
Introduction to Compilers and Language Design
Copyright © 2023 Douglas Thain.
Paperback ISBN: 979-8-655-18026-0
Second edition.

Anyone is free to download and print the PDF edition of this book for per-
sonal use. Commercial distribution, printing, or reproduction without the
author’s consent is expressly prohibited. All other rights are reserved.

You can find the latest version of the PDF edition, and purchase inexpen-
sive hardcover copies at http://compilerbook.org

Revision Date: August 24, 2023

69

Chapter 5 – Parsing in Practice

In this chapter, you will apply what you have learned about the theory of
LL(1) and LR(1) grammars in order to build a working parser for a simple
expression language. This will give you a basis to write a more complete
parser for B-Minor in the following chapter.

While LL(1) parsers are commonly written by hand, LR(1) parsers are
simply too cumbersome to do the same. Instead, we rely upon a parser
generator to take a specification of a grammar and automatically produce
the working code. In this chapter, we will give examples with Bison, a
widely-used parser generator for C like languages.

Using Bison, we will define an LALR grammar for algebraic expres-
sions, and then employ it to create three different varieties of programs.

• A validator reads the input program and then simply informs the
user whether it is a valid sentence in the language specified by the
grammar. Such a tool is often used to determine whether a given
program conforms to one standard or another.

• An interpreter reads the input program and then actually executes
the program to produce a result. One approach to interpretation is
to compute the result of each operation as soon as it is parsed. The
alternate approach is to parse the program into an abstract syntax
tree, and then execute it.

• A translator reads the input program, parses it into an abstract syn-
tax tree, and then traverses the abstract syntax tree to produce an
equivalent program in a different format.

69

70 CHAPTER 5. PARSING IN PRACTICE

5.1 The Bison Parser Generator

It is not practical to implement an LALR parser by hand, and so we rely on
tools to automatically generate tables and code from a grammar specifica-
tion. YACC (Yet Another Compiler Compiler) was a widely used parser
generator in the Unix environment, recently supplanted by the GNU Bison
parser which is generally compatible. Bison is designed to automatically
invoke Flex as needed, so it is easy to combine the two into a complete
program.

Just as with the scanner, we must create a specification of the grammar
to be parsed, where each rule is accompanied by an action to follow. The
overall structure of a Bison file is similar to that of Flex:

%{

(C preamble code)

%}

(declarations)

%%

(grammar rules)

%%

(C postamble code)

The first section contains arbitrary C code, typically #include state-
ments and global declarations. The second section can contain a variety of
declarations specific to the Bison language. We will use the %token key-
word to declare all of the terminals in our language. The main body of the
file contains a series of rules of the form

expr : expr TOKEN_ADD expr

| TOKEN_INT

;

indicating that non-terminal expr can produce the sentence
expr TOKEN ADD expr or the single terminal TOKEN INT. White space
is not significant, so it’s ok to arrange the rules for clarity. Note that the
usual naming convention is reversed: since upper case is customarily used
for C constants, we use lower case to indicate non-terminals.

The resulting code creates a single function yyparse() that returns
an integer: zero indicates a successful parse, one indicates a parse er-
ror, and two indicates an internal problem such as memory exhaustion.
yyparse assumes that there exists a function yylex that returns integer
token types. This can be written by hand or generated automatically by
Flex. In the latter case, the input source can be changed by modifying the
file pointer yyin.

Figure 5.1 gives a Bison specification for simple algebraic expressions
on integers. Remember that Bison accepts an LR(1) grammar, so it is ok to
have left recursion within the various rules.

70

5.1. THE BISON PARSER GENERATOR 71

%{

#include <stdio.h>

%}

%token TOKEN_INT

%token TOKEN_PLUS

%token TOKEN_MINUS

%token TOKEN_MUL

%token TOKEN_DIV

%token TOKEN_LPAREN

%token TOKEN_RPAREN

%token TOKEN_SEMI

%token TOKEN_ERROR

%%

program : expr TOKEN_SEMI;

expr : expr TOKEN_PLUS term

| expr TOKEN_MINUS term

| term

;

term : term TOKEN_MUL factor

| term TOKEN_DIV factor

| factor

;

factor: TOKEN_MINUS factor

| TOKEN_LPAREN expr TOKEN_RPAREN

| TOKEN_INT

;

%%

int yyerror(char *s) {

printf("parse error: %s\n",s);

return 1;

}

Figure 5.1: Bison Specification for Expression Validator

71

72 CHAPTER 5. PARSING IN PRACTICE

#include <stdio.h>

extern int yyparse();

int main()

{

if(yyparse()==0) {

printf("Parse successful!\n");

} else {

printf("Parse failed.\n");

}

}

Figure 5.2: Main Program for Expression Validator

Figure 5.3 shows the general build procedure for a combined program
that uses Bison and Flex together. The parser specification goes in
parser.bison. We assume that you have written a suitable scanner
and placed it in scanner.flex. Previously, we wrote token.h by hand.
Here, we will rely on Bison to generate token.h automatically from the
%token declarations, so that the parser and the scanner are working from
the same information. Invoke Bison like this:

bison --defines=token.h --output=parser.c parser.bison

The --output=parser.c option directs Bison to write its code into
the file parser.c instead of the cryptic yy.tab.c. Then, we compile
parser.c, the scanner.c generated by Flex, and main.c independently,
and link them together into a complete executable.

Compiler

scanner.o

Compiler main.o

Compiler

parser.o

Flex scanner.c

Bison parser.c

token.h Linker compiler.exe

scanner.�ex

parser.bison

main.c

Figure 5.3: Build Procedure for Bison and Flex Together

72

5.2. EXPRESSION VALIDATOR 73

If you give Bison the -v option, it will output a text representation of
the LALR automaton to the file parser.output. For each state, it gives
the items, using dot to indicate the parser position. Then, it lists the actions
applied to that state. For example, suppose that we modify the grammar
above so that it becomes ambiguous:

expr : expr TOKEN_PLUS expr

Bison will report that the grammar has one shift-reduce conflict, and
parser.output will describe each state. In the event of a conflict, Bison
will suppress one or more actions, and this is indicated by square brackets
in the following report:

state 9

2 expr: expr . TOKEN_PLUS expr

2 | expr TOKEN_PLUS expr .

TOKEN_PLUS shift, and go to state 7

TOKEN_PLUS [reduce using rule 2 (expr)]

$default reduce using rule 2 (expr)

Be careful! If your grammar has shift-reduce or reduce-reduce con-
flicts, Bison will happily output working code with some of the conflicting
actions suppressed. The code may appear to work on simple inputs, but
is likely to have unexpected effects on complete programs. Always check
for conflicts before proceeding.

5.2 Expression Validator

As written, the Bison specification in Figure 5.1 will simply evaluate whether
the input program matches the desired grammar. yyparse() will return
zero on success, and non-zero otherwise. Such a program is known as a
validator and is often used to determine whether a given program is stan-
dards compliant.

There are a variety of online validators for web-related languages like
HTML1, CSS2, and JSON3. By having a strict language definition separate
from actual implementations (which may contain non-standard features)
it is much easier for a programmer to determine whether their code is
standards compliant, and therefore (presumably) portable.

1http://validator.w3.org
2http://css-validator.org
3http://jsonlint.com

73

74 CHAPTER 5. PARSING IN PRACTICE

5.3 Expression Interpreter

To do more than simply validate the program, we must make use of se-
mantic actions embedded within the grammar itself. Following the right
side of any production rule, you may place arbitrary C code inside of curly
braces. This code may refer to semantic values which represent the values
already computed for other non-terminals. Semantic values are given by
dollar signs indicating the position of a non-terminal in a production rule.
Two dollar signs indicate the semantic value of the current rule.

For example, in the rule for addition, the appropriate semantic action is
to add the left value (the first symbol) to the right value (the third symbol):

expr : expr TOKEN_PLUS term { $$ = $1 + $3; }

Where do the semantic values $1 and $3 come from? They simply
come from the other rules that define those non-terminals. Eventually, we
reach a rule that gives the value for a leaf node. For example, this rule
indicates that the semantic value of an integer token is the integer value of
the token text:

factor : TOKEN_INT { $$ = atoi(yytext); }

(Careful: the value of the token comes from the yytext array in the
scanner, so you can only do this when the rule has a single terminal on the
right hand side of the rule.)

In the cases where a non-terminal expands to a single non-terminal, we
simply assign one semantic value to the other:

term : factor { $$ = $1; }

Because Bison is a bottom-up parser, it determines the semantic values
of the leaf nodes in the parse tree first, then passes those up to the interior
nodes, and so on until the result reaches the start symbol.

Figure 5.4 shows a Bison grammar that implements a complete inter-
preter. The main program simply invokes yyparse(). If successful, the
result is stored in the global variable parser result for extraction and
use from the main program.

74

5.4. EXPRESSION TREES 75

prog : expr TOKEN_SEMI { parser_result = $1; }

;

expr : expr TOKEN_PLUS term { $$ = $1 + $3; }

| expr TOKEN_MINUS term { $$ = $1 - $3; }

| term { $$ = $1; }

;

term : term TOKEN_MUL factor { $$ = $1 * $3; }

| term TOKEN_DIV factor { $$ = $1 / $3; }

| factor { $$ = $1; }

;

factor

: TOKEN_MINUS factor { $$ = -$2; }

| TOKEN_LPAREN expr TOKEN_RPAREN { $$ = $2; }

| TOKEN_INT { $$ = atoi(yytext); }

;

Figure 5.4: Bison Specification for an Interpreter

5.4 Expression Trees

So far, our expression interpreter is computing results in the middle of
parsing the input. While this works for simple expressions, it has several
general drawbacks: One is that the program may perform a large amount
of computation, only to discover a parse error late in the program. It is
generally more desirable to find all parse errors before execution.

To fix this, we will add a new stage to the interpreter. Instead of com-
puting values outright, we will construct a data structure known as the
abstract syntax tree to represent the expression. Once the AST is created,
we can traverse the tree to check, execute, and translate the program as
needed.

Figure 5.5 shows the C code for a simple AST representing expressions.
expr t enumerates the five kinds of expression nodes. struct expr de-
scribes a node in the tree, which is described by a kind, a left and right
pointer, and an integer value for a leaf. The function expr create cre-
ates a new tree node of any kind, while expr create value creates one
specifically of kind EXPR VALUE. 4

4Although it is verbally awkward, we are using the term “kind” rather than “type”, which
will have a very specific meaning later on.

75

76 CHAPTER 5. PARSING IN PRACTICE

Contents of File: expr.h

typedef enum {

EXPR_ADD,

EXPR_SUBTRACT,

EXPR_DIVIDE,

EXPR_MULTIPLY,

EXPR_VALUE

} expr_t;

struct expr {

expr_t kind;

struct expr *left;

struct expr *right;

int value;

};

Contents of File: expr.c

struct expr * expr_create(expr_t kind,

struct expr *left,

struct expr *right)

{

struct expr *e = malloc(sizeof(*e));

e->kind = kind;

e->value = 0;

e->left = left;

e->right = right;

return e;

}

struct expr * expr_create_value(int value)

{

struct expr *e = expr_create(EXPR_VALUE,0,0);

e->value = value;

return e;

}

Figure 5.5: AST for Expression Interpreter

76

5.4. EXPRESSION TREES 77

Using the expression structure, we can create some simple ASTs by
hand. For example, if we wanted to create an AST corresponding to the
expression (10+20)*30, we could issue this sequence of operations:

struct expr *a = expr_create_value(10);

struct expr *b = expr_create_value(20);

struct expr *c = expr_create(EXPR_ADD,a,b);

struct expr *d = expr_create_value(30);

struct expr *e = expr_create(EXPR_MULTIPLY,c,d);

Of course, we could have accomplished the same thing by writing a
single expression with nested values:

struct expr *e =

expr_create(EXPR_MULTIPLY,

expr_create(EXPR_ADD,

expr_create_value(10),

expr_create_value(20)

),

expr_create_value(30)

);

Either way, the result is a data structure like this:

VALUE: 10 VALUE: 20

ADD VALUE: 30

MULTIPLY

e

Instead of building each node of the AST by hand, we want Bison to
do the same work automatically. As each element of an expression is rec-
ognized, a new node in the tree should be created, and passed up so that
it can be linked into the appropriate place. By doing a bottom-up parse,
Bison will create the leaves of the tree first, and then link them into the
parent nodes.

To accomplish this, we must write the semantic actions for each rule to
either create a node in the tree, or pass up the pointer from the node below.
Figure 5.6 shows how this is done:

77

78 CHAPTER 5. PARSING IN PRACTICE

%{

#include "expr.h"

#define YYSTYPE struct expr *
struct expr * parser_result = 0;

%}

/* token definitions omitted for brevity */

prog : expr TOKEN_SEMI

{ parser_result = $1; }

;

expr : expr TOKEN_PLUS term

{ $$ = expr_create(EXPR_ADD,$1,$3); }

| expr TOKEN_MINUS term

{ $$ = expr_create(EXPR_SUBTRACT,$1,$3); }

| term

{ $$ = $1; }

;

term : term TOKEN_MUL factor

{ $$ = expr_create(EXPR_MULTIPLY,$1,$3); }

| term TOKEN_DIV factor

{ $$ = expr_create(EXPR_DIVIDE,$1,$3); }

| factor

{ $$ = $1; }

;

factor

: TOKEN_MINUS factor

{ $$ = expr_create(EXPR_SUBTRACT,

expr_create_value(0),$2); }

| TOKEN_LPAREN expr TOKEN_RPAREN

{ $$ = $2; }

| TOKEN_INT

{ $$ = expr_create_value(atoi(yytext));

;

Figure 5.6: Building an AST for the Expression Grammar

78

5.4. EXPRESSION TREES 79

Examine Figure 5.6 carefully and note several things:

• In the preamble, we must explicitly define the semantic type by set-
ting the macro YYSTYPE to struct expr *. This causes Bison
to use struct expr * as the internal type everywhere a semantic
value such as $$ or $1 is used. The final parser result must have the
same semantic type, of course.

• The AST does not always correspond directly to the parse tree. For
example, where an expr produces a factor, we simply pass up
the pointer to the underlying node with {$$ = $1;} On the other
hand, when we encounter a unary minus in term, we return a sub-
tree that actually implements subtraction between the value zero on
the left and the expression on the right.

Parse Tree for -20 AST for -20

expr

term

factor
MINUS

factor
20

SUB

VALUE:0 VALUE:20

• Parentheses are not directly represented in the AST. Instead, they
have the effect of ordering the nodes in the tree to achieve the desired
evaluation order. For example, consider the AST generated by these
sentences:

(5+6)/7 5+(6/7)

VALUE: 5 VALUE: 6

ADD VALUE: 7

DIV

VALUE: 5

VALUE: 6

ADD

DIV

VALUE: 7

79

80 CHAPTER 5. PARSING IN PRACTICE

int expr_evaluate(struct expr *e)

{

if(!e) return 0;

int l = expr_evaluate(e->left);

int r = expr_evaluate(e->right);

switch(e->kind) {

case EXPR_VALUE: return e->value;

case EXPR_ADD: return l+r;

case EXPR_SUBTRACT: return l-r;

case EXPR_MULTIPLY: return l*r;

case EXPR_DIVIDE:

if(r==0) {

printf("error: divide by zero\n");

exit(1);

}

return l/r;

}

return 0;

}

Figure 5.7: Evaluating Expressions

Now that we have constructed the AST, we can use it as the basis for
computation and many other operations.

The AST can be evaluated arithmetically by calling expr evaluate

shown in Figure 5.7. This function performs a post-order traversal of the
tree by invoking itself recursively on the left and right pointers of the node.
(Note the check for a null pointer at the beginning of the function.) Those
calls return l and r which contain the integer result of the left and right
subtrees. Then, the result of this node is computed by switching on the
kind of the current node. (Note also that we must check for division-by-
zero explicitly, otherwise expr evaluate would crash when r is zero.)

80

5.5. EXERCISES 81

void expr_print(struct expr *e)

{

if(!e) return;

printf("(");

expr_print(e->left);

switch(e->kind) {

case EXPR_VALUE: printf("%d",e->value);

break;

case EXPR_ADD: printf("+"); break;

case EXPR_SUBTRACT: printf("-"); break;

case EXPR_MULTIPLY: printf("*"); break;

case EXPR_DIVIDE: printf("/"); break;

}

expr_print(e->right);

printf(")");

}

Figure 5.8: Printing Expressions

In a similar way, the AST can be converted back to text by calling
expr print, shown in Figure 5.8. This function performs an in-order
traversal of the expression tree by recursively calling expr print on the
left side of a node, displaying the current node, then calling expr print

on the right side. Again, note the test for null at the beginning of the func-
tion.

As noted earlier, parentheses are not directly reflected in the AST. To
be conservative, this function displays a parenthesis around every value.
While correct, it results in a lot of parentheses! A better solution would be
to only print a parenthesis when a subtree contains an operator of lower
precedence.

5.5 Exercises

1. Consult the Bison manual and determine how to automatically gen-
erate a graph of the LALR automaton from your grammar. Compare
the output from Bison against your hand-drawn version.

2. Modify expr evaluate() (and anything else needed) to handle
floating point values instead of integers.

3. Modify expr print() so that it displays the minimum number of
parentheses necessary for correctness.

81

82 CHAPTER 5. PARSING IN PRACTICE

4. Extend the parser and interpreter to allow for invoking several built-
in mathematical functions such as sin(x), sqrt(x) and so forth.

Before coding, think a little bit about where to put the names of the
functions. Should they be keywords in the language? Or should
any function names be simply treated as identifiers and checked in
expr evaluate()?

5. Extend the parser and interpreter to allow for variable assignment
and use, so that you can write multiple assignment statements fol-
lowed by a single expression to be evaluated, like this:

g = 9.8;

t = 5;

g*t*t - 7*t + 10;

82

5.6. FURTHER READING 83

5.6 Further Reading

As its name suggests, YACC was not the first compiler construction tool,
but it remains widely used today and has led to a proliferation of simi-
lar tools written in various languages and addressing different classes of
grammars. Here is just a small selection:

1. S. C. Johnson, “YACC: Yet Another Compiler-Compiler”, Bell Labo-
ratories Technical Journal, 1975.

2. D. Grune and C.J.H Jacobs, “A programmer-friendly LL(1) parser
generator”, Software: Practice and Experience, volume 18, number
1.

3. T.J. Parr and R.W. Quong, “ANTLR: A predicated LL(k) Parser Gen-
erator”, Software: Practice and Experience, 1995.

4. S. McPeak, G.C. Necula, “Elkhound: A Fast, Practical GLR Parser
Generator”, International Conference on Compiler Construction, 2004.

83

84 CHAPTER 5. PARSING IN PRACTICE

84

