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Chapter 4 – Parsing

4.1 Overview

If scanning is like constructing words out of letters, then parsing is like
constructing sentences out of words in a natural language. Of course, not
every sequence of words makes a valid sentence: “horse aircraft conju-
gate” is three valid words, but not a meaningful sentence.

To parse a computer program, we must first describe the form of valid
sentences in a language. This formal statement is known as a context free
grammar (CFG). Because they allow for recursion, CFGs are more power-
ful than regular expressions and can express a richer set of structures.

While a plain CFG is relatively easy to write, it does not follow that
it is easy to parse. An arbitrary CFG can contain ambiguities and other
problems that make it difficult to write an automatic parser. Therefore, we
consider two subsets of CFGs known as LL(1) and LR(1) grammars.

LL(1) grammars are CFGs that can be evaluated by considering only
the current rule and next token in the input stream. This property makes
it easy to write a hand-coded parser known as a recursive descent parser.
However, a language (and its grammar) must be carefully designed (and
occasionally rewritten) in order to ensure that it is an LL(1) grammar. Not
all language structures can be expressed as LL(1) grammars.

LR(1) grammars are more general and more powerful than LL(1). Nearly
all useful programming languages can be written in LR(1) form. However,
the parsing algorithm for LR(1) grammars is more complex and usually
cannot be written by hand. Instead, it is common to use a parser generator
that will accept an LR(1) grammar and automatically generate the parsing
code.
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36 CHAPTER 4. PARSING

4.2 Context Free Grammars

Let’s begin by defining the parts of a CFG.
A terminal is a discrete symbol that can appear in the language, other-

wise known as a token from the previous chapter. Examples of terminals
are keywords, operators, and identifiers. We will use lower-case letters to
represent terminals. At this stage, we only need to consider the kind (e.g.
integer literal) and not the value (e.g. 456) of a terminal.

A non-terminal represents a structure that can occur in a language,
but is not a literal symbol. Example of non-terminals are declarations,
statements, and expressions. We will use upper-case letters to represent
non-terminals: P for program, S for statement, E for expression, etc.

A sentence is a valid sequence of terminals in a language, while a sen-
tential form is a valid sequence of terminals and non-terminals. We will
use Greek symbols to represent sentential forms. For example, α, β, and γ

represent (possibly) mixed sequences of terminals and non-terminals. We
will use a sequence like Y1Y2...Yn to indicate the individual symbols in a
sentential form: Yi may be either a terminal or a non-terminal.

A context-free grammar (CFG) is a list of rules that formally describe
the allowable sentences in a language. The left-hand side of each rule is
always a single non-terminal. The right-hand side of a rule is a sentential
form that describes an allowable form of that non-terminal. For example,
the rule A → xXy indicates that the non-terminal A represents a terminal
x followed by a non-terminal X and a terminal y. The right hand side of
a rule can be ǫ to indicate that the rule produces nothing. The first rule is
special: it is the top-level definition of a program and its non-terminal is
known as the start symbol.

For example, here is a simple CFG that describes expressions involving
addition, integers, and identifiers:

Grammar G2

1. P → E
2. E → E + E
3. E → ident
4. E → int

This grammar can be read as follows: (1) A complete program consists
of one expression. (2) An expression can be any expression plus any ex-
pression. (3) An expression can be an identifier. (4) An expression can be
an integer literal.

For brevity, we occasionally condense a set of rules with a common
left-hand side by combining all of the right hand sides with a logical-or
symbol, like this:

E → E+ E|ident|int
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4.2. CONTEXT FREE GRAMMARS 37

4.2.1 Deriving Sentences

Each grammar describes a (possibly infinite) set of sentences, which is
known as the language of the grammar. To prove that a given sentence is
a member of that language, we must show that there exists a sequence of
rule applications that connects the start symbol with the desired sentence.
A sequence of rule applications is known as a derivation and a double ar-
row (⇒) is used to show that one sentential form is equal to another by
applying a given rule. For example:

• E ⇒ int by applying rule 4 of Grammar G2.

• E + E ⇒ E + ident by applying rule 3 of Grammar G2.

• P ⇒ int + ident by applying all rules of Grammar G2.

There are two approaches to derivation: top-down and bottom-up.
In top-down derivation, we begin with the start symbol, and then ap-

ply rules in the CFG to expand non-terminals until reaching the desired
sentence. For example, ident + int + int is a sentence in this language, and
here is one derivation to prove it:

Sentential Form Apply Rule

P P → E
E E → E + E
E + E E → ident
ident + E E → E + E
ident + E + E E → int
ident + int + E E → int
ident + int + int

In bottom-up derivation, we begin with the desired sentence, and then
apply the rules backwards until reaching the start symbol. Here is a bottom-
up derivation of the same sentence:

Sentential Form Apply Rule

ident + int + int E → int
ident + int + E E → int
ident + E + E E → E+E
ident + E E → ident
E + E E → E+E
E P → E
P

Be careful to distinguish between a grammar (which is a finite set of
rules) and a language (which is a set of strings generated by a grammar).
It is quite possible for two different grammars to generate the same lan-
guage, in which case we describe them as having weak equivalence.
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38 CHAPTER 4. PARSING

4.2.2 Ambiguous Grammars

An ambiguous grammar allows for more than one possible derivation of
the same sentence. Our example grammar is ambiguous because there are
two possible derivations for any sentence involving two plus signs. The
sentence ident + int + int can have the two derivations shown in
Figure 4.1.

Left-Most Derivation Right-Most Derivation

P

E

E  +  E

E  +  E int

ident int

P

E

E + E

E + Eident

int int

Figure 4.1: Two Derivations of the Same Sentence

Ambiguous grammars present a real problem for parsing (and lan-
guage design in general) because we do not want a program to have two
possible meanings.

Does it matter in this example? It certainly does! In a language like
Java, the + operator indicates not only addition between integers, but also
concatenation between strings. If the identifier is hello and the two in-
tegers have the value 5, then the left-most derivation would concatenate
all three together into hello55, while the right-most derivation would
compute 5+5=10 and concatenate the result into hello10.
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4.2. CONTEXT FREE GRAMMARS 39

Fortunately, it is usually possible to re-write a grammar so that it is not
ambiguous. In the common case of binary operators, we can require that
one side of the expression be an atomic term (T), like this:

Grammar G3

1. P → E
2. E → E + T
3. E → T
4. T → ident
5. T → int

With this change, the grammar is no longer ambiguous, because it only
allows a left-most derivation. But also note that it still accepts the same lan-
guage as Grammar G2. That is, any sentence that can be derived by Gram-
mar G2 can also be derived by Grammar G3, but there exists only one
derivation (and one meaning) per sentence. (Proof is left as an exercise to
the reader.)

Now suppose that we would like to add more operators to our gram-
mar. If we simply add more rules of the form E → E ∗ T and E → E ÷ T, we
would still have an unambiguous grammar, but it would not follow the
rules of precedence in algebra: each operator would be applied from left
to right.

Instead, the usual approach is to construct a grammar with multiple
levels that reflect the intended precedence of operators. For example, we
can combine addition and multiplication by expressing them as a sum of
terms (T ) that consist of multiplied factors (F ), like this:

Grammar G4

1. P → E
2. E → E + T
3. E → T
4. T → T * F
5. T → F
6. F → ident
7. F → int

Here is another common example that occurs in most programming
languages in some form or another. Suppose that an if statement has two
variations: an if-then which takes an action when an expression is true,
and an if-then-else that takes a different action for the true and false cases.
We can express this fragment of the language like this:
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40 CHAPTER 4. PARSING

Grammar G5

1. P → S
2. S → if E then S
3. S → if E then S else S
4. S → other

Grammar G5 is ambiguous because it allows for two derivations of
this sentence: if E then if E then other else other. Do you
see the problem? The else part could belong to the outer if or to the in-
ner if. In most programming languages, the else is defined as belonging
to the inner if, but the grammar does not reflect this.

Do this now:
Write out the two possible parse trees for this sentence:
if E then if E then other else other.

4.3 LL Grammars

LL(1) grammars are a subset of CFGs that are easy to parse with simple
algorithms. A grammar is LL(1) if it can be parsed by considering only
one non-terminal and the next token in the input stream.

To ensure that a grammar is LL(1), we must do the following:

• Remove any ambiguity, as shown above.

• Eliminate any left recursion, as shown below.

• Eliminate any common left prefixes, as shown below.

Once we have taken those steps, then we can prove that it is LL(1) by
generating the FIRST and FOLLOW sets for the grammar, and using them
to create the LL(1) parse table. If the parse table contains no conflicts, then
the grammar is clearly LL(1).
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4.3. LL GRAMMARS 41

4.3.1 Eliminating Left Recursion

LL(1) grammars cannot contain left recursion, which is a rule of the form
A → Aα or, more generally, any rule A → Bβ such that B ⇒ Aγ by some
sequence of derivations. For example, the rule E → E + T is left-recursive
because E appears as the first symbol on the right hand side.

You might be tempted to solve the problem by simply re-writing the
rule as E → T + E. While that would avoid left recursion, it would not
be an equivalent grammar because it would result in a right-associative
plus operator. Also, it would introduce the new problem of a common left
prefix, discussed below.

Informally, we must re-write the rules so that the (formerly) recursive
rule begins with the leading symbols of its alternatives.

Formally, if you have a grammar of the form:

A → Aα1|Aα2|...|β1|β2|...

Substitute with:

A → β1A
′|β2A

′|...

A’ → α1A
′|α2A

′|...|ǫ

Applying this rule to grammar Grammar G3, we can re-write it as:

Grammar G6

1. P → E
2. E → T E’
3. E’ → + T E’
4. E’ → ǫ

5. T → ident
6. T → int

While Grammar G6 is perhaps slightly harder for a person to read, it
no longer contains left recursion, and it satisfies all the LL(1) properties.
A parser considering an E in rule 2 will immediately consider the T non-
terminal, and then look at ident or int on the input to decide between
rule 5 and 6. After considering T , the parser moves on to consider E′ and
can distinguish between rule 3 and 4 by looking for either a + or any other
symbol on the input.
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4.3.2 Eliminating Common Left Prefixes

A simpler problem to solve is grammars that have multiple rules with
the same left hand side and a common prefix of tokens on the right hand
side. Informally, we simply look for all common prefixes of a given non-
terminal, and replace them with one rule that contains the prefix and an-
other that contains the variants.

Formally, look for rules of this form:

A → αβ1|αβ2|...

And replace with:

A→ αA′

A′ → β1|β2|...

For example, these rules describing an identifier, array reference, and
function call all share the same prefix of a single identifier:

Grammar G7

1. P → E
2. E → id
3. E → id [ E ]
4. E → id ( E )

If a parser is evaluating E and sees an id on the input, that information
is not sufficient to distinguish between rules 2, 3, and 4. However, the
grammar can be salvaged by factoring out the common prefix, like this:

Grammar G8

1. P → E
2. E → id E’
3. E’ → [ E ]
4. E’ → ( E )
5. E’ → ǫ

In this formulation, the parser always consumes an id when evaluat-
ing an E. If the next token is [, then rule 3 is applied. If the next token is
(, then rule 4 is applied; otherwise, rule 5 is applied.
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4.3.3 First and Follow Sets

In order to construct a complete parser for an LL(1) grammar, we must
compute two sets, known as FIRST and FOLLOW. Informally, FIRST(α)
indicates the set of terminals (including ǫ) that could potentially appear
at the beginning of any derivation of α. FOLLOW(A) indicates the set of
terminals (including $) that could potentially occur after any derivation of
the non-terminal A. Given the contents of these sets, an LL(1) parser will
always know which rule to pick next.

Here is how to compute FIRST and FOLLOW:

Computing First Sets for a Grammar G

FIRST(α) is the set of terminals that begin all strings given by α,
including ǫ if α ⇒ ǫ .

For Terminals:
For each terminal a ∈ Σ: FIRST(a) = {a}

For Non-Terminals:
Repeat:

For each rule X → Y1Y2...Yk in a grammar G:
Add a to FIRST(X)

if a is in FIRST(Y1)
or a is in FIRST(Yn) and Y1...Yn−1 ⇒ ǫ

If Y1...Yk ⇒ ǫ then add ǫ to FIRST(X).
until no more changes occur.

For a Sentential Form α:
For each symbol Y1Y2...Yk in α:

Add a to FIRST(α)
if a is in FIRST(Y1)
or a is in FIRST(Yn) and Y1...Yn−1 ⇒ ǫ

If Y1...Yk ⇒ ǫ then add ǫ to FIRST(α).
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Computing Follow Sets for a Grammar G

FOLLOW(A) is the set of terminals that can come after
non-terminal A, including $ if A occurs at the end of the input.

FOLLOW(S) = {$} where S is the start symbol.

Repeat:
If A → αBβ then:

add FIRST(β) (excepting ǫ) to FOLLOW(B).
If A → αB or FIRST(β) contains ǫ then:

add FOLLOW(A) to FOLLOW(B).
until no more changes occur.

Here is an example of computing FIRST and FOLLOW for Grammar G9:

Grammar G9

1. P → E
2. E → T E’
3. E’ → + T E’
4. E’ → ǫ

5. T → F T’
6. T’ → * F T’
7. T’ → ǫ

8. F → ( E )
9. F → int

First and Follow for Grammar G9

P E E’ T T’ F
FIRST ( int ( int + ǫ ( int * ǫ ( int
FOLLOW $ ) $ ) $ + ) $ + ) $ + * ) $

Once we have cleaned up a grammar to be LL(1) and computed its
FIRST and FOLLOW sets, we are ready to write code for a parser. This can
be done by hand or with a table-driven approach.
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4.3.4 Recursive Descent Parsing

LL(1) grammars are very amenable to writing simple hand-coded parsers.
A common approach is a recursive descent parser in which there is one
simple function for each non-terminal in the grammar. The body of the
function follows the right-hand sides of the corresponding rules: non-
terminals result in a call to another parse function, while terminals result
in considering the next token.

Three helper functions are needed:

• scan token() returns the next token on the input stream.

• putback token(t) puts an unexpected token back on the input
stream, where it will be read again by the next call to scan token.

• expect token(t) calls scan token to retrieve the next token. It
returns true if the token matches the expected type. If not, it puts the
token back on the input stream and returns false.

Figure 4.2 shows how Grammar G9 could be written as a recursive de-
scent parser. Note that the parser has one function for each non-terminal:
parse P, parse E, etc. Each function returns true (1) if the input matches
the grammar, or false (0) otherwise.

Two special cases should be considered. First, if a rule X cannot pro-
duce ǫ and we encounter a token not in FIRST(X), then we have definitely
encountered a parsing error, and we should display a message and return
failure. Second, if a rule X could produce ǫ and we encounter a token not
in FIRST(X), then we accept the rule X → ǫ put the token back on the input,
and return success. Another rule will expect to consume that token.

There is also the question of what the parser should actually do after
matching some element of the grammar. In our simple example, the parser
simply returns true on a match, and serves only to verify that the input
program matches the grammar. If we wished to actually evaluate the ex-
pression, each parse X function could compute the result and return it
as a double. This would effectively give us a simple interpreter for this
language. Another approach is for each parse X function to return a data
structure representing that node of the parse tree. As each node is parsed,
the result is assembled into an abstract syntax tree, with the root returned
by parse P.
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int parse_P() {

return parse_E() && expect_token(TOKEN_EOF);

}

int parse_E() {

return parse_T() && parse_E_prime();

}

int parse_E_prime() {

token_t t = scan_token();

if(t==TOKEN_PLUS) {

return parse_T() && parse_E_prime();

} else {

putback_token(t);

return 1;

}

}

int parse_T() {

return parse_F() && parse_T_prime();

}

int parse_T_prime() {

token_t t = scan_token();

if(t==TOKEN_MULTIPLY) {

return parse_F() && parse_T_prime();

} else {

putback_token(t);

return 1;

}

}

int parse_F() {

token_t t = scan_token();

if(t==TOKEN_LPAREN) {

return parse_E() && expect_token(TOKEN_RPAREN);

} else if(t==TOKEN_INT) {

return 1;

} else {

printf("parse error: unexpected token %s\n",

token_string(t));

return 0;

}

}

Figure 4.2: A Recursive-Descent Parser
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4.3.5 Table Driven Parsing

An LL(1) grammar can also be parsed using generalized table driven code.
A table-driven parser requires a grammar, a parse table, and a stack to
represent the current set of non-terminals.

The LL(1) parse table is used to determine which rule should be ap-
plied for any combination of non-terminal on the stack and next token on
the input stream. (By definition, an LL(1) grammar has exactly one rule to
be applied for each combination.) To create a parse table, we use the FIRST

and FOLLOW sets like this:

LL(1) Parse Table Construction.
Given a grammar G and alphabet Σ, create a parse table T [A, a]
that selects a rule for each combination of non-terminal A ∈ G

and terminal a ∈ Σ.

For each rule A→ α in G:
For each terminal a (excepting ǫ) in FIRST(α):

Add A→ α to T [A, a].
If ǫ is in FIRST(α):

For each terminal b (including $) in FOLLOW(A):
Add A → α to T [A, b].

For example, here is the parse table for Grammar G9. Notice that the
entries for P , E, T , and F are straightforward: each can only start with
int or (, and so these tokens cause the rules to descend toward F and a
choice between rule 8 (F → int) and rule 9 (F → (E)). The entry for E′ is
a little more complicated: a + token results in applying E′ → +TE′, while
) or $ indicates E′ → ǫ.

Parse Table for Grammar G9:

int + * ( ) $

P 1 1
E 2 2
E’ 3 4 4
T 5 5
T’ 7 6 7 7
F 9 8
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Now we have all the pieces necessary to operate the parser. Informally,
the idea is to keep a stack that tracks the current state of the parser. In each
step, we consider the top element of the stack and the next token on the
input. If they match, then pop the stack, accept the token, and continue.
If not, then consult the parse table for the next rule to apply. If we can
continue until the end-of-file symbol is matched, then the parse succeeds.

LL(1) Table Parsing Algorithm.
Given a grammar G with start symbol P and parse table T ,
parse a sequence of tokens and determine whether they satisfy G.

Create a stack S.
Push $ and P onto S.
Let c be the first token on the input.

While S is not empty:
Let X be the top element of the stack.
If X matches c:

Remove X from the stack.
Advance c to the next token and repeat.

If X is any other terminal, stop with an error.
If T [X, c] indicates rule X → α:

Remove X from the stack.
Push symbols α on to the stack and repeat.

If T [X, c] indicates an error state, stop with an error.

Here is an example of the algorithm applied to the sentence int * int:

Stack Input Action

P $ int * int $ apply 1: P ⇒ E
E $ int * int $ apply 2: E ⇒ T E’

T E’ $ int * int $ apply 5: T ⇒ F T’
F T’ E’ $ int * int $ apply 9: F ⇒ int

int T’ E’ $ int * int $ match int

T’ E’ $ * int $ apply 6: T’ ⇒ * F T’
* F T’ E’ $ * int $ match *

F T’ E’ $ int $ apply 9: F ⇒ int
int T’ E’ $ int $ match int

T’ E’ $ $ apply 7: T’ ⇒ ǫ

E’ $ $ apply 4: E’ ⇒ ǫ

$ $ match $
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4.4 LR Grammars

While LL(1) grammars and top-down parsing techniques are easy to work
with, they are not able to represent all of the structures found in many
programming languages. For more general-purpose programming lan-
guages, we must use an LR(1) grammar and associated bottom-up parsing
techniques.

LR(1) is the set of grammars that can be parsed via shift-reduce tech-
niques with a single token of lookahead. LR(1) is a super-set of LL(1) and
can accommodate left recursion and common left prefixes which are not
permitted in LL(1). This enables us to express many programming con-
structs in a more natural way. (An LR(1) grammar must still be non-
ambiguous, and it cannot have shift-reduce or reduce-reduce conflicts,
which we will explain below.)

For example, Grammar G10 is an LR(1) grammar:

Grammar G10

1. P → E
2. E → E + T
3. E → T
4. T → id ( E )
5. T → id

We need to know the FIRST and FOLLOW sets of LR(1) grammars as
well, so take a moment now and work out the sets for Grammar G10, using
the same technique from section 4.3.3.

P E T

FIRST

FOLLOW
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4.4.1 Shift-Reduce Parsing

LR(1) grammars must be parsed using the shift-reduce parsing technique.
This is a bottom-up parsing strategy that begins with the tokens and looks
for rules that can be applied to reduce sentential forms into non-terminals.
If there is a sequence of reductions that leads to the start symbol, then the
parse is successful.

A shift action consumes one token from the input stream and pushes
it onto the stack. A reduce action applies one rule of the form A → α

from the grammar, replacing the sentential form α on the stack with the
non-terminal A. For example, here is a shift-reduce parse of the sentence
id(id+id) using Grammar G10:

Stack Input Action

id ( id + id) $ shift
id ( id + id ) $ shift
id ( id + id ) $ shift
id ( id + id ) $ reduce T → id
id ( T + id ) $ reduce E → T
id ( E + id ) $ shift
id ( E + id ) $ shift
id ( E + id ) $ reduce T → id
id ( E + T ) $ reduce E → E + T
id ( E ) $ shift
id ( E ) $ reduce T → id(E)
T $ reduce E → T
E $ reduce P → E
P $ accept

While this example shows that there exists a derivation for the sen-
tence, it does not explain how each action was chosen at each step. For
example, in the second step, we might have chosen to reduce id to T in-
stead of shifting a left parenthesis. This would have been a bad choice,
because there is no rule that begins with T(, but that was not immediately
obvious without attempting to proceed further. To make these decisions,
we must analyze LR(1) grammars in more detail.
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4.4.2 The LR(0) Automaton

An LR(0) automaton represents all the possible rules that are currently
under consideration by a shift-reduce parser. (The LR(0) automaton is also
variously known as the canonical collection or the compact finite state
machine of the grammar.) Figure 4.6 shows a complete automaton for
Grammar G10. Each box represents a state in the machine, connected by
transitions for both terminals and non-terminals in the grammar.

Each state in the automaton consists of multiple items, which are rules
augmented by a dot (.) that indicates the parser’s current position in that
rule. For example, the configuration E → E . + T indicates that E is cur-
rently on the stack, and + T is a possible next sequence of tokens.

The automaton is constructed as follows. State 0 is created by taking
the production for the start symbol (P → E) and adding a dot at the begin-
ning of the right hand side. This indicates that we expect to see a complete
program, but have not yet consumed any symbols. This is known as the
kernel of the state.

Kernel of State 0

P → . E

Then, we compute the closure of the state as follows. For each item
in the state with a non-terminal X immediately to the right of the dot, we
add all rules in the grammar that have X as the left hand side. The newly
added items have a dot at the beginning of the right hand side.

P → . E
E → . E + T
E → . T

The procedure continues until no new items can be added:

Closure of State 0

P → . E
E → . E + T
E → . T
T → . id ( E )
T → . id
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You can think of the state this way: It describes the initial state of the
parser as expecting a complete program in the form of an E. However, an
E is known to begin with an E or a T , and a T must begin with an id. All
of those symbols could represent the beginning of the program.

From this state, all of the symbols (terminals and non-terminals both)
to the right of the dot are possible outgoing transitions. If the automa-
ton takes that transition, it moves to a new state containing the matching
items, with the dot moved one position to the right. The closure of the new
state is computed, possibly adding new rules as described above.

For example, from state zero, E, T , and id are the possible transitions,
because each appears to the right of the dot in some rule. Here are the
states for each of those transitions:

Transition on E:

P → E .
E → E . + T

Transition on T:

E → T .

Transition on id:

T → id . ( E )
T → id .

Figure 4.3 gives the complete LR(0) automaton for Grammar G10. Take
a moment now to trace over the table and be sure that you understand
how it is constructed.

No, really. Stop now and study the figure carefully before continuing.
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acceptstart

State 0
P � . E
E � . E + T
E � . T
T � . id ( E )
T � . id

State 1
P � E .
E � E . + T

E

State 8
E � T .

T
State 4

T � id . ( E )
T � id .

 id

  $

State 2
E � E + . T
T � . id ( E )
T � . id

+

State 3
E � E + T .

 T id

State 5
T � id ( . E )
E � . E + T
E � . T
T � . id (E)
T � . id

(

 T

id

State 6
T � id ( E . )
E � E . + T

 E

 +

State 7
T � id ( E ) .

 )

Figure 4.3: LR(0) Automaton for Grammar G10
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The LR(0) automaton tells us the choices available at any step of bot-
tom up parsing. When we reach a state containing an item with a dot at
the end of the rule, that indicates a possible reduction. A transition on a
terminal that moves the dot one position to the right indicates a possible
shift. While the LR(0) automaton tells us the available actions at each step,
it does not always tell us which action to take.1

Two types of conflicts can appear in an LR grammar:
A shift-reduce conflict indicates a choice between a shift action and a

reduce action. For example, state 4 offers a choice between shifting a left
parenthesis and reducing by rule five:

Shift-Reduce Conflict:
T → id . ( E )
T → id .

A reduce-reduce conflict indicates that two distinct rules have been
completely matched, and either one could apply. While Grammar G10

does not contain any reduce-reduce conflicts, they commonly occur when
a syntactic structure occurs at multiple layers in a grammar. For example,
it is often the case that a function invocation can be a statement by itself
or an element within an expression. The automaton for such a grammar
would contain a state like this:

Reduce-Reduce Conflict:
S → id ( E ) .
E → id ( E ) .

The LR(0) automaton forms the basis of LR parsing, by telling us which
actions are available in each state. But, it does not tell us which action to
take or how to resolve shift-reduce and reduce-reduce conflicts. To do that,
we must take into account some additional information.

1The 0 in LR(0) indicates that it uses zero lookahead tokens, which is a way of saying that
it does not consider the next token before making a reduction. While it is possible to write
out a grammar that is strictly LR(0), such a grammar has very limited utility.

54



4.4. LR GRAMMARS 55

4.4.3 SLR Parsing

Simple LR (SLR) parsing is a basic form of LR parsing in which we use
FOLLOW sets to resolve conflicts in the LR(0) automaton. In short, we
take the reduction A → α only when the next token on the input is in
FOLLOW(A). If a grammar can be parsed by this technique, we say it is an
SLR grammar, which is a subset of LR(1) grammars.

For example, the shift-reduce conflict in state 4 of Figure 4.6 is resolved
by consulting FOLLOW(T ). If the next token is +, ) or $, then we reduce
by rule T → id. If the next token is (, then we shift to state 5. If neither of
those is true, then the input is invalid, and we emit a parse error.

These decisions are encoded in the SLR parse tables which are known
historically as GOTO and ACTION. The tables are created as follows:

SLR Parse Table Creation.

Given a grammar G and corresponding LR(0) automaton,
create tables ACTION[s, a] and GOTO[s,A] for all states s,
terminals a, and non-terminals A in G.

For each state s:
For each item like A → α . a β

ACTION[s, a] = shift to state t according to the LR(0) automaton.
For each item like A → α . B β

GOTO[s,B] = goto state t according to the LR(0) automaton.
For each item like A → α .

For each terminal a in FOLLOW(A):
ACTION[s, a] = reduce by rule A → α

All remaining states are considered error states.

Naturally, each state in the table can be occupied by only one action.
If following the procedure results in a table with more than one state in a
given entry, then you can conclude that the grammar is not SLR. (It might
still be LR(1) – more on that below.)

Here is the SLR parse table for Grammar G10. Note carefully the states
1 and 4 where there is a choice between shifting and reducing. In state 1, a
lookahead of + causes a shift, while a lookahead of $ results in a reduction
P → E because $ is the only member of FOLLOW(P ).
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State GOTO ACTION

E T id ( ) + $
0 G1 G8 S4
1 S2 R1
2 G3 S4
3 R2 R2 R2
4 S5 R5 R5 R5
5 G6 G8 S4
6 S7 S2
7 R4 R4 R4
8 R3 R3 R3

Figure 4.4: SLR Parse Table for Grammar G10

Now we are ready to parse an input by following the SLR parsing al-
gorithm. The parse requires maintaining a stack of states in the LR(0) au-
tomaton, initially containing the start state S0. Then, we examine the top
of the stack and the lookahead token, and take the action indicated by the
SLR parse table. On a shift, we consume the token and push the indicated
state on the stack. On a reduce by A → β, we pop states from the stack
corresponding to each of the symbols in β, then take the additional step of
moving to state GOTO[t, A]. This process continues until we either succeed
by reducing to the start symbol, or fail by encountering an error state.

SLR Parsing Algorithm.

Let S be a stack of LR(0) automaton states. Push S0 onto S.
Let a be the first input token.

Loop:
Let s be the top of the stack.
If ACTION[s, a] is accept:

Parse complete.
Else if ACTION[s, a] is shift t:

Push state t on the stack.
Let a be the next input token.

Else if ACTION[s, a] is reduce A → β:
Pop states corresponding to β from the stack.
Let t be the top of stack.
Push GOTO[t, A] onto the stack.

Otherwise:
Halt with a parse error.
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Here is an example of applying the SLR parsing algorithm to the pro-
gram id ( id + id ). The first three steps are easy: a shift is per-
formed for each of the first three tokens id ( id. The fourth step re-
duces T → id. This causes state 4 (corresponding to the right hand side
id) to be popped from the stack. State 5 is now at the top of the stack, and
GOTO[5, T ] = 8, so state 8 is pushed, resulting in a stack of 0 4 5 8.

Stack Symbols Input Action

0 id ( id + id) $ shift 4
0 4 id ( id + id ) $ shift 5
0 4 5 id ( id + id ) $ shift 4
0 4 5 4 id ( id + id ) $ reduce T → id
0 4 5 8 id ( T + id ) $ reduce E → T
0 4 5 6 id ( E + id ) $ shift 2
0 4 5 6 2 id ( E + id ) $ shift 4
0 4 5 6 2 4 id ( E + id ) $ reduce T → id
0 4 5 6 2 3 id ( E + T ) $ reduce E → E + T
0 4 5 6 id ( E ) $ shift 7
0 4 5 6 7 id ( E ) $ reduce T → id(E)
0 8 T $ reduce E → T
0 1 E $ accept

(Although we show two columns for “Stack” and “Symbols”, they
are simply two representations of the same information. The stack state
0 4 5 8 represents the parse state of id ( T and vice versa.)

It should now be clear that SLR parsing has the same algorithmic com-
plexity as LL(1) parsing. Both techniques require a parsing table and a
stack. At each step in both algorithms, it is necessary to only consider the
current state and the next token on the input. The distinction is that each
LL(1) parsing state considers only a single non-terminal, while each LR(1)
parsing state considers a large number of possible configurations.
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SLR parsing is a good starting point for understanding the general
principles of bottom up parsing. However, SLR is a subset of LR(1), and
not all LR(1) grammars are SLR. For example, consider Grammar G11

which allows for a statement to be a variable assignment, or an identifier
by itself. Note that FOLLOW(S) = {$} and FOLLOW(V ) = {=]$}.

Grammar G11

1. S → V = E
2. S → id
3. V → id
4. V → id [ E ]
5. E → V

We need only build part of the LR(0) automaton to see the problem:

State 0
S -> . V = E
S -> . id
V -> . id
V -> . id [ E ]

State 1
S -> id .
V -> id .
V -> id . [ E ]id

...

V

...
[

Figure 4.5: Part of LR(0) Automaton for Grammar G11

In state 1, we can reduce by S → id or V → id. However, both FOLLOW(S)
and FOLLOW(V ) contain $, so we cannot decide which to take when the
next token is end-of-file. Even using the FOLLOW sets, there is still a
reduce-reduce conflict. Therefore, Grammar G11 is not an SLR grammar.

But, if we look more closely at the possible sentences allowed by the
grammar, the distinction between the two becomes clear. Rule S → id
would only be applied in the case where the complete sentence is id $. If
any other token follows a leading id, then V → id applies. So, the gram-
mar is not inherently ambiguous: we just need a more powerful parsing
algorithm.
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4.4.4 LR(1) Parsing

The LR(0) automaton is limited in power, because it does not track what
tokens can actually follow a production. SLR parsing accommodates for
this weakness by using FOLLOW sets to decide when to reduce. As shown
above, this is not sufficiently discriminating to parse all LR(1) grammars.

Now we give the complete or “canonical” form of LR(1) parsing, which
depends upon the LR(1) automaton. The LR(1) automaton is like the LR(0)
automaton, except that each item is annotated with the set of tokens that
could potentially follow it, given the current parsing state. This set is
known as the lookahead of the item. The lookahead is always a subset
of the FOLLOW of the relevant non-terminal.

The lookahead of the kernel of the start state is always {$}. When com-
puting the closure of a state, we consider two cases:

• For an item like A → α.B with a lookahead of {L}, add new rules
like B → .γ with a lookahead of {L}.

• For an item like A → α.Bβ, with a lookahead of {L}, add new rules
like B → .γ with a lookahead as follows:

– If β cannot produce ǫ, the lookahead is FIRST(β).

– If β can produce ǫ, the lookahead is FIRST(β) ∪{L}.

As before, the rules like B → .γ to be added to the state correspond to
all of the rules in the grammar with B on the left hand side.

Here is an example for Grammar G11. The kernel of the start state
consists of the start symbol with a lookahead of $:

Kernel of State 0

S → . V = E {$}
S → . id {$}

The closure of the start state is computed by adding the rules for V

with a lookahead of =, because = follows V in rule 1:

Closure of State 0

S → . V = E {$}
S → . id {$}
V → . id {=}
V → . id [ E ] {=}

Now suppose that we construct state 1 via a transition on the terminal
id. The lookahead for each item is propagated to the new state:
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Closure of State 1

S → id . {$}
V → id . {=}
V → id . [ E ] {=}

Now you can see how the lookahead solves the reduce-reduce conflict.
When the next token on the input is $, we can only reduce by S → id.
When the next token is =, we can only reduce by V → id. By tracking
lookaheads in a more fine-grained manner than SLR, we are able to parse
arbitrary LR(1) grammars.

Figure 4.6 gives the complete LR(1) automaton for Grammar G10. Take
a moment now to trace over the table and be sure that you understand
how it is constructed.

One aspect of state zero is worth clarifying. When constructing the
closure of a state, we must consider all rules in the grammar, including
the rule corresponding to the item under closure. The item E → . E + T
is initially added with a lookahead of {$}. Then, evaluating that item, we
add all rules that have E on the left hand side, adding a lookahead of {+}.
So, we add E → . E + T again, this time with a lookahead of {+}, resulting
in a single item with a lookahead set of {$,+}

Once again: Stop now and study the figure carefully before continuing.
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acceptstart

State 0
P � . E {$}
E � . E + T {$,+}
E � . T {$,+}
T � . id ( E ) {$,+}
T � . id {$,+}

State 1
P � E . {$}
E � E . + T {$,+}

E

State 4
T � id . ( E ) {$,+}
T � id . {$,+}

 id

State 8
E � T . {$,+}

 T

 $

State 2
E � E + . T {$,+}
T � . id ( E ) {$,+}
T � . id {$,+}

+

State 5
T � id ( . E ) {$,+}
E � . E + T {+,) }
E � . T {+,) }
T � . id (E) {+,) }
T � . id {+,) }

 (

 id

State 3
E � E + T . {$,+}

 T

State 6
T � id ( E . ) {$,+}
E � E . + T {+,) }

 E

State 15
E � T . {+,) }

 T State 9
T � id . ( E ) {+,) }
T � id . {+,) }

 id

State 7
T � id ( E ) . {$,+}

)

State 10
E � E + . T {+,) }
T � . id ( E ) {+,) }
T � . id {+,) }

 +

State 12
T � id ( . E ) {+,) }
E � . E + T {+,) }
E � . T {+,) }
T � . id (E) {+,) }
T � . id {+,) }

 (  id

State 11
E � E + T . {+,) }

 T

 T  id

State 13
T � id ( E . ) {+,) }
E � E . + T {+,) }

E +

State 14
T � id ( E ) . {+,) }

 )

Figure 4.6: LR(1) Automaton for Grammar G10
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4.4.5 LALR Parsing

The main downside to LR(1) parsing is that the LR(1) automaton can be
much larger than the LR(0) automaton. Any two states that have the same
items but differ in lookahead sets for any items are considered to be differ-
ent states. The result is enormous parse tables that consume large amounts
of memory and slow down the parsing algorithm.

Lookahead LR (LALR) parsing is the practical answer to this problem.
To construct an LALR parser, we first create the LR(1) automaton, and then
merge states that have the same core. The core of a state is simply the body
of an item, ignoring the lookahead. When several LR(1) items are merged
into one LALR item, the LALR lookahead is the union of the lookaheads
of the LR(1) items.

For example, these two LR(1) states:

E → . E + T {$+}
E → . T {$+}

E → . E + T {)+}
E → . T {)+}

Would be merged into this single LALR state:

E → . E + T {$)+}
E → . T {$)+}

The resulting LALR automaton has the same number of states as the
LR(0) automaton, but has more precise lookahead information available
for each item. While this may seem a minor distinction, experience has
shown this simple improvement to be highly effective at obtaining the ef-
ficiency of SLR parsing while accommodating a large number of practical
grammars.

4.5 Grammar Classes Revisited

Now that you have some experience working with different kinds of gram-
mars, let’s step back and review how they relate to each other.

LL(1) ⊂ SLR ⊂ LALR ⊂ LR(1) ⊂ CFG (4.1)

CFG: A context-free grammar is any grammar whose rules have the
form A → α. To parse any CFG, we require a finite automaton (a parse
table) and a stack to keep track of the parse state. An arbitrary CFG can be
ambiguous. An ambiguous CFG will result in a non-deterministic finite
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automaton, which is not practical to use. Instead, it is more desirable to
re-write the grammar to fit a more restricted class.

LR(k): An LR(k) parser performs a bottom-up Left to right scan of the
input and provides a Right-most parse, deciding what rule to apply next
by examining the next k tokens on the input. A canonical LR(1) parser
requires a very large finite automaton, because the possible lookaheads
are encoded into the states. While strictly a subset of CFGs, nearly all real-
world language constructs can be expressed adequately in LR(1).

LALR: A Lookahead-LR parser is created by first constructing a canon-
ical LR(1) parser, and then merging all itemsets that have the same core.
This yields a much smaller finite automaton, while retaining some detailed
lookahead information. While less powerful than canonical LR(1) in the-
ory, LALR is usually sufficient to express real-world languages.

SLR: A Simple-LR parser approximates an LR(1) parser by construct-
ing the LR(0) state machine, and then relying on the FIRST and FOLLOW

sets to select which rule to apply. SLR is simple and compact, but there are
easy-to-find examples of common constructs that it cannot parse.

LL(k): An LL(k) parser performs a top-down Left to right scan of the
input and provides a Left-most parse, deciding what rule to apply next by
examining the next k tokens on the input. LL(1) parsers are simple and
widely used because they require a table that is only O(nt) where t is the
number of tokens, and n is the number of non-terminals. LL(k) parsers
are less practical for k > 1 because the size of the parse table is O(ntk) in
the worst case.2 However, they often require that a grammar be rewritten
to be more amenable to the parser, and are not able to express all common
language structures.

4.6 The Chomsky Hierarchy

Finally, this brings us to a fundamental result in theoretical computer sci-
ence, known as the Chomsky hierarchy [1], named after noted linguist
Noam Chomsky. The hierarchy describes four categories of languages
(and corresponding grammars) and relates them to the abstract computing
machinery necessary to recognize such a language.

Regular languages are those described by regular expressions, as you
learned back in Chapter 3. Every regular expression corresponds to a fi-
nite automaton that can be used to identify all words in the corresponding
language. As you know, a finite automaton can be implemented with the
very simple mechanism of a table and a single integer to represent the cur-
rent state. So, a scanner for a regular language is very easy to implement
efficiently.

Context free languages are those described by context free grammars
where each rule is of the form A → γ, with a single non-terminal on the

2For example, an LL(1) parser would require a row for terminals {a,b,c,...}, while an
LL(2) parser would require a row for pairs {aa, ab, ac, ...}.
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Language Class Machine Required

Regular Languages Finite Automata
Context Free Languages Pushdown Automata
Context Sensitive Languages Linear Bounded Automata
Recursively Enumerable Languages Turing Machine

Figure 4.7: The Chomsky Hierarchy

left hand side, and a mix of terminals and non-terminals on the right hand
side. We call these “context free” because the meaning of a non-terminal is
the same in all places where it appears. As you have learned in this chap-
ter, a CFG requires a pushdown automaton, which is achieved by coupling
a finite automaton with a stack. If the grammar is ambiguous, the automa-
ton will be non-deterministic and therefore impractical. In practice, we
restrict ourselves to using subsets of CFGs (like LL(1) and LR(1) that are
non-ambiguous and result in a deterministic automaton that completes in
bounded time.

Context sensitive languages are those described by context sensitive
grammars where each rule can be of the form αAβ → αγβ. We call these
“context sensitive” because the interpretation of a non-terminal is con-
trolled by context in which it appears. Context sensitive languages re-
quire a non-deterministic linear bounded automaton, which is bounded
in memory consumption, but not in execution time. Context sensitive lan-
guages are not very practical for computer languages.

Recursively enumerable languages are the least restrictive set of lan-
guages, described by rules of the form α → β where α and β can be any
combination of terminals and non-terminals. These languages can only be
recognized by a full Turing machine, and are the least practical of all.

The Chomsky Hierarchy is a specific example of a more general prin-
ciple for the design of languages and compilers:

The least powerful language gives the strongest guarantees.

That is to say, if we have a problem to be solved, it should be attacked
using the least expressive tool that is capable of addressing the problem. If
we can solve a given problem by employing REs instead of CFGs, then we
should use REs, because they consume less state, have simpler machinery,
and present fewer roadblocks to a solution.

The same advice applies more broadly: assembly language is the most
powerful language available in our toolbox and is capable of expressing
any program that the computer is capable of executing. However, assem-
bly language is also the most difficult to use because it gives none of the
guarantees found in higher level languages. Higher level languages are
less powerful than assembly language, and this is what makes them more
predictable, reliable, and congenial to use.
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4.7 Exercises

1. Write out an improvement to Grammar G5 that does not have the
dangling-else problem. Hint: Prevent the inner S from containing
an if without an else.

2. Write a grammar for an interesting subset of sentences in English, in-
cluding nouns, verbs, adjectives, adverbs, conjunctions, subordinate
phrases, and so forth. (Include just a few terminals in each category
to give the idea.) Is the grammar LL(1), LR(1), or ambiguous? Ex-
plain why.

3. Consider the following grammar:

Grammar G12

1. P → S
2. P → S P
3. S → if E then S
4. S → if E then S else S
5. S → while E S
6. S → begin P end
7. S → print E
8. S → E
9. E → id
10. E → integer
11. E → E + E

(a) Point out all aspects of Grammar G12 which are not LL(1).

(b) Write a new grammar which accepts the same language, but
avoids left recursion and common left prefixes.

(c) Write the FIRST and FOLLOW sets for the new grammar.

(d) Write out the LL(1) parse table for the new grammar.

(e) Is the new grammar an LL(1) grammar? Explain your answer
carefully.

4. Consider the following grammar:

Grammar G13

1. S → id = E
2. E → E + P
3. E → P
4. P → id
5. P → (E)
6. P → id(E)
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(a) Draw the LR(0) automaton for Grammar G13.

(b) Write out the complete SLR parsing table for Grammar G13.

(c) Is this grammar LL(1)? Explain why.

(d) Is this grammar SLR? Explain why.

5. Consider Grammar G11, shown earlier.

(a) Write out the complete LR(1) automaton for Grammar G11.

(b) Compact the LR(1) automaton into the LALR automaton for
Grammar G11.

6. Write a context free grammar that describes formal regular expres-
sions. Start by writing out the simplest (possibly ambiguous) gram-
mar you can think of, based on the inductive definition in Chapter 3.
Then, rewrite the grammar into an equivalent LL(1) grammar.

7. (a) Write a grammar for the JSON data representation language.

(b) Write the FIRST and FOLLOW sets for your grammar.

(c) Is your grammar LL(1), SLR, or LR(1), or neither? If necessary,
re-write it until it is in the simplest grammar class possible.

(d) Write out the appropriate parse table for your grammar.

8. Write a working hand-coded parser for JSON expressions, making
use of the JSON scanner constructed in the previous chapter.

9. Create a hand-coded scanner and a recursive descent parser that can
evaluate first order logic expressions entered on the console. Include
boolean values (T/F) and the operators & (and), | (or), ! (not), ->
(implication), and () (grouping).

For example, these expressions should evaluate to true:

T

T & T | F

( F -> F ) -> T

And these expressions should evaluate to false:

F

! ( T | F )

( T -> F ) & T

10. Write a hand-coded parser that reads in regular expressions and out-
puts the corresponding NFA, using the Graphviz [2] DOT language.

11. Write a parser-construction tool that reads in an LL(1) grammar and
produces working code for a table-driven parser as output.
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