register. The names of

152

10.3. X86 ASSEMBLY LANGUAGE 153

A Note on AT&T Syntax versus Intel Syntax

Note that the GNU tools use the traditional AT&T syntax, which is used
across many processors on Unix-like operating systems, as opposed to the
Intel syntax typically used on DOS and Windows systems. The following
instruction is given in AT&T syntax:

MOVQ %RSP, %RBP

MOVQ is the name of the instruction, and the percent signs indicate that
RSP and RBP are registers. In the AT&T syntax, the source is always given
first, and the destination is always given second.

In other places (such as the Intel manual), you will see the Intel syntax,
which (among other things) dispenses with the percent signs and reverses
the order of the arguments. For example, this is the same instruction in the
Intel syntax:

MOVQ RBP, RSP

When reading manuals and web pages, be careful to determine whether
you are looking at AT&T or Intel syntax: look for the percent signs!

the lower eight registers indicate the purpose for which each was origi-
nally intended: for example, %rax is the accumulator.

As the design developed, new instructions and addressing modes were
added to make the various registers almost equal. A few remaining in-
structions, particularly related to string processing, require the use of %rsi
and %rdi. In addition, two registers are reserved for use as the stack
pointer (%rsp) and the base pointer (%rbp). The final eight registers are
numbered and have no specific restrictions.

The architecture has expanded from 8 to 64 bits over the years, and so
each register has some internal structure. The lowest 8 bits of the %rax
register are an 8-bit register %al, and the next 8 bits are known as %ah.
The low 16 bits are collectively known as %ax, the low 32-bits as %eax,
and the whole 64 bits as %rax.

Figure 10.1: X86 Register Structure

8 bits: al ah
16 bits: ax
32 bits: eax
64 bits: rax

153

154 CHAPTER 10. ASSEMBLY LANGUAGE

The numbered registers %r8-%r15 have the same structure, but a slightly
different naming scheme:

8 bits: r8b
16 bits: r8w
32 bits: r8d
64 bits: r8

Figure 10.2: X86 Register Structure

To keep things simple, we will focus our attention on the 64-bit regis-
ters. However, most production compilers use a mix of modes: a byte can
represent a boolean; a longword is usually sufficient for integer arithmetic,
since most programs don’t need integer values above 232; and a quadword
is needed to represent a memory address, enabling up to 16EB (exa-bytes)
of virtual memory.

10.3.2 Addressing Modes

The MOV instruction moves data between registers and to and from mem-
ory in a variety of different modes. A single letter suffix determines the
size of data to be moved:

Suffix Name Size

B BYTE 1 byte (8 bits)
W WORD 2 bytes (16 bits)
L LONG 4 bytes (32 bits)
Q QUADWORD 8 bytes (64 bits)

MOVB moves a byte, MOVW moves a word, MOVL moves a long, MOVQ
moves a quad-word.1 Generally, the size of the locations you are moving
to and from must match the suffix. In some cases, you can leave off the
suffix, and the assembler will infer the right size. However, this can have
unexpected consequences, so we will make a habit of using the suffix.

The arguments to MOV can have one of several addressing modes.

• A global value is simply referred to by an unadorned name such as x
or printf, which the assembler translates into an absolute address
or an address computation.

• An immediate value is a constant value indicated by a dollar sign
such as $56, and has a limited range, depending on the instruction
in use.

• A register value is the name of a register such as %rbx.

1Careful: These terms are not portable. A word has a different size on different machines.

154

10.3. X86 ASSEMBLY LANGUAGE 155

• An indirect value refers to a value by the address contained in a
register. For example, (%rsp) refers to the value pointed to by %rsp.

• A base-relative value is given by adding a constant to the name of
a register. For example, -16(%rcx) refers to the value at the mem-
ory location sixteen bytes below the address indicated by %rcx. This
mode is important for manipulating stacks, local values, and func-
tion parameters, where the start of an object is given by a register.

• A complex address is of the form D(RA, RB , C) which refers to the
value at address RA + RB ∗ C + D. Both RA and RB are general
purpose registers, while C can have the value 1, 2, 4, or 8, and D

can be any integer displacement. This mode is used to select an item
within an array, where RA gives the base of the array, RB gives the
index into the array, C gives the size of the items in the array, and D

is an offset relative to that item.

Here is an example of using each kind of addressing mode to load a
64-bit value into %rax:

Mode Example

Global Symbol MOVQ x, %rax

Immediate MOVQ $56, %rax

Register MOVQ %rbx, %rax

Indirect MOVQ (%rsp), %rax

Base-Relative MOVQ -8(%rbp), %rax

Complex MOVQ -16(%rbx,%rcx,8), %rax

For the most part, the same addressing modes may be used to store
data into registers and memory locations. There are some exceptions. For
example, it is not possible to use base-relative for both arguments of MOV:
MOVQ -8(%rbx), -8(%rbx). To see exactly what combinations of ad-
dressing modes are supported, you must read the manual pages for the
instruction in question.

In some cases, you may want to load the address of a variable instead of
its value. This is handy when working with strings or arrays. For this pur-
pose, use the LEA (load effective address) instruction, which can perform
the same address computations as MOV:

Mode Example

Global Symbol LEAQ x, %rax

Base-Relative LEAQ -8(%rbp), %rax

Complex LEAQ -16(%rbx,%rcx,8), %rax

155

156 CHAPTER 10. ASSEMBLY LANGUAGE

10.3.3 Basic Arithmetic

You will need four basic arithmetic instructions for your compiler: integer
addition, subtraction, multiplication, and division.

ADD and SUB have two operands: a source and a destructive target.
For example, this instruction:

ADDQ %rbx, %rax

adds %rbx to %rax, and places the result in %rax, overwriting what might
have been there before. This requires a little care, so that you don’t acci-
dentally clobber a value that you might want to use later. For example,
you could translate c = a+b+b; like this:

MOVQ a, %rax

MOVQ b, %rbx

ADDQ %rbx, %rax

ADDQ %rbx, %rax

MOVQ %rax, c

The IMUL instruction is a little unusual, because multiplying two 64-
bit integers results in a 128-bit integer, in the general case. IMUL takes its
argument, multiplies it by the contents of %rax, and then places the low
64 bits of the result in %rax and the high 64 bits in %rdx. (This is implicit:
%rdx is not mentioned in the instruction.)

For example, suppose that you wish to translate c = b*(b+a);, where
a, and b, and c are global integers. Here is one possible translation:

MOVQ a, %rax

MOVQ b, %rbx

ADDQ %rbx, %rax

IMULQ %rbx

MOVQ %rax, c

The IDIV instruction does the same thing, except backwards: it starts
with a 128 bit integer value whose low 64 bits are in %rax and high 64 bits
in %rdx, and divides it by the value given in the instruction. The quotient
is placed in %rax and the remainder in %rdx. (If you want to implement
the modulus instruction instead of division, just use the value of %rdx.)

To set up a division, you must make sure that both registers have the
necessary sign-extended value. If the dividend fits in the lower 64 bits, but
is negative, then the upper 64 bits must all be ones to complete the twos-
complement representation. The CQO instruction serves the very specific
purpose of sign-extending %rax into %rdx for division.

For example, to divide a by five:

156

10.3. X86 ASSEMBLY LANGUAGE 157

MOVQ a, %rax # set the low 64 bits of the dividend

CQO # sign-extend %rax into %rdx

IDIVQ $5 # divide %rdx:%rax by 5,

leaving result in %rax

The instructions INC and DEC increment and decrement a register de-
structively. For example, the statement a = ++b could be translated as:

MOVQ b, %rax

INCQ %rax

MOVQ %rax,b

MOVQ %rax, a

The instructions AND, OR, and XOR perform destructive bitwise boolean
operations on two values. Bitwise means that the operation is applied to
each individual bit in the operands, and stored in the result.
So, AND $0101B $0110B would yield the result $0100B. In a similar
way, the NOT instruction inverts each bit in the operand. For example,
the bitwise C expression c = (a & ˜b); could be translated like this:

MOVQ a, %rax

MOVQ b, %rbx

NOTQ %rbx

ANDQ %rax, %rbx

MOVQ %rbx, c

Be careful here: these instructions do not implement logical boolean op-
erations according to the C representation that you are probably familiar
with. For example, if you define “false” to be the integer zero, and “true”
to be any non-zero value. In that case, $0001 is true, but NOT $0001B is
$1110B, which is also true! To implement that correctly, you need to use
CMP with conditionals described below.2

Like the MOV instruction, the various arithmetic instructions can work
on a variety of addressing modes. However, for your compiler project, you
will likely find it most convenient to use MOV to load values in and out of
registers, and then use only registers to perform arithmetic.

2Alternatively, you could could use the bitwise operators as logical operators if you give
true the integer value -1 (all ones) and false the integer value zero.

157

158 CHAPTER 10. ASSEMBLY LANGUAGE

10.3.4 Comparisons and Jumps

Using the JMP instruction, we may create a simple infinite loop that counts
up from zero using the %rax register:

MOVQ $0, %rax

loop: INCQ %rax

JMP loop

To define more useful structures such as terminating loops and if-then
statements, we must have a mechanism for evaluating values and chang-
ing program flow. In most assembly languages, these are handled by two
different kinds of instructions: compares and jumps.

All comparisons are done with the CMP instruction. CMP compares
two different registers and then sets a few bits in the internal EFLAGS
register, recording whether the values are the same, greater, or lesser. You
don’t need to look at the EFLAGS register directly. Instead a selection of
conditional jumps examine the EFLAGS register and jump appropriately:

Instruction Meaning

JE Jump if Equal
JNE Jump if Not Equal
JL Jump if Less
JLE Jump if Less or Equal
JG Jump if Greater
JGE Jump if Greater or Equal

For example, here is a loop to count %rax from zero to five:

MOVQ $0, %rax

loop: INCQ %rax

CMPQ $5, %rax

JLE loop

And here is a conditional assignment: if global variable x is greater
than zero, then global variable y gets ten, else twenty:

MOVQ x, %rax

CMPQ $0, %rax

JLE .L1

.L0:

MOVQ $10, $rbx

JMP .L2

.L1:

MOVQ $20, $rbx

.L2:

MOVQ %rbx, y

158

10.3. X86 ASSEMBLY LANGUAGE 159

Note that jumps require the compiler to define target labels. These
labels must be unique and private within one assembly file, but cannot be
seen outside the file unless a .global directive is given. Labels like .L0,
.L1, etc, can be generated by the compiler on demand.

10.3.5 The Stack

The stack is an auxiliary data structure used primarily to record the func-
tion call history of the program along with local variables that do not fit
in registers. By convention, the stack grows downward from high values
to low values. The %rsp register is known as the stack pointer and keeps
track of the bottom-most item on the stack.

To push %rax onto the stack, we must subtract 8 (the size of %rax in
bytes) from %rsp and then write to the location pointed to by %rsp:

SUBQ $8, %rsp

MOVQ %rax, (%rsp)

Popping a value from the stack involves the opposite:

MOVQ (%rsp), %rax

ADDQ $8, %rsp

To discard the most recent value from the stack, just move the stack
pointer the appropriate number of bytes :

ADDQ $8, %rsp

Of course, pushing to and popping from the stack referred to by %rsp
is so common, that the two operations have their own instructions that
behave exactly as above:

PUSHQ %rax

POPQ %rax

Note that, in 64-bit code, PUSH and POP are limited to working with
64-bit values, so a manual MOV and ADD must be used if it is necessary to
move smaller items to/from the stack.

159

160 CHAPTER 10. ASSEMBLY LANGUAGE

10.3.6 Calling a Function

Prior to the 64-bit architecture described here, a simple stack calling con-
vention was used: arguments were pushed on the stack in reverse order,
then the function was invoked with CALL. The called function looked for
the arguments on the stack, did its work, and returned the result in %eax.
The caller then removed the arguments from the stack.

However, 64-bit code uses a register calling convention, in order to ex-
ploit the larger number of available registers in the X86-64 architecture. 3

This convention is known as the System V ABI [2] and is written out in
a lengthy technical document. The complete convention is quite compli-
cated, but this summary handles the basic cases:

Figure 10.3: Summary of System V ABI Calling Convention

• The first six integer arguments (including pointers and other
types that can be stored as integers) are placed in the registers
%rdi, %rsi, %rdx, %rcx, %r8, and %r9, in that order.

• The first eight floating point arguments are placed in the registers
%xmm0-%xmm7, in that order.

• Arguments in excess of those registers are pushed onto the stack.

• If the function takes a variable number of arguments (like
printf) then the %rax register must be set to the number of
floating point arguments.

• The return value of the function is placed in %rax.

In addition, we also need to know how the remaining registers are han-
dled. A few are caller-saved, meaning that the calling function must save
those values before invoking another function. Others are callee-saved,
meaning that a function, when called, must save the values of those regis-
ters, and restore them on return. The argument and result registers need
not be saved at all. Figure 10.4 shows these requirements.

To invoke a function, we must first compute the arguments and place
them in the desired registers. Then, we must push the two caller-saved
registers (%r10 and %r11) on the stack, to save their values. We then issue
the CALL instruction, which pushes the current instruction pointer on to
the stack then jumps to the code location of the function. Upon return
from the function, we pop the two caller-saved registers off of the stack,
and look for the return value of the function in the %rax register.

3Note that there is nothing stopping you from writing a compiler that uses a stack call-
ing convention. But if you want to invoke functions compiled by others (like the standard
library) then you need to stick to the convention already in use.

160

10.3. X86 ASSEMBLY LANGUAGE 161

Here is an example. The following C program:

int x=0;

int y=10;

int main()

{

x = printf("value: %d\n",y);

}

could be translated to this:

.data

x:

.quad 0

y:

.quad 10

str:

.string "value: %d\n"

.text

.global main

main:

MOVQ $str, %rdi # first argument in %rdi: string

MOVQ y, %rsi # second argument in %rsi: y

MOVQ $0, %rax # there are zero float args

PUSHQ %r10 # save the caller-saved regs

PUSHQ %r11

CALL printf # invoke printf

POPQ %r11 # restore the caller-saved regs

POPQ %r10

MOVQ %rax, x # save the result in x

RET # return from main function

161

162 CHAPTER 10. ASSEMBLY LANGUAGE

Figure 10.4: System V ABI Register Assignments

Register Purpose Who Saves?

%rax result not saved
%rbx scratch callee saves
%rcx argument 4 not saved
%rdx argument 3 not saved
%rsi argument 2 not saved
%rdi argument 1 not saved
%rbp base pointer callee saves
%rsp stack pointer callee saves
%r8 argument 5 not saved
%r9 argument 6 not saved
%r10 scratch CALLER saves
%r11 scratch CALLER saves
%r12 scratch callee saves
%r13 scratch callee saves
%r14 scratch callee saves
%r15 scratch callee saves

10.3.7 Defining a Leaf Function

Because function arguments are passed in registers, it is easy to write a
leaf function that computes a value without calling any other functions.
For example, code for the following function:

square: function integer (x: integer) =

{

return x*x;

}

Could be as simple as this:

.global square

square:

MOVQ %rdi, %rax # copy first argument to %rax

IMULQ %rax # multiply it by itself

result is already in %rax

RET # return to caller

Unfortunately, this won’t work for a function that wants to invoke
other functions, because we haven’t set up the stack properly. A more
complex approach is needed for the general case.

162

10.3. X86 ASSEMBLY LANGUAGE 163

10.3.8 Defining a Complex Function

A complex function must be able to invoke other functions and compute
expressions of arbitrary complexity, and then return to the caller with the
original state intact. Consider the following recipe for a function that ac-
cepts three arguments and uses two local variables:

.global func

func:

pushq %rbp # save the base pointer

movq %rsp, %rbp # set new base pointer

pushq %rdi # save first argument on the stack

pushq %rsi # save second argument on the stack

pushq %rdx # save third argument on the stack

subq $16, %rsp # allocate two more local variables

pushq %rbx # save callee-saved registers

pushq %r12

pushq %r13

pushq %r14

pushq %r15

body of function goes here

popq %r15 # restore callee-saved registers

popq %r14

popq %r13

popq %r12

popq %rbx

movq %rbp, %rsp # reset stack pointer

popq %rbp # recover previous base pointer

ret # return to the caller

There is a lot to keep track of here: the arguments given to the function,
the information necessary to return, and space for local computations. For
this purpose, we use the base register pointer %rbp. Whereas the stack
pointer %rsp points to the end of the stack where new data will be pushed,
the base pointer %rbp points to the start of the values used by this func-
tion. The space between %rbp and %rsp is known as the stack frame for
this function call.

163

164 CHAPTER 10. ASSEMBLY LANGUAGE

There is one more complication: each function needs to use a selection
of registers to perform computations. However, what happens when one
function is called in the middle of another? We do not want any registers
currently in use by the caller to be clobbered by the called function. To
prevent this, each function must save and restore all of the registers that it
uses by pushing them onto the stack at the beginning, and popping them
off of the stack before returning. According to Figure 10.4, each function
must preserve the values of %rsp, %rbp, %rbx, and %r12-%r15 when it
completes.

Here is the stack layout for func, defined above:

Contents Address
old %rip register 8(%rbp)
old %rbp register (%rbp) ←%rbp points here
argument 0 -8(%rbp)
argument 1 -16(%rbp)
argument 2 -24(%rbp)
local variable 0 -32(%rbp)
local variable 1 -40(%rbp)
saved register %rbx -48(%rbp)
saved register %r12 -56(%rbp)
saved register %r13 -64(%rbp)
saved register %r14 -72(%rbp)
saved register %r15 -80(%rbp) ←%rsp points here

Figure 10.5: Example X86-64 Stack Layout

Note that the base pointer (%rbp) locates the start of the stack frame.
So, within the body of the function, we may use base-relative address-
ing against the base pointer to refer to both arguments and locals. The
arguments to the function follow the base pointer, so argument zero is at -
8(%rbp), argument one at -16(%rbp), and so forth. Past those are local vari-
ables to the function at -32(%rbp) and then saved registers at -48(%rbp).
The stack pointer points to the last item on the stack. If we use the stack
for additional purposes, data will be pushed to further negative values.
(Note that we have assumed all arguments and variables are 8 bytes large:
different types would result in different offsets.)

164

10.3. X86 ASSEMBLY LANGUAGE 165

Here is a complete example that puts it all together. Suppose that you
have a B-minor function defined as follows:

compute: function integer

(a: integer, b: integer, c: integer) =

{

x:integer = a+b+c;

y:integer = x*5;

return y;

}

A complete translation of the function is on the next page. The code
given is correct, but rather conservative. As it turned out, this particular
function didn’t need to use registers %rbx and %r15, so it wasn’t neces-
sary to save and restore them. In a similar way, we could have kept the
arguments in registers without saving them to the stack. The result could
have been computed directly into %rax rather than saving it to a local vari-
able. These optimizations are easy to make when writing code by hand,
but not so easy when writing a compiler.

For your first attempt at building a compiler, your code created will
(probably) not be very efficient if each statement is translated indepen-
dently. The preamble to a function must save all the registers, because it
does not know a priori which registers will be used later. Likewise, a state-
ment that computes a value must save it back to a local variable, because
it does not know beforehand whether the local will be used as a return
value. We will explore these issues later in Chapter 12 on optimization.

165

166 CHAPTER 10. ASSEMBLY LANGUAGE

Figure 10.6: Complete X86 Example
.global compute

compute:

##################### preamble of function sets up stack

pushq %rbp # save the base pointer

movq %rsp, %rbp # set new base pointer to rsp

pushq %rdi # save first argument (a) on the stack

pushq %rsi # save second argument (b) on the stack

pushq %rdx # save third argument (c) on the stack

subq $16, %rsp # allocate two more local variables

pushq %rbx # save callee-saved registers

pushq %r12

pushq %r13

pushq %r14

pushq %r15

######################## body of function starts here

movq -8(%rbp), %rbx # load each arg into a register

movq -16(%rbp), %rcx

movq -24(%rbp), %rdx

addq %rdx, %rcx # add the args together

addq %rcx, %rbx

movq %rbx, -32(%rbp) # store the result into local 0 (x)

movq -32(%rbp), %rbx # load local 0 (x) into a register.

movq $5, %rcx # load 5 into a register

movq %rbx, %rax # move argument in rax

imulq %rcx # multiply them together

movq %rax, -40(%rbp) # store the result in local 1 (y)

movq -40(%rbp), %rax # move local 1 (y) into the result

#################### epilogue of function restores the stack

popq %r15 # restore callee-saved registers

popq %r14

popq %r13

popq %r12

popq %rbx

movq %rbp, %rsp # reset stack to base pointer.

popq %rbp # restore the old base pointer

ret # return to caller

166

10.4. ARM ASSEMBLY 167

10.4 ARM Assembly

The ARM processor architecture has a history almost as long as the X86
architecture. It originated as the 32-bit Acorn RISC Machine used in the
Acorn Archimedes personal computer in 1987, and has since evolved into
a wide-used low-power CPU employed in many embedded and mobile
systems, now known as the Advanced RISC Machine (ARM). The evolv-
ing architecture has been implemented by a number of chip vendors work-
ing from a common architecture definition. The most recent versions of
the architecture are ARMv7-A (32-bit) and ARMv8-A (64-bit.) This chap-
ter will focus on the 32-bit architecture, with some remarks on differences
in the 64-bit architecture at the end.

ARM is an example of a Reduced Instruction Set Computer (RISC)
rather than a Complex Instruction Set Computer (CISC). Compared to
X86, ARM relies on a smaller set of instructions which are simpler to pipeline
or run in parallel, reducing the complexity and energy consumption of the
chip. ARM is sometimes considered “partially” RISC due to a few ex-
ceptions. For example, the difference in the time to execute some ARM
instructions makes the pipeline imperfect, the inclusion of a barrel shifter
for preprocessing brings forward more complex instructions, and condi-
tional execution decreases some of the potential instructions executed and
leads to less branching instructions so less energy used by the processor.
We will mainly be focusing on the elements of the instruction set which
allow us to do the most in a compiler, leaving the more complex aspects
and optimizations of the programming language for later.

10.4.1 Registers and Data Types

ARM-32 has a set of 16 general purpose registers, r0-r15, with the follow-
ing conventions for use:

Name Alias Purpose

r0 General Purpose Register
r1 General Purpose Register
... . . .
r10 General Purpose Register
r11 fp Frame Pointer
r12 ip Intra-Procedure-Call Scratch Register
r13 sp Stack Pointer
r14 lr Link Register (Return Address)
r15 pc Program Counter

In addition to general purpose registers, there are two registers that
cannot be directly accessed: the Current Program Status Register (CPSR)
and the Saved Program Status Register (SPSR). These hold the results of
comparison operations, as well as privileged data regarding the process

167

168 CHAPTER 10. ASSEMBLY LANGUAGE

state. A user-level program cannot access these directly, but they can be
set as a side effect of some operations.

ARM uses the following suffixes to indicate data sizes. Note that these
have different meanings than in X86 assembly! If no suffix is given, the
assembler assumes an unsigned word operand. Signed types are used to
provide appropriate sign-extension when loading a small data type into a
larger register. There is no register naming structure for anything below a
word.

Data Type Suffix Size

Byte B 8 bits
Halfword H 16 bits
Word W 32 bits
Double Word - 64 bits
Signed Byte SB 8 bits
Signed Halfword SH 16 bits
Signed Word SW 32 bits
Double Word - 64 bits

10.4.2 Addressing Modes

ARM makes the use of two different classes of instructions to move data
between registers and between registers and memory. MOV copies data and
constants between registers, while LDR (load) and STR (store) instructions
are used to move data between registers and memory.

The MOV instruction is used to move a known immediate value into
a given register or move another register into the first register. In ARM,
immediate values are denoted by a #. However, these immediate values
must be 16-bits or less. If they are greater, the LDR instruction must be
used instead. Most ARM instructions indicate the destination register on
the left and the source register on the right. (STR is an exception.) So for
moving data between immediate values and registers we would have the
following:

Mode Example

Immediate MOV r0, #3

Register MOV r1, r0

The mnemonic letter for each data type can be appended to the MOV in-
struction allowing us to be sure of which is being transferred and how that
data is being transferred. If not, the assembler assumes an entire word.

To move values in and out of memory, use the Load (LDR) and Store
(STR) instructions, both of which indicate the source or destination register
as the first argument, and the source or destination memory address as the
second argument. In the simplest case, the address is given by a register
and indicated in brackets:

168

10.4. ARM ASSEMBLY 169

Figure 10.7: ARM Addressing Modes

Address Mode Example

Literal LDR Rd, =0xABCD1234

Absolute Address LDR Rd, =label

Register Indirect LDR Rd, [Ra]

Pre-indexing - Immediate LDR Rd, [Ra, #4]

Pre-indexing - Register LDR Rd, [Ra, Ro]

Pre-indexing - Immediate & Writeback LDR Rd, [Ra, #4]!

Pre-indexing - Register & Writeback LDR Rd, [Ra, Ro]!

Post-indexing - Immediate LDR Rd, [Ra], #4

Post-indexing - Register LDR Rd, [Ra], Ro

LDR Rd, [Ra]

STR Rs, [Ra]

In this case, Rd denotes the destination register, Rs denotes the source
register and Ra denotes the register containing the address. (Note that the
memory address must be aligned to the data type: a byte can load a value
from any address, a half-word from every even address, and so on.)

Both LDR and STR support a variety of addressing modes, shown in
Figure 10.7. First, LDR can be used to load a literal value (or label address)
of a full 32-bits into a register. (See the next section for a full explanation
of this.) Unlike X86, there is no single instruction that loads a value from a
given memory address. To accomplish this, you must first load the address
into a register, and then perform a register-indirect load:

LDR r1, =x

LDR r2, [r1]

A number of more complex addressing modes are available which fa-
cilitate the implementation of pointers, arrays, and structures in high-level
programs. Pre-indexing modes add a constant (or register) to a base regis-
ter, and then load from the computed address:

LDR r1, [r2, #4] ; Load from address r2 + 4

LDR r1, [r2, r3] ; Load from address r2 + r3

It is also possible to write-back to the base register by appending a bang
(!) character. This indicates that the computed address should be saved in
the base register after the address is loaded:

LDR r1, [r2, #4]! ; Load from r2 + 4 then r2 += 4

LDR r1, [r2, r3]! ; Load from r2 + r3 then r2 += r3

169

170 CHAPTER 10. ASSEMBLY LANGUAGE

Post-indexing modes do the same thing, but in the reverse order. First,
the load is performed from the base register, then the base register is incre-
mented:

LDR r1, [r2], #4 ; Load from r2 then r2 += 4

LDR r1, [r2], r3 ; Load from r2 then r2 += r3

These complex pre-indexing and post-indexing modes make it possi-
ble to have single-instruction implementations of idiomatic C operations
like b = a++. The corresponding modes are also available to the STR in-
struction.

Absolute addresses (and other large literals) are somewhat more com-
plicated in ARM. Because every instruction must fit into a 32-bit word,
it is not possible to fit a 32-bit address into an instruction, alongside the
opcode. Instead, large literals must be stored in a literal pool, which is
a small region of data inside the code section of the program. A literal
can be loaded from a pool with a PC-relative load instruction, which can
reference ±4096 bytes from the loading instruction. This results in several
small literal pools being scattered throughout the program, so that each
one is close to the load instruction that uses it.

The ARM assembler generally hides this complexity from the user.
When a label or large literal is prefixed with an equals sign, this indicates
to the assembler that the marked value should be placed into a literal pool,
and a corresponding PC-relative instruction emitted instead.

For example, the following instructions, which load the address of x
into r1, then the value of x into r2:

LDR r1, =x

LDR r2, [r1]

Will be expanded into this load of the address of x from an adjacent
literal pool, followed by loading the value of x:

LDR r1, .L1

LDR r2, [r1]

B .end

.L1:

.word x

.end:

10.4.3 Basic Arithmetic

ARM provides three-address arithmetic instructions on registers. The ADD
and SUB instructions specify the result register as the first argument, and
compute on the second and third arguments. The third operand may be
an 8-bit constant, or a register with an optional shift applied. The variants

170

10.4. ARM ASSEMBLY 171

with carry-in enabled will add the C bit of the CPSR to the result. All
four take an optional S suffix which will set the condition flags (including
carry) on completion.

Instruction Example

Add ADD Rd, Rm, Rn

Add with carry-in ADC Rd, Rm, Rn

Subtract SUB Rd, Rm, Rn

Subtract with carry-in SBC Rd, Rm, Rn

Multiplication works much the same way, except that multiplying two
32-bit numbers could result in a 64-bit value. The ordinary MUL discards
the high bits of the results, while UMULL puts the 64-bit result in two 32-bit
registers. The signed variant SMULL will sign extend the high register as
needed.

Instruction Example

Multiplication MUL Rd, Rm, Rn

Unsigned Long Multiplication UMULL RdHi, RdLo, Rm, Rn

Signed Long Multiplication SMULL RdHi, RdLo, Rm, Rn

There is no division instruction in ARM, because it cannot be carried
out in a single pipelined cycle. Instead, when division is needed, it is
accomplished by invoking an external function in a standard library. This
is left as an exercise for the reader.

The logical instructions are very similar in structure to the arithmetic
instructions. We have the bitwise-and, bitwise-or, bitwise-exclusive-or
and bitwise-bit-clear, which is the equivalent of a bitwise-and of the first
value and the inverted second value. The move-not MVN instruction per-
forms a bitwise-not while moving from one register to another.

Instruction Example

Bitwise-And AND Rd, Rm, Rn

Bitwise-Or ORR Rd, Rm, Rn

Bitwise-Xor EOR Rd, Rm, Rn

Bitwise-Bit-Clear BIC Rd, RM, Rn

Move-Not MVN Rd, Rn

10.4.4 Comparisons and Branches

The CMP instruction compares two values and sets the N (negative) and
Z (zero) flags in the CPSR, to be read by later instructions. In the case of
comparing a register and an immediate value, the immediate must be the
second operand:

CMP Rd, Rn

CMP Rd, #imm

171

172 CHAPTER 10. ASSEMBLY LANGUAGE

Figure 10.8: ARM Branch Instructions

Opcode Meaning

B Branch Always BL Branch and Link
BX Branch and Exchange BLX Branch-Link-Exchange

BEQ Equal BVS Overflow Set
BNE Not Equal BVC Overflow Clear
BGT Greater Than BHI Higher (unsigned >)
BGE Greater Than or Equal BHS Higher or Same (uns. >=)
BLT Less Than BLO Lower (unsigned <)
BLE Less Than or Equal BLS Lower or Same (uns. <=)
BMI Negative BPL Positive or Zero

In addition, an ”S” can be appended to the arithmetic instructions to
update the CPSR in a similar way. For example, SUBS will subtract two
values, store the result, and update the CPSR.

A variety of branch instructions consult the previously-set values of
the CPSR, and then jump to a given label, if the appropriate flags are set.
An unconditional branch is specified with simply B.

For example, to count from zero to five:

MOV r0, #0

loop: ADD r0, r0, 1

CMP r0, #5

BLT loop

And to conditionally assign a global variable y ten if x is greater than 0
and 20 if it is not

LDR r0, =x

LDR r0, [r0]

CMP r0, #0

BGT .L1

.L0:

MOV r0, #20

B .L2

.L1:

MOV r0, #10

.L2:

LDR r1, =y

STR r0, [r1]

The branch-and-link (BL) instruction, is used to implement function
calls. BL sets the link register to be the address of the next instruction, and
then jumps to the given label. The link register is then used as the return

172

10.4. ARM ASSEMBLY 173

address at the conclusion of the function. The BX instruction branches to
the address given in a register, and is most frequently used to return from a
function call by branching to the link register. BLX performs a branch-and-
link to the address given by a register, and can be used to invoke function
pointers, virtual methods, or any other indirect jump.

A special feature of the ARM instruction set is conditional execution.
A 4-bit field in each instruction word indicates one of 16 possible condi-
tions that must hold, otherwise the instruction is ignored. The various
types of conditional branch shown above are simply a plain branch (B) in-
struction with the various conditions applied. The same two letter suffixes
can be applied to almost any instruction.

For example, suppose we have the following code fragment, which
increments either a or b, depending on which one is smaller:

if(a<b) { a++; } else { b++; }

Instead of implementing this as control flow using branches and labels,
we can simply make each of the two additions conditional upon a previous
comparison. Whichever condition holds true will be executed, and the
other skipped. Assuming that a and b are held in r0 and r1 respectively:

CMP r0, r1

ADDLT r0, r0, #1

ADDGE r1, r1, #1

10.4.5 The Stack

The stack is an auxiliary data structure used primarily to record the func-
tion call history of the program along with local variables that do not fit
in registers. By convention, the stack grows downward from high values to
low values. The sp register is known as the stack pointer and keeps track
of the bottom-most item on the stack.

To push the r0 register onto the stack, we must subtract the size of the
register from sp, and then store r0 into the location pointed to by sp:

SUB sp, sp, #4

STR r0, [sp]

Alternatively, this can be done with a single instruction making use of
pre-indexing and writeback:

STR r0, [sp, #-4]!

The PUSH pseudo-instruction accomplishes the same thing, but can
also move any number of registers (encoded as a bitmask) to the stack.
Curly braces are used to indicate the list of registers to push:

173

174 CHAPTER 10. ASSEMBLY LANGUAGE

Figure 10.9: Summary of ARM Calling Convention

• The first four arguments are placed in registers r0, r1, r2 and r3.

• Additional arguments are pushed on the stack in reverse order.

• The caller must save r0-r3 and r12, if needed.

• the caller must always save r14, the link register.

• The callee must save r4-r11, if needed.

• The result is placed in r0.

PUSH {r0,r1,r2}

Popping a value off the stack involves the opposite:

LDR r0, [sp]

ADD sp, sp, #4

Once again this can be done with a single instruction:

LDR r0, [sp], #4

And, to pop a set of registers all at once:

POP {r0,r1,r2}

Unlike X86, any data items ranging from a byte to a double-word can
be pushed on to the stack, as long as data alignment is respected.

10.4.6 Calling a Function

ARM uses a register calling convention described by the ARM-Thumb
Procedure Call Standard (ATPCS) [4], which is summarized in Figure 10.9.

To call a function, place the desired arguments in the registers r0-r3,
save the (current) value of the link register, and then use the BL instruction
to jump to the function. Upon return, restore the previous value of the link
register, and examine the result in register r0.

For example, the following C function:

int x=0;

int y=10;

int main() {

x = printf("value: %d\n",y);

}

174

10.4. ARM ASSEMBLY 175

Figure 10.10: ARM Register Assignments

Register Purpose Who Saves?

r0 argument 0 / result not saved
r1 argument 1 CALLER saves
r2 argument 2 CALLER saves
r3 argument 3 CALLER saves
r4 scratch callee saves
...
r10 scratch callee saves
r11 frame pointer callee saves
r12 intraprocedure CALLER saves
r13 stack pointer callee saves
r14 link register CALLER saves
r15 program counter saved in link register

Would become the following in ARM:

.data

x: .word 0

y: .word 10

S0: .ascii "value: %d\012\000"

.text

main:

LDR r0, =S0 @ Load address of S0

LDR r1, =y @ Load address of y

LDR r1, [r1] @ Load value of y

PUSH {ip,lr} @ Save registers

BL printf @ Call printf

POP {ip,lr} @ Restore registers

LDR r1, =x @ Load address of x

STR r0, [r1] @ Store return value in x

.end

10.4.7 Defining a Leaf Function

Because function arguments are passed in registers, it is easy to write a
leaf function that computes a value without calling any other functions.
For example, code for the following function:

square: function integer (x: integer) =

{

return x*x;

175

176 CHAPTER 10. ASSEMBLY LANGUAGE

}

Could be as simple as this:

.global square

square:

MUL r0, r0, r0 @ multiply argument by itself

BX lr @ return to caller

Unfortunately, this won’t work for a function that wants to invoke
other functions, because we haven’t set up the stack properly. A more
complex approach is needed for the general case.

10.4.8 Defining a Complex Function

A complex function must be able to invoke other functions and compute
expressions of arbitrary complexity, and then return to the caller with the
original state intact. Consider the following recipe for a function that ac-
cepts three arguments and uses two local variables:

func:

PUSH {fp} @ save the frame pointer

MOV fp, sp @ set the new frame pointer

PUSH {r0,r1,r2} @ save the arguments on the stack

SUB sp, sp, #8 @ allocate two more local variables

PUSH {r4-r10} @ save callee-saved registers

@@@ body of function goes here @@@

POP {r4-r10} @ restore callee saved registers

MOV sp, fp @ reset stack pointer

POP {fp} @ recover previous frame pointer

BX lr @ return to the caller

Through this method, we ensure that we are able to save all the values
in the registers into the stack and ensure that no data will be lost. The
stack, once this has been done, looks very similar to that of the X86 stack,
just with some extra callee-saved registers stored on the stack.

Here is a complete example that puts it all together. Suppose that you
have a B-minor function defined as follows:

compute: function integer

(a: integer, b: integer, c: integer) =

{

x: integer = a+b+c;

y: integer = x*5;

return y;

}

176

10.4. ARM ASSEMBLY 177

Figure 10.11: Example ARM Stack Frame

Contents Address
Saved r12 [fp, #8]

Old LR [fp, #4]
Old Frame Pointer [fp] ← fp points here

Argument 2 [fp, #-4]
Argument 1 [fp, #-8]
Argument 0 [fp, #-12]

Local Variable 1 [fp, #-16]
Local Variable 0 [fp, #-20]

Saved r10 [fp, #-24]
Saved r9 [fp, #-28]
Saved r8 [fp, #-32]
Saved r7 [fp, #-36]
Saved r6 [fp, #-40]
Saved r5 [fp, #-44]
Saved r4 [fp, #-48] ← sp points here

A complete translation of the function is on the next page. Note that
this is one of many ways to construct a valid stack frame for a function
definition. Other approaches are valid, as long as the function uses the
stack frame consistently. For example, the callee could first push all of the
argument and scratch registers on the stack, and then allocate space for
local variables below that. (The reverse process must be used on function
exit, of course.)

Another common approach is for the callee PUSH {fp,ip,lr,pc}
on to the stack, before pushing arguments and local variables. While not
strictly required for implementing the function, it provides additional de-
bugging information in the form of a stack backtrace so that a debugger
can look backwards through the call stack and easily reconstruct the cur-
rent execution state of the program.

The code given is correct, but rather conservative. As it turned out,
this particular function didn’t need to use registers r4 and r5, so it wasn’t
necessary to save and restore them. In a similar way, we could have kept
the arguments in registers without saving them to the stack. The result
could have been computed directly into r0 rather than saving it to a lo-
cal variable. These optimizations are easy to make when writing code by
hand, but not so easy when writing a compiler.

For your first attempt at building a compiler, your code created will
(probably) not be very efficient if each statement is translated indepen-
dently. The preamble to a function must save all the registers, because it
does not know a priori which registers will be used later. Likewise, a state-
ment that computes a value must save it back to a local variable, because

177

178 CHAPTER 10. ASSEMBLY LANGUAGE

Figure 10.12: Complete ARM Example

.global compute

compute:

@@@@@@@@@@@@@@@@@@ preamble of function sets up stack

PUSH {fp} @ save the frame pointer

MOV fp, sp @ set the new frame pointer

PUSH {r0,r1,r2} @ save the arguments on the stack

SUB sp, sp, #8 @ allocate two more local variables

PUSH {r4-r10} @ save callee-saved registers

@@@@@@@@@@@@@@@@@@@@@@@@ body of function starts here

LDR r0, [fp,#-12] @ load argument 0 (a) into r0

LDR r1, [fp,#-8] @ load argument 1 (b) into r1

LDR r2, [fp,#-4] @ load argument 2 (c) into r2

ADD r1, r1, r2 @ add the args together

ADD r0, r0, r1

STR r0, [fp,#-20] @ store the result into local 0 (x)

LDR r0, [fp,#-20] @ load local 0 (x) into a register.

MOV r1, #5 @ move 5 into a register

MUL r2, r0, r1 @ multiply both into r2

STR r2, [fp,#-16] @ store the result in local 1 (y)

LDR r0, [fp,#-16] @ move local 1 (y) into the result

@@@@@@@@@@@@@@@@@@@ epilogue of function restores the stack

POP {r4-r10} @ restore callee saved registers

MOV sp, fp @ reset stack pointer

POP {fp} @ recover previous frame pointer

BX lr @ return to the caller

178

10.4. ARM ASSEMBLY 179

it does not know beforehand whether the local will be used as a return
value. We will explore these issues later in Chapter 12 on optimization.

10.4.9 64-bit Differences

The 64-bit ARMv8-A architecture provides two execution modes: The A32
mode supports the 32-bit instruction set described above, and the A64
mode supports a new 64-bit execution model. This permits a 64-bit CPU
with a supporting operating system to execute a mix of 32-bit and 64-bit
programs simultaneously. Though not binary compatible with A32, the
A64 model follows much of the same architectural principles, with a few
key changes:

Word Size. A64 instructions are still a fixed size of 32 bits, however,
registers and address computations are 64 bits.

Registers. A64 has 32 64-bit registers, named x0-x31. x0 is a dedi-
cated zero register: when read, it always provides the value zero, when
written, there is no effect. x1-x15 are general purpose registers, x16 and
x17 are for interprocess communication, x29 is the frame pointer, x30 is
the link register and x31 is the stack pointer. (The program counter is not
directly accessible from user code.) Instead of using a data type suffix, a
32-bit value may be indicated by naming a register as w#.

Instructions. A64 instructions are largely the same as A32, using the
same mnemonics, with a few differences. Conditional predicates are no
longer part of every instruction. Instead, all conditional codes must per-
form an explicit CMP and then a conditional branch. The LDM/STM in-
structions and pseudo-instructions PUSH/POP are not available and must
be replaced with a sequence of explicit loads and stores. (This can be made
more efficient by using LDP/STP which load and store pairs of registers.

Calling Convention. To invoke a function, the first eight arguments
are placed in registers x0-x7, and the remainder are pushed on to the
stack. The caller must preserve registers x9-x15 and x30 while the callee
must preserve x19-x29. The (scalar) return value is placed in x0, while
extended return values are pointed to by x8.

179

180 CHAPTER 10. ASSEMBLY LANGUAGE

10.5 Further Reading

This chapter has given you a brief orientation to the core features of the
X86 and ARM architectures, enough to write simple programs in the most
direct way. However, you will certainly need to look up specific details
of individual instructions in order to better understand their options and
limitations. Now you are ready to read the detailed reference manuals and
keep them handy while you construct your compiler:

1. Intel64 and IA-32 Architectures Software Developer Manuals. Intel
Corp., 2017.
http://www.intel.com/content/www/us/en/processors/

architectures-software-developer-manuals.html

2. System V Application Binary Interface, Jan Hubicka, An-
dreas Jaeger, Michael Matz, and Mark Mitchell (editors), 2013.
https://software.intel.com/sites/default/files/article/

402129/mpx-linux64-abi.pdf

3. ARM Architecture Reference Manual ARMv8. ARM Limited, 2017.
https://static.docs.arm.com/ddi0487/bb/DDI0487B_b_

armv8_arm.pdf.

4. The ARM-THUMB Procedure Call Standard. ARM Limited, 2000.
https://developer.arm.com/documentation/ihi0042/f/

180

