
Introduction to Compilers and Language Design
Copyright © 2023 Douglas Thain.
Paperback ISBN: 979-8-655-18026-0
Second edition.

Anyone is free to download and print the PDF edition of this book for per-
sonal use. Commercial distribution, printing, or reproduction without the
author’s consent is expressly prohibited. All other rights are reserved.

You can find the latest version of the PDF edition, and purchase inexpen-
sive hardcover copies at http://compilerbook.org

Revision Date: August 24, 2023

11

Chapter 3 – Scanning

3.1 Kinds of Tokens

Scanning is the process of identifying tokens from the raw text source code
of a program. At first glance, scanning might seem trivial – after all, iden-
tifying words in a natural language is as simple as looking for spaces be-
tween letters. However, identifying tokens in source code requires the
language designer to clarify many fine details, so that it is clear what is
permitted and what is not.

Most languages will have tokens in these categories:

• Keywords are words in the language structure itself, like while or
class or true. Keywords must be chosen carefully to reflect the
natural structure of the language, without interfering with the likely
names of variables and other identifiers.

• Identifiers are the names of variables, functions, classes, and other
code elements chosen by the programmer. Typically, identifiers are
arbitrary sequences of letters and possibly numbers. Some languages
require identifiers to be marked with a sigil (like the dollar sign in
Perl) to clearly distinguish identifiers from keywords.

• Numbers could be formatted as integers, or floating point values, or
fractions, or in alternate bases such as binary, octal or hexadecimal.
Each format should be clearly distinguished, so that the programmer
does not confuse one with the other.

• Strings are literal character sequences that must be clearly distin-
guished from keywords or identifiers. Strings are typically quoted
with single or double quotes, but also must have some facility for
containing quotations, newlines, and unprintable characters.

• Comments and whitespace are used to format a program to make it
visually clear, and in some cases (like Python) are significant to the
structure of a program.

When designing a new language, or designing a compiler for an exist-
ing language, the first job is to state precisely what characters are permit-
ted in each type of token. Initially, this could be done informally by stating,

11

12 CHAPTER 3. SCANNING

token_t scan_token(FILE *fp) {

int c = fgetc(fp);

if(c==’*’) {

return TOKEN_MULTIPLY;

} else if(c==’!’) {

char d = fgetc(fp);

if(d==’=’) {

return TOKEN_NOT_EQUAL;

} else {

ungetc(d,fp);

return TOKEN_NOT;

}

} else if(isalpha(c)) {

do {

char d = fgetc(fp);

} while(isalnum(d));

ungetc(d,fp);

return TOKEN_IDENTIFIER;

} else if (. . .) {

. . .

}

}

Figure 3.1: A Simple Hand Made Scanner

for example, “An identifier consists of a letter followed by any number of letters
and numerals.”, and then assigning a symbolic constant (TOKEN IDENTIFIER)
for that kind of token. As we will see, an informal approach is often am-
biguous, and a more rigorous approach is needed.

3.2 A Hand-Made Scanner

Figure 3.1 shows how one might write a scanner by hand, using simple
coding techniques. To keep things simple, we only consider just a few
tokens: * for multiplication, ! for logical-not, != for not-equal, and se-
quences of letters and numbers for identifiers.

The basic approach is to read one character at a time from the input
stream (fgetc(fp)) and then classify it. Some single-character tokens are
easy: if the scanner reads a * character, it immediately returns
TOKEN MULTIPLY, and the same would be true for addition, subtraction,
and so forth.

However, some characters are part of multiple tokens. If the scanner
encounters !, that could represent a logical-not operation by itself, or it
could be the first character in the != sequence representing not-equal-to.

12

3.3. REGULAR EXPRESSIONS 13

Upon reading !, the scanner must immediately read the next character. If
the next character is =, then it has matched the sequence != and returns
TOKEN NOT EQUAL.

But, if the character following ! is something else, then the non-matching
character needs to be put back on the input stream using ungetc, because
it is not part of the current token. The scanner returns TOKEN NOT and will
consume the put-back character on the next call to scan token.

In a similar way, once a letter has been identified by isalpha(c), then
the scanner keeps reading letters or numbers, until a non-matching char-
acter is found. The non-matching character is put back, and the scanner
returns TOKEN IDENTIFIER.

(We will see this pattern come up in every stage of the compiler: an
unexpected item doesn’t match the current objective, so it must be put
back for later. This is known more generally as backtracking.)

As you can see, a hand-made scanner is rather verbose. As more to-
ken types are added, the code can become quite convoluted, particularly
if tokens share common sequences of characters. It can also be difficult
for a developer to be certain that the scanner code corresponds to the de-
sired definition of each token, which can result in unexpected behavior on
complex inputs. That said, for a small language with a limited number of
tokens, a hand-made scanner can be an appropriate solution.

For a complex language with a large number of tokens, we need a more
formalized approach to defining and scanning tokens. A formal approach
will allow us to have a greater confidence that token definitions do not
conflict and the scanner is implemented correctly. Further, a formal ap-
proach will allow us to make the scanner compact and high performance
– surprisingly, the scanner itself can be the performance bottleneck in a
compiler, since every single character must be individually considered.

The formal tools of regular expressions and finite automata allow us
to state very precisely what may appear in a given token type. Then, auto-
mated tools can process these definitions, find errors or ambiguities, and
produce compact, high performance code.

3.3 Regular Expressions

Regular expressions (REs) are a language for expressing patterns. They
were first described in the 1950s by Stephen Kleene [4] as an element of
his foundational work in automata theory and computability. Today, REs
are found in slightly different forms in programming languages (Perl),
standard libraries (PCRE), text editors (vi), command-line tools (grep),
and many other places. We can use regular expressions as a compact
and formal way of specifying the tokens accepted by the scanner of a
compiler, and then automatically translate those expressions into work-
ing code. While easily explained, REs can be a bit tricky to use and require
some practice in order to achieve the desired results.

13

14 CHAPTER 3. SCANNING

Let us define regular expressions precisely:

A regular expression s is a string which denotes L(s), a set of strings
drawn from an alphabet Σ. L(s) is known as the “language of s.”

L(s) is defined inductively with the following base cases:

• If a ∈ Σ then a is a regular expression and L(a) = {a}.

• ǫ is a regular expression and L(ǫ) contains only the empty string.

Then, for any regular expressions s and t:

1. s|t is a RE such that L(s|t) = L(s) ∪ L(t).

2. st is a RE such that L(st) contains all strings formed by the
concatenation of a string in L(s) followed by a string in L(t).

3. s∗ is a RE such that L(s∗) = L(s) concatenated zero or more times.

Rule #3 is known as the Kleene closure and has the highest precedence.
Rule #2 is known as concatenation. Rule #1 has the lowest precedence and
is known as alternation. Parentheses can be added to adjust the order of
operations in the usual way.

Here are a few examples using just the basic rules. (Note that a finite
RE can indicate an infinite set.)

Regular Expression s Language L(s)
hello { hello }
d(o|i)g { dog,dig }
moo* { mo,moo,mooo,... }
(moo)* { ǫ,moo,moomoo,moomoomoo,... }
a(b|a)*a { aa,aaa,aba,aaaa,aaba,abaa,... }

The syntax described so far is entirely sufficient to write any regular
expression. But, it is also handy to have a few helper operations built on
top of the basic syntax:

s? indicates that s is optional.
s? can be written as (s|ǫ)

s+ indicates that s is repeated one or more times.
s+ can be written as ss*

[a-z] indicates any character in that range.
[a-z] can be written as (a|b|...|z)

[ˆx] indicates any character except one.
[ˆx] can be written as Σ - x

14

3.4. FINITE AUTOMATA 15

Regular expressions also obey several algebraic properties, which make
it possible to re-arrange them as needed for efficiency or clarity:

Associativity: a|(b|c) = (a|b)|c

Commutativity: a|b = b|a

Distribution: a(b|c) = ab|ac

Idempotency: a** = a*

Using regular expressions, we can precisely state what is permitted in
a given token. Suppose we have a hypothetical programming language
with the following informal definitions and regular expressions. For each
token type, we show examples of strings that match (and do not match)
the regular expression.

Informal definition: An identifier is a sequence of capital letters and num-
bers, but a number must not come first.

Regular expression: [A-Z]+([A-Z]|[0-9])*
Matches strings: PRINT

MODE5

Does not match: hello

4YOU

Informal definition: A number is a sequence of digits with an optional dec-
imal point. For clarity, the decimal point must have
digits on both left and right sides.

Regular expression: [0-9]+(.[0-9]+)?

Matches strings: 123

3.14

Does not match: .15

30.

Informal definition: A comment is any text (except a right angle bracket)
surrounded by angle brackets.

Regular expression: <[ˆ>]*>

Matches strings: <tricky part>

<<<<look left>

Does not match: <this is an <illegal> comment>

3.4 Finite Automata

A finite automaton (FA) is an abstract machine that can be used to repre-
sent certain forms of computation. Graphically, an FA consists of a number
of states (represented by numbered circles) and a number of edges (repre-
sented by labeled arrows) between those states. Each edge is labeled with
one or more symbols drawn from an alphabet Σ.

The machine begins in a start state S0. For each input symbol presented
to the FA, it moves to the state indicated by the edge with the same label

15

16 CHAPTER 3. SCANNING

as the input symbol. Some states of the FA are known as accepting states
and are indicated by a double circle. If the FA is in an accepting state after
all input is consumed, then we say that the FA accepts the input. We say
that the FA rejects the input string if it ends in a non-accepting state, or if
there is no edge corresponding to the current input symbol.

Every RE can be written as an FA, and vice versa. For a simple regular
expression, one can construct an FA by hand. For example, here is an FA
for the keyword for:

0 31
f

2
o r

Here is an FA for identifiers of the form [a-z][a-z0-9]+

0 2

a-z
0-9

1
a-z

a-z
0-9

And here is an FA for numbers of the form ([1-9][0-9]*)|0

0

1 2
0-9

0-9

3

1-9

0

3.4.1 Deterministic Finite Automata

Each of these three examples is a deterministic finite automaton (DFA).
A DFA is a special case of an FA where every state has no more than one
outgoing edge for a given symbol. Put another way, a DFA has no am-
biguity: for every combination of state and input symbol, there is exactly
one choice of what to do next.

Because of this property, a DFA is very easy to implement in software
or hardware. One integer (c) is needed to keep track of the current state.

16

3.4. FINITE AUTOMATA 17

The transitions between states are represented by a matrix (M [s, i]) which
encodes the next state, given the current state and input symbol. (If the
transition is not allowed, we mark it with E to indicate an error.) For each
symbol, we compute c = M [s, i] until all the input is consumed, or an error
state is reached.

3.4.2 Nondeterministic Finite Automata

The alternative to a DFA is a nondeterministic finite automaton (NFA).
An NFA is a perfectly valid FA, but it has an ambiguity that makes it some-
what more difficult to work with.

Consider the regular expression [a-z]*ing, which represents all lower-
case words ending in the suffix ing. It can be represented with the follow-
ing automaton:

0 3

[a-z]

1
i

2
n g

Now consider how this automaton would consume the word sing. It
could proceed in two different ways. One would be to move to state 0 on
s, state 1 on i, state 2 on n, and state 3 on g. But the other, equally valid
way would be to stay in state 0 the whole time, matching each letter to the
[a-z] transition. Both ways obey the transition rules, but one results in
acceptance, while the other results in rejection.

The problem here is that state 0 allows for two different transitions on
the symbol i. One is to stay in state 0 matching [a-z] and the other is to
move to state 1 matching i.

Moreover, there is no simple rule by which we can pick one path or
another. If the input is sing, the right solution is to proceed immediately
from state zero to state one on i. But if the input is singing, then we
should stay in state zero for the first ing and proceed to state one for the
second ing .

An NFA can also have an ǫ (epsilon) transition, which represents the
empty string. This transition can be taken without consuming any input
symbols at all. For example, we could represent the regular expression
a*(ab|ac) with this NFA:

17

18 CHAPTER 3. SCANNING

0

3

6

a

1�

4

�

2a b

5
a c

This particular NFA presents a variety of ambiguous choices. From
state zero, it could consume a and stay in state zero. Or, it could take an ǫ

to state one or state four, and then consume an a either way.
There are two common ways to interpret this ambiguity:

• The crystal ball interpretation suggests that the NFA somehow “knows”
what the best choice is, by some means external to the NFA itself. In
the example above, the NFA would choose whether to proceed to
state zero, one, or four before consuming the first character, and it
would always make the right choice. Needless to say, this isn’t pos-
sible in a real implementation.

• The many-worlds interpretation suggests that the NFA exists in all
allowable states simultaneously. When the input is complete, if any
of those states are accepting states, then the NFA has accepted the
input. This interpretation is more useful for constructing a working
NFA, or converting it to a DFA.

Let us use the many-worlds interpretation on the example above. Sup-
pose that the input string is aaac. Initially the NFA is in state zero. With-
out consuming any input, it could take an epsilon transition to states one
or four. So, we can consider its initial state to be all of those states si-
multaneously. Continuing on, the NFA would traverse these states until
accepting the complete string aaac:

States Action
0, 1, 4 consume a
0, 1, 2, 4, 5 consume a
0, 1, 2, 4, 5 consume a
0, 1, 2, 4, 5 consume c
6 accept

In principle, one can implement an NFA in software or hardware by
simply keeping track of all of the possible states. But this is inefficient.
In the worst case, we would need to evaluate all states for all characters
on each input transition. A better approach is to convert the NFA into an
equivalent DFA, as we show below.

18

3.5. CONVERSION ALGORITHMS 19

3.5 Conversion Algorithms

Regular expressions and finite automata are all equally powerful. For ev-
ery RE, there is an FA, and vice versa. However, a DFA is by far the most
straightforward of the three to implement in software. In this section, we
will show how to convert an RE into an NFA, then an NFA into a DFA,
and then to optimize the size of the DFA.

Regular
Expression

Nondeterministic
Finite

Automaton

Thompson's
Construction

Deterministic
Finite

Automaton

Subset
Construction

Code

Transition
Matrix

Figure 3.2: Relationship Between REs, NFAs, and DFAs

3.5.1 Converting REs to NFAs

To convert a regular expression to a nondeterministic finite automaton, we
can follow an algorithm given first by McNaughton and Yamada [5], and
then by Ken Thompson [6].

We follow the same inductive definition of regular expression as given
earlier. First, we define automata corresponding to the base cases of REs:

The NFA for any character a is: The NFA for an ǫ transition is:

a �

Now, suppose that we have already constructed NFAs for the regular
expressions A and B, indicated below by rectangles. Both A and B have
a single start state (on the left) and accepting state (on the right). If we
write the concatenation of A and B as AB, then the corresponding NFA is
simply A and B connected by an ǫ transition. The start state of A becomes
the start state of the combination, and the accepting state of B becomes the
accepting state of the combination:

The NFA for the concatenation AB is:

A � B

19

20 CHAPTER 3. SCANNING

In a similar fashion, the alternation of A and B written as A|B can be ex-
pressed as two automata joined by common starting and accepting nodes,
all connected by ǫ transitions:

The NFA for the alternation A|B is:

�

�

A

B

�

�

Finally, the Kleene closure A* is constructed by taking the automaton
for A, adding starting and accepting nodes, then adding ǫ transitions to
allow zero or more repetitions:

The NFA for the Kleene closure A* is:

�

�

A

�

�

Example. Let’s consider the process for an example regular expression
a(cat|cow)*. First, we start with the innermost expression cat and as-
semble it into three transitions resulting in an accepting state. Then, do the
same thing for cow, yielding these two FAs:

c a t

c o w

The alternation of the two expressions cat|cow is accomplished by
adding a new starting and accepting node, with epsilon transitions. (The
boxes are not part of the graph, but simply highlight the previous graph
components carried forward.)

20

3.5. CONVERSION ALGORITHMS 21

�

�

c

c

�

�

a t

o w

Then, the Kleene closure (cat|cow)* is accomplished by adding an-
other starting and accepting state around the previous FA, with epsilon
transitions between:

�

� �

�

�c

c

�

�

a t

o w

Finally, the concatenation of a(cat|cow)* is achieved by adding a
single state at the beginning for a:

a �

�

�
�

�
�

c

c

�

�

a t

o w

You can easily see that the NFA resulting from the construction algo-
rithm, while correct, is quite complex and contains a large number of ep-
silon transitions. An NFA representing the tokens for a complete language
could end up having thousands of states, which would be very impractical
to implement. Instead, we can convert this NFA into an equivalent DFA.

21

22 CHAPTER 3. SCANNING

3.5.2 Converting NFAs to DFAs

We can convert any NFA into an equivalent DFA using the technique of
subset construction. The basic idea is to create a DFA such that each state
in the DFA corresponds to multiple states in the NFA, according to the
“many-worlds” interpretation.

Suppose that we begin with an NFA consisting of states N and start
state N0. We wish to construct an equivalent DFA consisting of states D

and start state D0. Each D state will correspond to multiple N states. First,
we define a helper function known as the epsilon closure:

Epsilon closure.
ǫ−closure(n) is the set of NFA states reachable from NFA state n by zero
or more ǫ transitions.

Now we define the subset construction algorithm. First, we create a
start state D0 corresponding to the ǫ−closure(N0). Then, for each outgo-
ing character c from the states in D0, we create a new state containing the
epsilon closure of the states reachable by c. More precisely:

Subset Construction Algorithm.
Given an NFA with states N and start state N0, create an equivalent DFA
with states D and start state D0.

Let D0 = ǫ−closure(N0).
Add D0 to a list.
While items remain on the list:

Let d be the next DFA state removed from the list.
For each character c in Σ:

Let T contain all NFA states Nk such that:

Nj ∈ d and Nj
c
−→ Nk

Create new DFA state Di = ǫ−closure(T)
If Di is not already in the list, add it to the end.

Figure 3.3: Subset Construction Algorithm

22

3.5. CONVERSION ALGORITHMS 23

N0 N13N1
a

N2
�

�

N3
�

N8
�

N4
� N12

�

N9
c

N5
c

N11
�

N7
�

N10
a t

N6
o w

D0:
N0

D1:
N1, N2, N3,
N4, N8, N13

a D2:
N5, N9

c

D3:
N6

o

D5:
N10

a

D4:
N7, N12, N13,
N2, N3, N4, N8

w

c

D6:
N11, N12, N13,
N2,N3, N4, N8t

c

Figure 3.4: Converting an NFA to a DFA via Subset Construction

Example. Let’s work out the algorithm on the NFA in Figure 3.4. This
is the same NFA corresponding to the RE a(cat|cow)* with each of the
states numbered for clarity.

1. Compute D0 which is ǫ−closure(N0). N0 has no ǫ transitions, so
D0 = {N0}. Add D0 to the work list.

2. Remove D0 from the work list. The character a is an outgoing tran-
sition from N0 to N1. ǫ−closure(N1) = {N1, N2, N3, N4, N8, N13} so
add all of those to new state D1 and add D1 to the work list.

3. Remove D1 from the work list. We can see that N4

c
−→ N5 and N8

c
−→

N9, so we create a new state D2 = {N5, N9} and add it to the work
list.

4. Remove D2 from the work list. Both a and o are possible transitions

because of N5

o
−→ N6 and N9

a
−→ N10. So, create a new state D3 for the

o transition to N6 and new state D5 for the a transition to N10. Add
both D3 and D5 to the work list.

5. Remove D3 from the work list. The only possible transition is N6

w
−→

N7 so create a new state D4 containing the ǫ−closure(N7) and add it
to the work list.

6. Remove D5 from the work list. The only possible transition is N10

t
−→

N11 so create a new state D6 containing ǫ−closure(N11) and add it to
the work list.

23

24 CHAPTER 3. SCANNING

7. Remove D4 from the work list, and observe that the only outgoing
transition c leads to states N5 and N9 which already exist as state D2,

so simply add a transition D4

c
−→ D2.

8. Remove D6 from the work list and, in a similar way, add D6

c
−→ D2.

9. The work list is empty, so we are done.

3.5.3 Minimizing DFAs

The subset construction algorithm will definitely generate a valid DFA,
but the DFA may possibly be very large (especially if we began with a
complex NFA generated from an RE.) A large DFA will have a large tran-
sition matrix that will consume a lot of memory. If it doesn’t fit in L1 cache,
the scanner could run very slowly. To address this problem, we can apply
Hopcroft’s algorithm to shrink a DFA into a smaller (but equivalent) DFA.

The general approach of the algorithm is to optimistically group to-
gether all possibly-equivalent states S into super-states T . Initially, we
place all non-accepting S states into super-state T0 and accepting states
into super-state T1. Then, we examine the outgoing edges in each state
s ∈ Ti. If, a given character c has edges that begin in Ti and end in dif-
ferent super-states, then we consider the super-state to be inconsistent with
respect to c. (Consider an impermissible transition as if it were a transi-
tion to TE , a super-state for errors.) The super-state must then be split into
multiple states that are consistent with respect to c. Repeat this process for
all super-states and all characters c ∈ Σ until no more splits are required.

DFA Minimization Algorithm.
Given a DFA with states S, create an equivalent DFA with
an equal or fewer number of states T .

First partition S into T such that:
T0 = non-accepting states of S.
T1 = accepting states of S.

Repeat:
∀Ti ∈ T :

∀c ∈ Σ:

if Ti
c
−→ { more than one T state },

then split Ti into multiple T states
such that c has the same action in each.

Until no more states are split.

Figure 3.5: Hopcroft’s DFA Minimization Algorithm

24

3.5. CONVERSION ALGORITHMS 25

Example. Suppose we have the following non-optimized DFA and
wish to reduce it to a smaller DFA:

1

2

a

3
b

a

4
b

a

b

a 5
b

a

b

We begin by grouping all of non-accepting states 1, 2, 3, 4 into one
super-state and the accepting state 5 into another super-state, like this:

1,2,3,4

a

b

5

b

a

b

Now, we ask whether this graph is consistent with respect to all possi-
ble inputs, by referring back to the original DFA. For example, we observe
that, if we are in super-state (1,2,3,4) then an input of a always goes to
state 2, which keeps us within the super-state. So, this DFA is consistent
with respect to a. However, from super-state (1,2,3,4) an input of b can
either stay within the super-state or go to super-state (5). So, the DFA is
inconsistent with respect to b.

To fix this, we try splitting out one of the inconsistent states (4) into a
new super-state, taking the transitions with it:

1,2,3

a

b

4b

a

5
b

a,b

25

26 CHAPTER 3. SCANNING

Again, we examine each super-state for consistency with respect to
each input character. Again, we observe that super-state 1,2,3 is consis-
tent with respect to a, but not consistent with respect to b because it can
either lead to state 3 or state 4. We attempt to fix this by splitting out state
2 into its own super-state, yielding this DFA.

1,3

b

2
a

a

4b

a

5
b

b

a

Again, we examine each super-state and observe that each possible in-
put is consistent with respect to the super-state, and therefore we have the
minimal DFA.

3.6 Limits of Finite Automata

Regular expressions and finite automata are powerful and effective at rec-
ognizing simple patterns in individual words or tokens, but they are not
sufficient to analyze all of the structures in a problem. For example, could
you use a finite automaton to match an arbitrary number of nested paren-
theses?

It’s not hard to write out an FA that could match, say, up to three pairs
of nested parentheses, like this:

0 1
(

)
2

(

)
3

(

)

But the key word is arbitrary! To match any number of parentheses
would require an infinite automaton, which is obviously impractical. Even
if we were to apply some practical upper limit (say, 100 pairs) the automa-
ton would still be impractically large when combined with all the other
elements of a language that must be supported.

For example, a language like Python permits the nesting of parentheses
() for precedence, curly brackets {} to represent dictionaries, and square
brackets [] to represent lists. An automaton to match up to 100 nested
pairs of each in arbitrary order would have 1,000,000 states!

So, we limit ourselves to using regular expressions and finite automata
for the narrow purpose of identifying the words and symbols within a
problem. To understand the higher level structure of a program, we will
instead use parsing techniques introduced in Chapter 4.

26

3.7. USING A SCANNER GENERATOR 27

%{

(C Preamble Code)

%}

(Character Classes)

%%

(Regular Expression Rules)

%%

(Additional Code)

Figure 3.6: Structure of a Flex File

3.7 Using a Scanner Generator

Because a regular expression precisely describes all the allowable forms
of a token, we can use a program to automatically transform a set of reg-
ular expressions into code for a scanner. Such a program is known as a
scanner generator. The program Lex, developed at AT&T, was one of the
earliest examples of a scanner generator. Vern Paxson translated Lex into
the C language to create Flex, which is distributed under the Berkeley li-
cense and is widely used in Unix-like operating systems today to generate
scanners implemented in C or C++.

To use Flex, we write a specification of the scanner that is a mixture of
regular expressions, fragments of C code, and some specialized directives.
The Flex program itself consumes the specification and produces regular
C code that can then be compiled in the normal way.

Figure 3.6 gives the overall structure of a Flex file. The first section con-
sists of arbitrary C code that will be placed at the beginning of scanner.c,
like include files, type definitions, and similar things. Typically, this is
used to include a file that contains the symbolic constants for tokens.

The second section declares character classes, which are symbolic short-
hands for commonly used regular expressions. For example, you might
declare DIGIT [0-9]. This class can be referred to later as {DIGIT}.

The third section is the most important part. It states a regular expres-
sion for each type of token that you wish to match, followed by a fragment
of C code that will be executed whenever the expression is matched. In the
simplest case, this code returns the type of the token, but it can also be used
to extract token values, display errors, or anything else appropriate.

The fourth section is arbitrary C code that will go at the end of the
scanner, typically for additional helper functions. A peculiar requirement
of Flex is that we must define a function yywrap() which returns 1 to
indicate that the input is complete at the end of the file. If we wanted to
continue scanning in another file, then yywrap()would open the next file
and return 0.

The regular expression language accepted by Flex is very similar to

27

28 CHAPTER 3. SCANNING

that of formal regular expressions discussed above. The main difference is
that characters that have special meaning with a regular expression (like
parentheses, square brackets, and asterisks) must be escaped with a back-
slash or surrounded with double quotes. Also, a period (.) can be used to
match any character at all, which is helpful for catching error conditions.

Figure 3.7 shows a simple but complete example to get you started.
This specification describes just a few tokens: a single character addition
(which must be escaped with a backslash), the while keyword, an iden-
tifier consisting of one or more letters, and a number consisting of one or
more digits. As is typical in a scanner, any other type of character is an
error, and returns an explicit token type for that purpose.

Flex generates the scanner code, but not a complete program, so you
must write a main function to go with it. Figure 3.8 shows a simple driver
program that uses this scanner. First, the main program must declare as
extern the symbols it expects to use in the generated scanner code: yyin
is the file from which text will be read, yylex is the function that imple-
ments the scanner, and the array yytext contains the actual text of each
token discovered. Finally, we must have a consistent definition of the to-
ken types across the parts of the program, so into token.h we put an
enumeration describing the new type token t. This file is included in
both scanner.flex and main.c.

Figure 3.10 shows how all the pieces come together. scanner.flex is
converted into scanner.c by invoking flex -o scanner.c

scanner.flex. Then, both main.c and scanner.c are compiled to
produce object files, which are linked together to produce the complete
program.

3.8 Practical Considerations

Handling keywords. In many languages, keywords (such as while or
if) would otherwise match the definitions of identifiers, unless specially
handled. There are several solutions to this problem. One is to enter a
regular expression for every single keyword into the Flex specification.
(These must precede the definition of identifiers, since Flex will accept the
first expression that matches.) Another is to maintain a single regular ex-
pression that matches all identifiers and keywords. The action associated
with that rule can compare the token text with a separate list of keywords
and return the appropriate type. Yet another approach is to treat all key-
words and identifiers as a single token type, and allow the problem to be
sorted out by the parser. (This is necessary in languages like PL/1, where
identifiers can have the same names as keywords, and are distinguished
by context.)

Tracking source locations. In later stages of the compiler, it is useful
for the parser or typechecker to know exactly what line and column num-
ber a token was located at, usually to print out a helpful error message.

28

3.8. PRACTICAL CONSIDERATIONS 29

Contents of File: scanner.flex

%{

#include "token.h"

%}

DIGIT [0-9]

LETTER [a-zA-Z]

%%

(" "|\t|\n) /* skip whitespace */

\+ { return TOKEN_ADD; }

while { return TOKEN_WHILE; }

{LETTER}+ { return TOKEN_IDENT; }

{DIGIT}+ { return TOKEN_NUMBER; }

. { return TOKEN_ERROR; }

%%

int yywrap() { return 1; }

Figure 3.7: Example Flex Specification

Contents of File: main.c

#include "token.h"

#include <stdio.h>

extern FILE *yyin;

extern int yylex();

extern char *yytext;

int main() {

yyin = fopen("program.c","r");

if(!yyin) {

printf("could not open program.c!\n");

return 1;

}

while(1) {

token_t t = yylex();

if(t==TOKEN_EOF) break;

printf("token: %d text: %s\n",t,yytext);

}

}

Figure 3.8: Example Main Program

29

30 CHAPTER 3. SCANNING

Contents of File: token.h

typedef enum {

TOKEN_EOF=0,

TOKEN_WHILE,

TOKEN_ADD,

TOKEN_IDENT,

TOKEN_NUMBER,

TOKEN_ERROR

} token_t;

Figure 3.9: Example Token Enumeration

Compiler
scanner.o

Compiler main.o

Flex scanner.c

Linker scanner.exe

scanner.�ex

main.c

token.h

Figure 3.10: Build Procedure for a Flex Program

(“Undefined symbol spider at line 153.”) This is easily done by having
the scanner match newline characters, and increase the line count (but not
return a token) each time one is found.

Cleaning tokens. Strings, characters, and similar token types need to
be cleaned up after they are matched. For example, "hello\n" needs to
have its quotes removed and the backslash-n sequence converted to a lit-
eral newline character. Internally, the compiler only cares about the actual
contents of the string. Typically, this is accomplished by writing a function
string clean in the postamble of the Flex specification. The function is
invoked by the matching rule before returning the desired token type.

Constraining tokens. Although regular expressions can match tokens
of arbitrary length, it does not follow that a compiler must be prepared to
accept them. There would be little point to accepting a 1000-letter iden-
tifier, or an integer larger than the machine’s word size. The typical ap-
proach is to set the maximum token length (YYLMAX in flex) to a very large
value, then examine the token to see if it exceeds a logical limit in the ac-
tion that matches the token. This allows you to emit an error message that
describes the offending token as needed.

30

3.9. EXERCISES 31

Error Handling. The easiest approach to handling errors or invalid
input is simply to print a message and exit the program. However, this
is unhelpful to users of your compiler – if there are multiple errors, it’s
(usually) better to see them all at once. A good approach is to match the
minimum amount of invalid text (using the dot rule) and return an explicit
token type indicating an error. The code that invokes the scanner can then
emit a suitable message, and then ask for the next token.

3.9 Exercises

1. Write regular expressions for the following entities. You may find it
necessary to justify what is and is not allowed within each expres-
sion:

(a) English days of the week: Monday, Tuesday, ...

(b) All integers where every three digits are separated by commas
for clarity, such as:
78

1,092

692,098,000

(c) Internet email addresses like:
"John Doe" <john.doe@gmail.com>

(d) HTTP Uniform Resource Locators (URLs)
as described by RFC-1738.

2. Write a regular expression for a string containing any number of X
and single pairs of < > and { } which may be nested but not inter-
leaved. For example these strings are allowed:

XXX<XX{X}XXX>X

X{X}X<X>X{X}X<X>X

But these are not allowed:

XXX<X<XX>>XX

XX<XX{XX>XX}XX

3. Test the regular expressions you wrote in the previous two problems
by translating them into your favorite programming language that
has native support for regular expressions. (Perl and Python are two
good choices.) Evaluate the correctness of your program by writing
test cases that should (and should not) match.

4. Convert these REs into NFAs using Thompson’s construction:

(a) for | [a-z]+ | [xb]?[0-9]+

(b) a (bc*d | ed) d*

31

32 CHAPTER 3. SCANNING

(c) (a*b | b*a | ba)*

5. Convert the NFAs in the previous problem into DFAs using the sub-
set construction method.

6. Minimize the DFAs in the previous problem by using Hopcroft’s al-
gorithm.

7. Write a hand-made scanner for JavaScript Object Notation (JSON)
which is described at http://json.org. The program should read
JSON on the input, and then print out the sequence of tokens ob-
served: LBRACKET, STRING, COLON, etc... Find some large JSON
documents online and test your scanner to see if it works.

8. Using Flex, write a scanner for the Java programming language. As
above, read in Java source on the input and output token types. Test
it out by applying it to a large open source project written in Java.

32

3.10. FURTHER READING 33

3.10 Further Reading

1. A.K. Dewdney, “The New Turing Omnibus: Sixty-Six Excursions in
Computer Science”, Holt Paperbacks, 1992. An accessible overview of

many fundamental problems in computer science – including finite state machines

– collected from the author’s Mathematical Recreations column in Scientific Amer-

ican.

2. S. Hollos and J.R. Hollos, “Finite Automata and Regular Expressions:
Problems and Solutions”, Abrazol Publishing, 2013.
A collection of clever little problems and solutions relating to automata and state

machines, if you are looking for more problems to work on.

3. Marvin Minsky, “Computation: Finite and Infinite Machines”, Prentice-
Hall, 1967.
A classic text offering a more thorough introduction to the theory of finite automata

at an undergraduate level.

4. S. Kleene, “Representation of events in nerve nets and finite automata”,
Automata Studies, C. Shannon and J. McCarthy, editors, Princeton
University Press, 1956.

5. R. McNaughton and H. Yamada, “Regular Expressions and State
Graphs for Automata”, IRE Transactions on Electronic Computers,
volume EC-9, number 1, 1960.
http://dx.doi.org/10.1109/TEC.1960.5221603

6. K. Thompson, “Programming Techniques: Regular Expression Search
Algorithm”, Communications of the ACM, volume 11, number 6,
1968.
http://dx.doi.org/10.1145/363347.363387

33

34 CHAPTER 3. SCANNING

34

