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Chapter 12 – Optimization

12.1 Overview

Using the basic code generation strategy shown in the previous chapter,
you can build a compiler that will produce perfectly usable, working code.
However, if you examine the output of your compiler, there are many ob-
vious inefficiencies. This stems from the fact that the basic code generation
strategy considers each program element in isolation and so must use the
most conservative strategy to connect them together.

In the early days of high-level languages, before optimization strate-
gies were widespread, code produced by compilers was widely seen as
inferior to that which was hand-written by humans. Today, a modern
compiler has many optimization techniques and very detailed knowledge
of the underlying architecture, and so compiled code is usually (but not
always) superior to that written by humans.

Optimizations can be applied at multiple stages of the compiler. It’s
usually best to solve a problem at the highest level of abstraction possible.
For example, once we have generated concrete assembly code, about the
most we can do is eliminate a few redundant instructions. But, if we work
with a linear IR, we can speed up a long code sequence with smart reg-
ister allocation. And if we work at the level of a DAG or an AST, we can
eliminate entire chunks of unused code.

Optimizations can occur at different scopes within a program. Local
optimizations refer to changes that are limited to a single basic block,
which is a straight-line sequence of code without any flow control. Global
optimizations refer to changes applied to the entire body of a function (or
procedure, method, etc.), consisting of a control-flow-graph where each
node is a basic block. Interprocedural optimizations are even larger, and
take into account the relationships between different functions. Generally,
optimizations at larger scopes are more challenging but have more poten-
tial to improve the program.

This chapter will give you a tour of some common code optimization
techniques that you can either implement in your project compiler, or ex-
plore by implementing them by hand. But this is just an introduction: code
optimization is a very large topic that could occupy a whole second text-
book, and is still an area of active research today. If this chapter appeals to
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196 CHAPTER 12. OPTIMIZATION

you, then check out some of the more advanced books and articles refer-
enced at the end of the chapter.

12.2 Optimization in Perspective

As a programmer – the user of a compiler – it’s important to keep a sense
of perspective about compiler optimizations. Most production compilers
do not perform any major optimizations when run with the default op-
tions. There are several reasons for this. One reason is compilation time:
when initially developing and debugging a program, you want to be able
to edit, compile, and test many times rapidly. Almost all optimizations re-
quire additional compilation time, which doesn’t help in the initial devel-
opment phases of a program. Another reason is that not all optimizations
automatically improve a program: they may cause it to use more memory,
or even run longer! Yet another reason is that optimizations can confuse
debugging tools, making it difficult to relate program execution back to
the source code.

Thus, if you have a program that doesn’t run as fast as you would like,
it’s best to stop and think about your program from first principles. Two
suggestions to keep in mind:

• Examine the overall algorithmic complexity of your program: a bi-
nary search (O(log n)) is always going to outperform a linear search
(O(n)) for sufficiently large n. Improving the high-level approach of
your program is likely to yield much greater benefits than a low-level
optimization.

• Measure the performance of your program. Use a standard profiling
tool like gprof [4] to measure where, exactly, your program spends
most of its time, and then focus your efforts on improving that one
piece of code by either rewriting it, or enabling the appropriate com-
piler optimizations.

Once your program is well-written from first principles, then it is time
to think about enabling specific compiler optimizations. Most optimiza-
tions are designed to target a certain pattern of behavior in code, and so
you may find it helpful to write your code in those easily-identified pat-
terns. In fact, most of the patterns discussed below can be performed by
hand without the compiler’s help, allowing you to do a head-to-head com-
parison of different code patterns.

Of course, the fragments of code presented in this chapter are all quite
small, and thus are only significant if they are performed a large number
of times within a program. This typically happens inside one or more
nested loops that constitute the main activity of a program, often called
the kernel of a computation. To measure the cost of, say, multiplying two
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#include <time.h>

struct timeval start,stop,elapsed;

gettimeofday(&start,0);

for(i=0;i<1000000;i++) {

x = x * y;

}

gettimeofday(&stop,0);

timersub(&stop,&start,&elapsed);

printf("elapsed: %d.%06d sec",

elapsed.tv_sec,elapsed.tv_usec);

Figure 12.1: Timing a Fast Operation

values together, perform it one million times within a timer interval, as
shown in Figure 12.1.

Careful: The timer will count not only the action in the loop, but also
the code implementing the loop, so you need to normalize the result by
subtracting the runtime of an empty loop.

12.3 High-Level Optimizations

12.3.1 Constant Folding

Good programming practices often encourage the liberal use of named
constants throughout to clarify the purpose and meaning of values. For
example, instead of writing out the obscure number 86400, one might
write out the following expression to yield the same number:

const int seconds_per_minute=60;

const int minutes_per_hour=60;

const int hours_per_day=24;

int seconds_per_day = seconds_per_minute

* minutes_per_hour

* hours_per_day;

The end result is the same (86400) but the code is much clearer about
the purpose and origin of that number. However, if translated literally, the
program would contain three excess constants, several memory lookups,
and two multiplications to obtain the same result. If done in the inner
loop of a complex program, this could be a significant waste. Ideally, it
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struct expr * expr_fold( struct expr *e )

{

expr_fold( e->left )

expr_fold( e->right )

if( e->left and e->right are both constants ) {

f = expr_create( EXPR_CONSTANT );

f->value = e->operator applied to

e->left->value and e->right->value

expr_delete(e->left);

expr_delete(e->right);

return f;

} else {

return e;

}

}

Figure 12.2: Constant Folding Pseudo-Code

should be possible for the programmer to be verbose without resulting in
an inefficient program.

Constant folding is the technique of converting an expression (or part
of an expression) by combining multiple constants into a single constant.
An operator node in the tree with two constant child nodes can be con-
verted into a single node with the result of the operation computed in
advance. The process can cascade up so that complex expressions may
be reduced to a single constant. In effect, it moves some of the program’s
work from execution-time to compile-time.

This can be implemented by a recursive function that performs a post
order traversal of the expression tree. Figure 12.2 gives pseudo code for
constant folding on the AST.

One must be careful that the result computed in advance is precisely
equal to what would have been performed at runtime. This requires using
variables of the same precision and dealing with boundary cases such as
underflow, overflow, and division by zero. In these cases, it is typical to
force a compile-time error, rather than compute an unexpected result.

While the effects of constant folding may seem minimal, it often is the
first step in enabling a chain of further optimizations.
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12.3.2 Strength Reduction

Strength reduction is the technique of converting a special case of an ex-
pensive operation into a less expensive operation. For example, the source
code expression xˆy for exponentiation on floating point values is, in gen-
eral, implemented as a call to the function pow(x,y), which might be
implemented as an expansion of a Taylor series. However, in the particu-
lar case of xˆ2 we can substitute the expression x*x which accomplishes
the same thing. This avoids the extra cost of a function call and many loop
iterations. In a similar way, multiplication/division by any power of two
can be replaced with a bitwise left/right shift, respectively. For example,
x*8 can be replaced with x<<3.

Some compilers also contain rules for strength reduction of operations
in the standard library. For example, recent versions of gcc will substi-
tute a call to printf(s) with a constant string s to the equivalent call
to puts(s). In this case, the strength reduction comes from reducing the
amount of code that must be linked into the program: puts is very simple,
while printf has a large number of features and further code dependen-
cies.1

12.3.3 Loop Unrolling

Consider the common construct of using a loop to compute variations of
a simple expression many times:

for(i=0;i<400;i++) {

a[i] = i*2 + 10;

}

In any assembly language, this will only require a few instructions in
the loop body to compute the value of a[i] each time. But, the instruc-
tions needed to control the loop will be a significant fraction of the execu-
tion time: each time through the loop, we must check whether i<400 and
jump back to the top of the loop.

Loop unrolling is the technique of transforming a loop into another
that has fewer iterations, but does more work per iteration. The number of
repetitions within the loop is known as the unrolling factor. The example
above could be safely transformed to this:

for(i=0;i<400;i+=4) {

a[i] = i*2 + 10;

a[i+1] = (i+1)*2 + 10;

a[i+2] = (i+2)*2 + 10;

1While there is a logic to this sort of optimization, it does seem like an unseemly level of
familiarity between the compiler and the standard library, which may have different devel-
opers and evolve independently.
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a[i+3] = (i+3)*2 + 10;

}

Or this:

for(i=0;i<400;i++) {

a[i] = i*2 + 10;

i++;

a[i] = i*2 + 10;

i++;

a[i] = i*2 + 10;

i++;

a[i] = i*2 + 10;

}

Increasing the work per loop iteration saves some unnecessary eval-
uations of i<400, and it also eliminates branches from the instruction
stream, which avoids pipeline stalls and other complexities within the mi-
croprocessor.

But how much should a loop be unrolled? The unrolled loop could
contain 4, 8, 16 or even more items per iteration. In the extreme case,
the compiler could eliminate the loop entirely and replace it with a finite
sequence of statements, each with a constant value:

a[0] = 0 + 10;

a[1] = 2 + 10;

a[2] = 4 + 10;

. . .

As the unrolling factor increases, unnecessary work in the loop struc-
tures are eliminated. However, the increasing code size has its own cost:
instead of reading the same instructions over and over again, the processor
must keep loading new instructions from memory. If the unrolled loop re-
sults in a working set larger than the instruction cache, then performance
may end worse than the original code.

For this reason, there are no hard-and-fast rules on when to use loop
unrolling. Compilers often have global options for unrolling that can be
modified by a #pragma placed before a specific loop. Manual experimen-
tation may be needed to get good results for a specific program. 2

12.3.4 Code Hoisting

Sometimes, code fragments inside a loop are constant with each iteration
of the loop. In this case, it is unnecessary to recompute on every iteration,

2The GCC manual has this to say about the -funroll-all-loops option: “This usually
makes programs run more slowly.”
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and so the code can be moved to the block preceding the loop, which is
known as code hoisting. For example, the array index in this example is
constant throughout the loop, and can be computed once before the loop
body:

for(i=0;i<400;i++) {

a[x*y] += i;

}

t = x*y;

for(i=0;i<400;i++) {

a[t] += i;

}

Unlike loop unrolling, code hoisting is a relatively benign optimiza-
tion. The only cost of the optimization is that the computed result must
occupy a temporary location for the duration of the loop, which slightly
increases either register pressure or local storage consumption. This is off-
set by the elimination of unnecessary computation.

12.3.5 Function Inlining

Function inlining is the process of substituting a function call with the
effect of that function call directly in the code. This is particularly useful
for brief functions that exist to improve the clarity or modularity of code,
but do not perform a large amount of computation. For example, suppose
that the simple function quadratic is called from many times within a
loop, like this:

int quadratic( int a, int b, int x ) {

return a*x*x + b*x + 30;

}

for(i=0;i<1000;i++) {

y = quadratic(10,20,i*2);

}

The overhead of setting up the parameters and invoking the function
likely exceeds the cost of doing the handful of additions and multiplies
within the function itself. By inlining the function code into the loop, we
can improve the overall performance of the program.

Function inlining is most easily performed on a high-level represen-
tation such as an AST or a DAG. First, the body of the function must be
duplicated, then the parameters of the invocation must be substituted in.
Note that, at this level of evaluation, the parameters are not necessarily
constants, but may be complex expressions that contain unbound values.

For example, the invocation of quadratic above can be substituted
with the expression (a*x*x+b*x+30) under the binding of a=10, b=20,
and x=i*2. Once this substitution is performed, unbound variables such
as i are relative to the scope where quadratic was called, not where it
was defined. The resulting code looks like this:
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for(i=0;i<1000;i++) {

y = 10*(i*2)*(i*2) + 20*(i*2) + 30;

}

This example highlights a hidden potential cost of function inlining: an
expression (like i*2) which was previously evaluated once and then used
as a parameter to the function, is now evaluated multiple times, which
could increase the cost of the expression. On the other hand, this expan-
sion could be offset by algebraic optimizations which now have the oppor-
tunity to simplify the combination of the function with its concrete param-
eters. For example, constant folding applied to the above example yields
this:

for(i=0;i<1000;i++) {

y = 40*i*i + 40*i + 30;

}

Generally speaking, function inlining is best applied to simple leaf
functions that are called frequently and do little work relative to the cost
of invocation. However, making this determination automatically is chal-
lenging to get right, because the benefits are relatively clear, but the costs
in terms of increased code size and duplicated evaluations are not so easy
to quantify. As a result, many languages offer a keyword (like inline in
C and C++) that allow the programmer to make this determination manu-
ally.

12.3.6 Dead Code Detection and Elimination

It is not uncommon for a compiled program to contain some amount of
code that is completely unreachable and will not be executed under any
possible input. This could be as simple as a mistake by the programmer,
who by accident returned from a function before the final statement. Or,
it could be due to the application of multiple optimizations in sequence
that eventually result in a branch that will never be executed. Either way,
the compiler can help by flagging it for the programmer or removing it
outright.

Dead code detection is typically performed on a control flow graph
after constant folding and other expression optimizations have been per-
formed. For example, consider the following code fragment and its control
flow graph:

202



12.3. HIGH-LEVEL OPTIMIZATIONS 203

if( x<y ) {

return 10;

} else {

print "hello";

}

print "goodbye";

return 30;

if
x<y

return 10
T

print "hello"

F print "goodbye" return 30

A return statement causes an immediate termination of the function
and (from the perspective of the control flow graph) is the end of the ex-
ecution path. Here, the true branch of the if statement immediately re-
turns, while the false branch falls through to the next statement. For some
values of x and y, it is possible to reach every statement.

However, if we make a slight change, like this:

if( x<y ) {

return 10;

} else {

return 20;

}

print "goodbye";

return 30;

if
x<y

return 10
T

return 20

F print "hello" return 30

Then, both branches of the if statement terminate in a return, and it
is not possible to reach the final print and return statements. This is
(likely) a mistake by the programmer and should be flagged.

Once the control flow graph is created, determining reachability is sim-
ple: perform a traversal of the CFG, starting from the entry point of the
function, marking each node as it is visited. Once the traversal is com-
plete, any unmarked nodes are known to be unreachable. The compiler
may either generate a suitable error message or simply not generate code
for the unreachable portion. 3

Reachability analysis becomes particularly powerful when combined
with other forms of static analysis. In the example above, suppose that
variables x and y are defined as constants 100 and 200, respectively. Con-
stant folding can reduce x<y to simply true, with the result that the false
branch of the if statement is never taken and therefore unreachable.

Now, don’t get carried away with this line of thinking. If you were
paying attention in your theory-of-computing course, this may sound sus-
piciously like the Halting Problem: can we determine whether an arbitrary
program written in a Turing-complete language will run to completion,
without actually executing it? The answer is, of course, no, not in the gen-
eral case. Reachability analysis simply determines in some limited cases that

3A slight variation on this technique can be used to evaluate whether every code path
through a function results in a suitable return statement. This is left as an exercise to the
reader.
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a certain branch of a program is impossible to take, regardless of the pro-
gram input. It does not state that the “reachable” branches of the program
will be taken for some input, or for any input at all.

12.4 Low-Level Optimizations

All of the optimizations discussed so far can be applied to the high-level
structure of a program, without taking into account the particular target
machine. Low-level optimizations focus more on the translation of the
program structure in a way that best exploits the peculiarities of the un-
derlying machine.

12.4.1 Peephole Optimizations

Peephole optimizations refer to any optimization that looks very nar-
rowly at a small section of code – perhaps just two or three instructions
– and makes a safe, focused change within that section. These sort of opti-
mizations are very easy to implement as the final stage of compilation, but
have a limited overall effect.

Redundant load elimination is a common peephole optimization. A
sequence of expressions that both modifies and uses the same variable can
easily result in two adjacent instructions that save a register into memory,
and then immediately load the same value again:

Before:

MOVQ %R8, x

MOVQ x, %R8

After:

MOVQ %R8, x

A slight variation is that a load to a different register can be converted
into a direct move between registers, thus saving an unnecessary load and
pipeline stall:

Before:

MOVQ %R8, x

MOVQ x, %R9

After:

MOVQ %R8, x

MOVQ %R8, %R9

12.4.2 Instruction Selection

In Chapter 11, we presented a simple method of code generation where
each node of the AST (or DAG) was replaced with at least one instruc-
tion (and in some cases, multiple instructions). In a rich CISC instruction
set, a single instruction can easily combine multiple operations, such as
dereferencing a pointer, accessing memory, and performing an arithmetic
operation.

To exploit these powerful instructions, we can use the technique of in-
struction selection by tree coverage. [5] The idea is to first represent each
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possible instruction in the architecture as a template tree, where the leaves
can be registers, constants, or memory addresses that can be substituted
into an instruction.

For example, one variant of the X86 ADDQ instruction can add two reg-
isters together. This can be used to implement an IADD node in the DAG,
provided the leaves of the IADD are stored in registers. Once the add is
complete, the ADDQ places the result in the same register as the second ar-
gument. This is all expressed as a tree fragment that matches a part of the
DAG, and an instruction to be emitted, once specific register numbers are
chosen:

ADDQ Cj, Ri

RiIADD

Ri Cj

Figure 12.3 gives a few more examples of X86 instructions that can be
represented as tree templates. The simple instructions at the top simply
substitute one entity in the DAG for another: MOV $Cj, Ri converts a
constant into a register, while MOV Mx, Ri converts a memory location
into a register. Richer instructions have more structure: the complex load
MOV Cj(Rl,8), Ri can be used to represent a combination of add, mul-
tiply, and dereference.

Of course, Figure 12.3 is not the complete X86 instruction set. To de-
scribe even a significant subset would require hundreds of entries, with
multiple entries per instruction to capture the multiple variations on each
instruction. (For example, you would need one template for an ADDQ on
two registers, and another for a register-memory combination.) But this
is a feasible task and perhaps easier to accomplish than hand-writing a
complete code generator.

With the complete library of templates written, the job of the code gen-
erator is to examine the tree for sub-trees that match an instruction tem-
plate. When one is found, the corresponding instruction is emitted (with
appropriate substitutions for register numbers, etc.) and the matching por-
tion of the tree replaced with the right side of the template.

For example, suppose we wish to generate X86 code for the statement
a[i] = b + 1; Let us suppose that b is a global variable, while a and
i are local variables at positions 40 and 32 above the base pointer, respec-
tively. Figure 12.4 shows the steps of tree rewriting. In each DAG, the box
indicates the subtree that matches a rule in Figure 12.3.

Step 1: The left IADD should be executed first to compute the value
of the expression. Looking at our table of templates, there is no IADD that
can directly add a memory location to a constant. So, we instead select rule
(2), which emits the instruction MOVQ b, %R0 and converts the left-hand
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RiCj
1 : MOVQ $Cj, Ri

RiMx
2 : MOVQ Mx, Ri

RiDEREF

Rj

3 : MOVQ (Rj), Ri

RiIADD

Ri Cj

4 : ADDQ Cj, Ri

RiDEREF

IADD

Rk Cj

5 : MOVQ Cj(Rk), Ri

6 : LEAQ Cj(RBP), Ri

RiIADD

RBP Cj

7 : MOVQ Ri, (Rk, Rl, 8)

Ri

IADD

IMUL Rk

8

ASSIGN

Ri DEREF

Rl

Figure 12.3: Example X86 Instruction Templates

side of the template (a memory location) into the right hand side (register
%R0).

Step 2: Now we can see an IADD of a register and a constant, which
matches the template of rule (4). We emit the instruction ADDQ $1, %R0

and replace the IADD subtree with the register %R0.

Step 3: Now let’s look at the other side of the tree. We can use rule
(5) to match the entire subtree that loads the variable i from %RBP+32 by
emitting the instruction MOVQ 32(%RBP), %R1 and replacing the subtree
with the register %R1.

Step 4: In a similar way, we can use rule (6) to compute the address of a
by emitting LEAQ 40(%RBP), %R2. Notice that this is, in effect, a three-
address addition specialized for use with a register and the base pointer.
Unlike rule 4, it does not modify the source register.

Step 5: Finally, template rule (7) matches most of what is remaining.
We can emit MOVQ %R0,(%R2,%R1,8) which stores the value in R1 into
the computed array address of a. The left side of the template is replaced
with the right-hand side, leaving nothing but the register %R0. With the
tree completely reduced to a single register, code generation is complete,
and register %R0 can be freed.
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IADD

b 1

IADD

32 RBP

IADD

RBP 40 DEREF

ASSIGN

DEREF

IADD

IMUL

8

IADD

R0 1

IADD

32 RBP

IADD

RBP 40 DEREF

ASSIGN

DEREF

IADD

IMUL

8

IADD

32 RBP

IADD

RBP 40 DEREF

ASSIGN

R0 DEREF

IADD

IMUL

8

IADD

RBP 40

ASSIGN

R0 DEREF

IADD

IMUL

R1 8

ASSIGN

R0 DEREF

IADD

R2 IMUL

R1 8

Figure 12.4: Example of Tree Rewriting

Under the simple code generation scheme, this 16-node DAG would
have produced (at least) 16 instructions of output. By using tree coverage,
we reduced the output to these five instructions:

MOVQ b,%R0

ADDQ $1,%R0

MOVQ 32(%RBP),%R1

LEAQ 40(%RBP),%R2

MOVQ %R0,(%R2,%R1,8)

12.5 Register Allocation

In modern CPUs, on-chip computational speed far outstrips memory la-
tency: thousands of arithmetic operations can be completed in the time
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it takes to perform a single load or store. It follows that any optimiza-
tions that eliminates a load or store from memory can have a considerable
impact on the performance of a program. Eliminating completely unnec-
essary code and variables is the first step towards doing this.

The next step is to assign specific local variables into registers, so they
never need to be loaded from or stored to memory. Of course, there are
a limited number of registers and not every variable can claim one. The
process of register allocation is to identify the variables that are the best
candidates for locating in registers instead of memory.

The mechanics of converting a variable into a register are straightfor-
ward. In each case where a value would be loaded from or stored into a
memory location, the compiler simply substitutes the assigned register as
the location of the value, so that it is used directly as the source or target
of an instruction. The more complicated questions relate to whether it is
safe to registerize a variable, which variables are most important to register-
ize, and which variables can coexist in registers at once. Let’s look at each
question in turn.

12.5.1 Safety of Register Allocation

It is unsafe to registerize a variable if the eliminated memory access has
some important side effect or visibility outside of the code under consid-
eration. Examples of variables that should not be registerized include:

• Global variables shared between multiple functions or modules.

• Variables used as communication between concurrent threads.

• Variables accessed asynchronously by interrupt handlers.

• Variables used as memory-mapped I/O regions.

Note that some of these cases are more difficult to detect than others!
Globally shared variables are already known to the compiler, but the other
three cases are (often) not reflected in the language itself. In the C lan-
guage, one can mark a variable with the volatile keyword to indicate
that it may be changed by some method unknown to the compiler, and
therefore clever optimizations should not be undertaken. Low-level code
found in operating systems or parallel programs is often compiled without
such optimizations, so as to avoid these problems.

12.5.2 Priority of Register Allocation

For a small function, it may be possible to registerize all the variables, so
that memory is not used at all. But for even a moderately complex function
(or a CPU that has few available registers) it is likely that the compiler
must choose a limited number of variables to registerize.
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Before automatic register allocation was developed, the programmer
was responsible for identifying such variables manually. For example, in
early C compilers, one could add the register keyword to a variable
declaration, forcing it to be stored in a register. This was typically done
for the index variable of the inner-most loop. Of course, the programmer
might not choose the best variable, or they might choose too many register
variables, leaving too few available for temporaries. Today, the register
keyword is essentially ignored by C compilers, which are capable of mak-
ing informed decisions.

What strategy should we use to automatically pick variables to reg-
isterize? Naturally, those that experience the most number of loads and
stores as the program runs. One could profile an execution of the program,
count the memory accesses per variable, and then go back and select the
top n variables. Of course, that would be a very slow and expensive pro-
cedure for optimizing a program, but one might conceivably go about it
for a very performance-critical program.

A more reasonable approach would be to score variables via static anal-
ysis with some simple heuristics. In a linear sequence of code, each vari-
able can be directly scored by the number of loads and stores it performs:
the variable with the highest score is the best candidate. However, a vari-
able access that appears inside a loop is likely to have a much higher access
count. How large, we cannot say, but we can assume that a loop (and each
nesting of a loop) multiplies the importance of a variable by a large con-
stant. Multiply-nested loops increase importance in the same way.

12.5.3 Conflicts Between Variables

Not every variable needs a distinct register. Two variables can be assigned
to the same register if their uses do not conflict. To determine this, we
must first compute the live ranges of each variable and then construct a
conflict graph. Within a basic block of a linear IR, a variable is live from
its first definition until its final use. (If the same code is expressed in SSA
form, then each version of a variable can be treated independently, with
its own live range.)

Now, each variable with an overlapping range cannot share the same
register, because they must exist independently. Conversely, two variables
that do not have an overlapping live range can be assigned the same reg-
ister. We can construct a conflict graph where each node in the graph rep-
resents a variable, and then add edges between nodes whose live ranges
overlap. Figure 12.5 gives an example of a conflict graph.

Register allocation now becomes an instance of the graph coloring
problem. [7] The goal is to assign each node in the graph a different color
(register) such that no two adjacent nodes have the same color. A planar
graph (like a two-dimensional political map) can always be colored with
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Code Live Variables

1. x = 10; x

2. y = 10; x, y

3. a = x * y; x, y, a

4. b = a * a; x, a, b

5. a = b + 30; x, a, b

6. x = x + 1; x,

7. z = x * x; x, z

8. return z; z

x

y

a
b

z

Figure 12.5: Live Ranges and Register Conflict Graph

four colors. 4 However, a register conflict graph is not necessarily planar,
and so may require a large number of colors. The general problem of find-
ing the minimum number of colors needed is NP-complete, but there are
a number of simpler heuristics that are effective in practice.

A common approach is to sort the nodes of the graph by the number
of edges (conflicts), and then assign registers to the most conflicted node
first. Then, proceeding down the list, assign each node a register that is not
already taken by an adjacent node. If at any point, the number of available
registers is exhausted, then mark that node as a non-registerized variable,
and continue, because it may be still possible to assign registers to nodes
with fewer conflicts.

12.5.4 Global Register Allocation

The procedure above describes the analysis of live variables and register
allocation for individual basic blocks. However, if each basic block is al-
located independently, it would be very difficult to combine basic blocks,
because variables would be assigned to different registers, or none at all.
It would become necessary to introduce code between each basic block to
move variables between registers or to/from memory, which could defeat
the benefits of allocation in the first place.

In order to perform global register allocation across an entire function
body, we must do so in a way that keeps assignments consistent, no matter

4This mathematical problem has a particularly colorful (ahem) history. In 1852, Francis
Guthrie conjectured that only four colors were necessary to color a planar graph, while at-
tempting to color a map of Europe. He brought this problem to Augustus De Morgan, who
popularized it, leading to several other mathematicians who published several (incorrect)
proofs in the late 1800s. In 1891, Percy John Heawood proved that no more than five colors
were sufficient, and that’s where things stood for the next 85 years. In 1976, Kenneth Appel
and Wolfgang Haken produced a computer-assisted proof of the four-color theorem, but the
proof contained over 400 pages of case-by-case analysis which had to be painstakingly ver-
ified by hand. This caused consternation in the mathematical community, partly due to the
practical difficulty of verifying such a result, but also because this proof was unlike any that
had come before. Does it really count as a “proof” if it cannot be easily contemplated and
verified by a human? [2]
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a=10;

for(i=0;i<10;i++) {

a = a*3;

}

x = a*2;

print x;

print a;

Block A:
i=0
a=10

Block B:
i<10 ?

Block C:
i++
a=a*3

T

Block D:
x=a*2
print x
print a

F

i
{ABC}

a
{ABCD}

x
{D}

Figure 12.6: Example of Global Register Allocation
To perform register allocation on code (left) consisting of more than a basic block,
build the control flow graph (middle) and then determine the blocks in which
a given variable is live. Construct a conflict graph (right) such that variables
sharing a live block are in conflict, and then color the graph.

where the control flow leads. To do this, we first construct the control flow
graph for the function. For each variable definition in the graph, trace the
possible forward paths to uses of that variable, taking into account multi-
ple paths made possible by loops and branches. If there exists a path from
definition to use, then all the basic blocks in that path are members of the
set of live basic blocks for that variable. Finally, a conflict graph may be
constructed based on the sets of live blocks: each node represents a vari-
able and its set of live basic blocks; each edge represents a conflict between
two variables whose live sets intersect. (As above, the same analysis can
be performed in SSA form for a more fine-grained register assignment.)
Figure 12.6 gives an example of this analysis for a simple code fragment.

12.6 Optimization Pitfalls

Now that you have seen some common optimization techniques, you
should be aware of some pitfalls common to all techniques.

Be careful of the correctness of optimizations. A given piece of code
must produce the same result before and after optimization, for all possi-
ble inputs. We must be particularly careful with the boundary conditions
of a given piece of code, where inputs are particularly large, or small, or
run into fundamental limitations of the machine. These concerns require
careful attention, particularly when applying general mathematical or log-
ical observations to concrete code.

For example, it is tempting to apply common algebraic transformations
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to arithmetic expressions. We might transform a/x + b/x into (a+b)/x
because these expressions are equal in the abstract world of real numbers.

Unfortunately, these two expressions are not the same in the concrete
world of limited-precision mathematics. Suppose that a, b, and x are 32-
bit signed integers, with a range of [−231,+231). If both a and b have the
value 2,000,000,000, then a/5 is 400,000,000 and a/5+b/5 is 800,000,000.
However, a+b overflows a 32-bit register and wraps around to a negative
value, so that (a+b)/5 is -58993459! An optimizing compiler must be ex-
tremely cautious that any code transformations produce the same results
under all possible values in the program.

Be careful not to change external side-effects. Many aspects of real
programs depend upon the side-effects, not the results of a computation.
This is most apparent in embedded systems and hardware drivers, where
an operating system or an application communicates with external devices
through memory-mapped registers. But, it is also the case in conventional
user-mode programs that may perform I/O or other forms of communica-
tion via system calls: a write() system call should never be eliminated
by an optimization. Unfortunately, positively identifying every external
function that has side effects is impractical. An optimizing compiler must
conservatively assume that any external function might have a side effect,
and leave it untouched.

Be careful of how optimization changes debugging. A program com-
piled with aggressive optimizations can show surprising behavior when
run under a debugger. Statements may be executed in a completely dif-
ferent order than stated in the program, giving the impression that the
program flow jumps forwards and backwards without explanation. En-
tire parts of the program may be skipped entirely, if they are determined
to be unreachable, or have been simplified away. Variables mentioned in
the source might not exist in the executable at all. Breakpoints set on func-
tion calls may never be reached, if the function has been inlined. In short,
many of the things observable by a debugger are not really program re-
sults, but hidden internal state and are not guaranteed to appear in the
final executable program. If you expect your program to have bugs – and
it will – better fix them before enabling optimizations.

12.7 Optimization Interactions

Multiple optimizations can interact with each other in ways that are unpre-
dictable. Sometimes, these interactions cascade in positive ways: constant
folding can support reachability analysis, resulting in dead code elimi-
nation. On the other hand, optimizations can interact in negative ways:
function inlining can result in more complex expressions, resulting in less
efficient register allocation. What’s worse is that one set of optimizations
may be very effective on one program, but counter-productive on another.

A modern optimizing compiler can easily have fifty different optimiza-
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tion techniques of varying complexity. If it is only a question of turning
each optimization on or off, then there are (only) 250 combinations. But, if
the optimizations can be applied in any order, there are fact(50) permuta-
tions! How is the user to decide which optimizations to enable?

Most production compilers define a few discrete levels of optimization.
For example, gcc defines -O0 as the fastest compile speed, with no opti-
mization, -O1 enables about thirty optimizations with modest compile-
time expense and few runtime drawbacks (e.g. dead code elimination),
-O2 enables another thirty optimizations with greater compile-time ex-
pense (e.g. code hoisting), and -O3 enables aggressive optimizations that
may or may not pay off (e.g. loop unrolling). On top of that, individual
optimizations may be turned on or off manually.

But is it possible to do better with finer-grained control? A number of
researchers have explored methods of finding the best combinations of op-
timizations, given a benchmark program that runs reasonably quickly. For
example, the CHiLL [8] framework combines parallel execution of bench-
marks with a high-level heuristic search algorithm to prune the overall
search space. Another approach is to use genetic algorithms [9] in which
a representative set of configurations is iteratively evaluated, mutated, re-
combined, until a strong configuration emerges.
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12.8 Exercises

1. To get a good sense of the performance of your machine, follow the
advice of Jon Bentley [1] and write some simple benchmarks to mea-
sure these fundamental operations:

(a) Integer arithmetic.

(b) Floating point arithmetic.

(c) Array element access.

(d) A simple function call.

(e) A memory allocation.

(f) A system call like open().

2. Obtain a standard set of benchmark codes (such as SPEC) and evalu-
ate the effect of various optimization flags available on your favorite
compiler.

3. Implement the constant folding optimization in the AST of your project
compiler.

4. Identify three opportunities for strength reduction in the B-Minor
language, and implement them in your project compiler.

5. Implement reachability analysis in your project compiler, using ei-
ther the AST or a CFG. Use this to ensure that all flow control paths
through a function end in a suitable return statement.

6. Write code to compute and display the live ranges of all variables
used in your project compiler.

7. Implement linear-scan register allocation [6] on basic blocks, based
on the live ranges computed in the previous exercise.

8. Implement graph-coloring register allocation [7] on basic blocks, based
on the live ranges computed in the previous exercise.
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