
Introduction to Compilers and Language Design
Copyright © 2023 Douglas Thain.
Paperback ISBN: 979-8-655-18026-0
Second edition.

Anyone is free to download and print the PDF edition of this book for per-
sonal use. Commercial distribution, printing, or reproduction without the
author’s consent is expressly prohibited. All other rights are reserved.

You can find the latest version of the PDF edition, and purchase inexpen-
sive hardcover copies at http://compilerbook.org

Revision Date: August 24, 2023

99

Chapter 7 – Semantic Analysis

Now that we have completed construction of the AST, we are ready to
begin analyzing the semantics, or the actual meaning of a program, and
not simply its structure.

Type checking is a major component of semantic analysis. Broadly
speaking, the type system of a programming language gives the program-
mer a way to make verifiable assertions that the compiler can check auto-
matically. This allows for the detection of errors at compile-time, instead
of at runtime.

Different programming languages have different approaches to type
checking. Some languages (like C) have a rather weak type system, so it
is possible to make serious errors if you are not careful. Other languages
(like Ada) have very strong type systems, but this makes it more difficult
to write a program that will compile at all!

Before we can perform type checking, we must determine the type of
each identifier used in an expression. However, the mapping between
variable names and their actual storage locations is not immediately obvi-
ous. A variable x in an expression could refer to a local variable, a func-
tion parameter, a global variable, or something else entirely. We solve this
problem by performing name resolution, in which each definition of a
variable is entered into a symbol table. This table is referenced throughout
the semantic analysis stage whenever we need to evaluate the correctness
of some code.

Once name resolution is completed, we have all the information nec-
essary to check types. In this stage, we compute the type of complex ex-
pressions by combining the basic types of each value according to stan-
dard conversion rules. If a type is used in a way that is not permitted, the
compiler will output an (ideally helpful) error message that will assist the
programmer in resolving the problem.

Semantic analysis also includes other forms of checking the correctness
of a program, such as examining the limits of arrays, avoiding bad pointer
traversals, and examining control flow. Depending on the design of the
language, some of these problems can be detected at compile time, while
others may need to wait until runtime.

99

100 CHAPTER 7. SEMANTIC ANALYSIS

7.1 Overview of Type Systems

Most programming languages assign to every value (whether a literal,
constant, or variable) a type, which describes the interpretation of the data
in that variable. The type indicates whether the value is an integer, a float-
ing point number, a boolean, a string, a pointer, or something else. In most
languages, these atomic types can be combined into higher-order types
such as enumerations, structures, and variant types to express complex
constraints.

The type system of a language serves several purposes:

• Correctness. A compiler uses type information provided by the pro-
grammer to raise warnings or errors if a program attempts to do
something improper. For example, it is almost certainly an error to
assign an integer value to a pointer variable, even though both might
be implemented as a single word in memory. A good type system
can help to eliminate runtime errors by flagging them at compile
time instead.

• Performance. A compiler can use type information to find the most
efficient implementation of a piece of code. For example, if the pro-
grammer tells the compiler that a given variable is a constant, then
the same value can be loaded into a register and used many times,
rather than constantly loading it from memory.

• Expressiveness. A program can be made more compact and expres-
sive if the language allows the programmer to leave out facts that
can be inferred from the type system. For example, in B-Minor the
print statement does not need to be told whether it is printing an
integer, a string, or a boolean: the type is inferred from the expres-
sion and the value is automatically displayed in the proper way.

A programming language (and its type system) are commonly classi-
fied on the following axes:

• safe or unsafe

• static or dynamic

• explicit or implicit

In an unsafe programming language, it is possible to write valid pro-
grams that have wildly undefined behavior that violates the basic struc-
ture of the program. For example, in the C programming language, a pro-
gram can construct an arbitrary pointer to modify any word in memory,
and thereby change the data and code of the compiled program. Such
power is probably necessary to implement low-level code like an operat-
ing system or a driver, but is problematic in general application code.

100

7.1. OVERVIEW OF TYPE SYSTEMS 101

For example, the following code in C is syntactically legal and will
compile, but is unsafe because it writes data outside the bounds of the
array a[]. As a result, the program could have almost any outcome, in-
cluding incorrect output, silent data corruption, or an infinite loop.

/* This is C code */

int i;

int a[10];

for(i=0;i<100;i++) a[i] = i;

In a safe programming language, it is not possible to write a program
that violates the basic structures of the language. That is, no matter what
input is given to a program written in a safe language, it will always
execute in a well-defined way that preserves the abstractions of the lan-
guage. A safe programming language enforces the boundaries of arrays,
the use of pointers, and the assignment of types to prevent undefined be-
havior. Most interpreted languages, like Perl, Python, and Java, are safe
languages.

For example, in C#, the boundaries of arrays are checked at runtime, so
that running off the end of an array has the predictable effect of throwing
an IndexOutOfRangeException:

/* This is C-sharp code */

a = new int[10];

for(int i=0;i<100;i++) a[i] = i;

In a statically typed language, all typechecking is performed at compile-
time, long before the program runs. This means that the program can be
translated into basic machine code without retaining any of the type in-
formation, because all operations have been checked and determined to
be safe. This yields the most high performance code, but it does eliminate
some kinds of convenient programming idioms.

Static typing is often used to distinguish between integer and floating
point operations. While operations like addition and multiplication are
usually represented by the same symbols in the source language, they are
implemented with fundamentally different machine code. For example, in
the C language on X86 machines, (a+b) would be translated to an ADDL

instruction for integers, but an FADD instruction for floating point values.
To know which instruction to apply, we must first determine the type of a
and b and deduce the intended meaning of +.

In a dynamically typed language, type information is available at run-
time and stored in memory alongside the data that it describes. As the
program executes, the safety of each operation is checked by comparing
the types of each operand. If types are observed to be incompatible, then
the program must halt with a runtime type error. This also allows for

101

102 CHAPTER 7. SEMANTIC ANALYSIS

code that can explicitly examine the type of a variable. For example, the
instanceof operator in Java allows one to test for types explicitly:

/* This is Java code */

public void sit(Furniture f) {

if (f instanceof Chair) {

System.out.println("Sit up straight!");

} else if (f instanceof Couch) {

System.out.println("You may slouch.");

} else {

System.out.println("You may sit normally.");

}

}

In an explicitly typed language, the programmer is responsible for in-
dicating the types of variables and other items in the code explicitly. This
requires more effort on the programmer’s part but reduces the possibility
of unexpected errors. For example, in an explicitly typed language like C,
the following code might result in an error or warning, due to the loss of
precision when assigning a floating point to an integer:1

/* This is C code */

int x = 32.5;

Explicit typing can also be used to prevent assignment between vari-
ables that have the same underlying representation, but different mean-
ings. For example, in C and C++, pointers to different types have the same
implementation (a pointer) but it makes no sense to interchange them. The
following should generate an error or at least a warning:

/* This is C code */

int *i;

float *f = i;

In an implicitly typed language, the compiler will infer the type of
variables and expressions (to the degree possible) without explicit input
from the programmer. This allows for programs to be more compact but
can result in accidental behavior. For example, recent C++ standards allow
a variable to be declared with automatic type auto, like this:

/* This is C++11 code */

auto x = 32.5;

cout << x << endl;

1Not all C compilers will generate a warning, but they should!

102

7.2. DESIGNING A TYPE SYSTEM 103

The compiler determines that 32.5 has type double, and therefore x

must also have type double. In a similar way, the output operator << is
defined to have a certain behavior on integers, another behavior on strings,
and so forth. In this case, the compiler already determined that the type of
x is double and so it chooses the variant of << that operates on doubles.

7.2 Designing a Type System

To describe the type system of a language, we must explain its atomic
types, its compound types, and the rules for assigning and converting be-
tween types.

The atomic types of a language are the simple types used to describe
individual variables that are typically (though not always) stored in single
registers in assembly language: integers, floating point numbers, boolean
values, and so forth. For each atomic type, it is necessary to clearly define
the range that is supported. For example, integers may be signed or un-
signed, be 8 or 16 or 32 or 64 bits; floating point numbers could be 32 or 40
or 64 bits; characters could be ASCII or Unicode.

Many languages allow for user-defined types in which the program-
mer defines a new type that is implemented using an atomic type but gives
it a new meaning by restricting the range. For example, in Ada, you might
define new types for days and months:

-- This is Ada code

type Day is range 1..31;

type Month is range 1..12;

This is useful because variables and functions dealing with days and
months are now kept separate, preventing you from accidentally assigning
one to another, or for giving the value 13 to a variable of type Month.

C has a similar feature, but it is much weaker: typedef declares a new
name for a type, but doesn’t have any means of restricting the range, and
doesn’t prevent you from making assignments between types that share
the same base type:

/* This is C code */

typedef int Month;

typedef int Day;

/* Assigning m to d is allowed in C,

because they are both integers. */

Month m = 10;

Day d = m;

103

104 CHAPTER 7. SEMANTIC ANALYSIS

Enumerations are another kind of user-defined type in which the pro-
grammer indicates a finite set of symbolic values that a variable can con-
tain. For example, if you are working with uncertain boolean variables in
Rust, you might declare:

/* This is Rust code */

enum Fuzzy { True, False, Uncertain };

Internally, an enumeration value is simply an integer, but it makes the
source code more readable, and also allows the compiler to prevent the
programmer from assigning an illegal value. Once again, the C language
allows you to declare enumerations, but doesn’t prevent you from mixing
and matching integers and enumerations.

The compound types of a language combine together existing types
into more complex aggregations. You are surely familiar with a struc-
ture type (or record type) that groups together several values into a larger
whole. For example, you might group together latitude and longitude to
treat them as a single coordinates structure:

/* This is Go code */

type coordinates struct {

latitude float64

longitude float64

}

Less frequently used are union types in which multiple symbols oc-
cupy the same memory. For example, in C, you can declare a union type
of number that contains an overlapping float and integer:

/* This is C code */

union number {

int i;

float f;

};

union number n;

n.i = 10;

n.f = 3.14;

In this case, n.i and n.f occupy the same memory. If you assign 10

to n.i and read it back, you will see 10 as expected. However, if you
assign 10 to n.i and read back n.f, you will likely observe a garbage
value, depending on how exactly the two values are mapped into memory.
Union types are occasionally handy when implementing operating system
features such as device drivers, because hardware interfaces often re-use
the same memory locations for multiple purposes.

104

7.2. DESIGNING A TYPE SYSTEM 105

Some languages provide a variant type which allows the programmer
to explicitly describe a type with multiple variants, each with different
fields. This is similar to the concept of a union type, but prevents the
programmer from performing unsafe accesses. For example, Rust allows
us to create a variant type representing an expression tree:

/* This is Rust code */

enum Expression {

ADD{ left: Expression, right: Expression },

MULTIPLY{ left: Expression, right: Expression },

INTEGER{ value: i32 },

NAME{ name: string }

}

This variant type is tightly controlled so that it is difficult to use incor-
rectly. For an Expression of type ADD, it has left and right fields which
can be used in the expected way. For an Expression of type NAME, the
name field can be used. The other fields are simply not available unless
the appropriate type is selected.

Finally, we must define what happens when unlike types are used to-
gether. Suppose that an integer i is assigned to a floating point f. A
similar situation arises when an integer is passed to a function expecting
a floating point as an argument. There are several possibilities for what a
language may do in this case:

• Disallow the assignment. A very strict language (like B-Minor)
could simply emit an error and prevent the program from compil-
ing! Perhaps it simply makes no sense to make the assignment,
and the compiler is saving the programmer from a grievous error.
If the assignment is really desired, it could be accomplished by re-
quiring that the programmer call a built-in conversion function (e.g.
IntToFloat) that accepts one type and returns another.

• Perform a bitwise copy. If the two variables have the same under-
lying storage size, the unlike assignment could be accomplished by
just copying the bits in one variable to the location of the other. This
is usually a bad idea, since there is no guarantee that one data type
has any meaning in the other context. But it does happen in a few
select cases, such as when assigning different pointer types in C.

• Convert to an equivalent value. For certain types, the compiler may
have built-in conversions that change the value to the desired type
implicitly. For example, it is common to implicitly convert between
integers and floating points, or between signed and unsigned inte-
gers. But this does not mean the operation is safe! An implied con-
version can lose information, resulting in very tricky bugs.

105

106 CHAPTER 7. SEMANTIC ANALYSIS

• Interpret the value in a different way. In some cases, it may be desir-
able to convert the value into some other value that is not equivalent
but still useful for the programmer. For example, in Perl, when a
list is copied to a scalar context, the length of the list is placed in the
target variable, rather than the content of the list.

@days = ("Monday", "Tuesday", "Wednesday", ...);

@a = @days; # copies the array to array a

$b = @days; # puts the length of the array into b

7.3 The B-Minor Type System

The B-Minor type system is safe, static, and explicit. As a result, it is fairly
compact to describe, straightforward to implement, and eliminates a large
number of programming errors. However, it may be more strict than some
languages, so there will be a large number of errors that we must detect.

B-Minor has the following atomic types:

• integer - A 64 bit signed integer.

• boolean - Limited to symbols true or false.

• char - Limited to ASCII values.

• string - ASCII values, null terminated.

• void - Only used for a function that returns no value.

And the following compound types:

• array [size] type

• function type (a: type, b: type, ...)

And here are the type rules that must be enforced:

• A value may only be assigned to a variable of the same type.

• A function parameter may only accept a value of the same type.

• The type of a return statement must match the function return
type.

• All binary operators must have the same type on the left and right
hand sides.

• The equality operators != and == may be applied to any type except
void, array, or function and always return boolean.

106

7.4. THE SYMBOL TABLE 107

• The comparison operators < <= >= > may only be applied to
integer values and always return boolean.

• The boolean operators ! && || may only be applied to boolean

values and always return boolean.

• The arithmetic operators + - * / % ˆ ++ -- may only be ap-
plied to integer values and always return integer.

7.4 The Symbol Table

The symbol table records all of the information that we need to know
about every declared variable (and other named items, like functions) in
the program. Each entry in the table is a struct symbol which is shown
in Figure 7.1.

struct symbol {

symbol_t kind;

struct type *type;

char *name;

int which;

};

typedef enum {

SYMBOL_LOCAL,

SYMBOL_PARAM,

SYMBOL_GLOBAL

} symbol_t;

Figure 7.1: The Symbol Structure

The kind field indicates whether the symbol is a local variable, a global
variable, or a function parameter. The type field points to a type structure
indicating the type of the variable. The name field gives the name (obvi-
ously), and the which field gives the ordinal position of local variables
and parameters. (More on that later.)

As with all the other data structures we have created so far, we must
have a factory function like this:

struct symbol * symbol_create(symbol_t kind,

struct type *type,

char *name) {

struct symbol *s = malloc(sizeof(*s));

s->kind = kind;

s->type = type;

s->name = name;

return s;

}

To begin semantic analysis, we must create a suitable symbol structure
for each variable declaration and enter it into the symbol table.

107

108 CHAPTER 7. SEMANTIC ANALYSIS

Conceptually, the symbol table is just a map between the name of each
variable, and the symbol structure that describes it:

Variable
Names

Symbol
Table

Symbol
Structures

However, it’s not quite that simple, because most programming lan-
guages allow the same variable name to be used multiple times, as long
as each definition is in a distinct scope. In C-like languages (including B-
Minor) there is a global scope, a scope for function parameters and local
variables, and then nested scopes everywhere curly braces appear.

For example, the following B-Minor program defines the symbol x
three times, each with a different type and storage class. When run, the
program should print 10 hello false.

x: integer = 10;

f: function void (x: string) =

{

print x, "\n";

{

x: boolean = false;

print x, "\n";

}

}

main: function void () =

{

print x, "\n";

f("hello");

}

108

7.4. THE SYMBOL TABLE 109

To accommodate these multiple definitions, we will structure our sym-
bol table as a stack of hash tables, as shown in Figure 7.2. Each hash table
maps the names in a given scope to their corresponding symbols. This
allows a symbol (like x) to exist in multiple scopes without conflict. As
we proceed through the program, we will push a new table every time a
scope is entered, and pop a table every time a scope is left.

x

Global
Scope
Table

x
Function
Scope
Table

x
Inner
Scope
Table

f

main

Stack Top

symbol

x LOCAL(0) BOOLEAN

symbol

x PARAM(0) STRING

symbol

x GLOBAL INTEGER

symbol

f GLOBAL FUNCTION

symbol

main GLOBAL FUNCTION

Figure 7.2: A Nested Symbol Table

109

110 CHAPTER 7. SEMANTIC ANALYSIS

void scope_enter();

void scope_exit();

int scope_level();

void scope_bind(const char *name, struct symbol *sym);

struct symbol *scope_lookup(const char *name);

struct symbol *scope_lookup_current(const char *name);

Figure 7.3: Symbol Table API

To manipulate the symbol table, we define six operations in the API
given in Figure 7.3. They have the following meanings:

• scope enter() causes a new hash table to be pushed on the top of
the stack, representing a new scope.

• scope exit() causes the topmost hash table to be removed.

• scope level() returns the number of hash tables in the current
stack. (This is helpful to know whether we are at the global scope or
not.)

• scope bind(name,sym) adds an entry to the topmost hash table
of the stack, mapping name to the symbol structure sym.

• scope lookup(name) searches the stack of hash tables from top to
bottom, looking for the first entry that matches name exactly. If no
match is found, it returns null.

• scope lookup current(name)works like scope lookup except
that it only searches the topmost table. This is used to determine
whether a symbol has already been defined in the current scope.

110

7.5. NAME RESOLUTION 111

7.5 Name Resolution

With the symbol table in place, we are now ready to match each use of a
variable name to its matching definition. This process is known as name
resolution. To implement name resolution, we will write a resolve

method for each of the structures in the AST, including decl resolve(),
stmt resolve() and so forth.

Collectively, these methods must iterate over the entire AST, looking
for variable declarations and uses. Wherever a variable is declared, it must
be entered into the symbol table and the symbol structure linked into the
AST. Wherever a variable is used, it must be looked up in the symbol table,
and the symbol structure linked into the AST. Of course, if a symbol is
declared twice in the same scope, or used without declaration, then an
appropriate error message must be emitted.

We will begin with declarations, as shown in Figure 7.4. Each decl

represents a variable declaration of some kind, so decl resolve will cre-
ate a new symbol, and then bind it to the name of the declaration in the
current scope. If the declaration represents an expression (d->value is
not null) then the expression should be resolved. If the declaration repre-
sents a function (d->code is not null) then we must create a new scope
and resolve the parameters and the code.

Figure 7.4 gives some sample code for resolving declarations. As al-
ways in this book, consider this starter code in order to give you the basic
idea. You will have to make some changes in order to accommodate all
the features of the language, handle errors cleanly, and so forth.

In a similar fashion, we must write resolve methods for each structure
in the AST. stmt resolve() (not shown) must simply call the appropri-
ate resolve on each of its sub-components. In the case of a STMT BLOCK,
it must also enter and leave a new scope. param list resolve() (also
not shown) must enter a new variable declaration for each parameter of a
function, so that those definitions are available to the code of a function.

To perform name resolution on the entire AST, you may simply invoke
decl resolve() once on the root node of the AST. This function will
traverse the entire tree by calling the necessary sub-functions.

111

112 CHAPTER 7. SEMANTIC ANALYSIS

void decl_resolve(struct decl *d)

{

if(!d) return;

symbol_t kind = scope_level() > 1 ?

SYMBOL_LOCAL : SYMBOL_GLOBAL;

d->symbol = symbol_create(kind,d->type,d->name);

expr_resolve(d->value);

scope_bind(d->name,d->symbol);

if(d->code) {

scope_enter();

param_list_resolve(d->type->params);

stmt_resolve(d->code);

scope_exit();

}

decl_resolve(d->next);

}

Figure 7.4: Name Resolution for Declarations

void expr_resolve(struct expr *e)

{

if(!e) return;

if(e->kind==EXPR_NAME) {

e->symbol = scope_lookup(e->name);

} else {

expr_resolve(e->left);

expr_resolve(e->right);

}

}

Figure 7.5: Name Resolution for Expressions

112

7.6. IMPLEMENTING TYPE CHECKING 113

7.6 Implementing Type Checking

Before checking expressions, we need some helper functions for check-
ing and manipulating type structures. Here is pseudo-code for checking
equality, copying, and deleting types:

boolean type_equals(struct type *a, struct type *b)

{

if(a->kind == b->kind) {

if(a and b are atomic types){

Return true

} else if (both are array) {

Return true if subtype is recursively equal

} else if (both are function) {

Return true if both subtype and params

are recursively equal

}

} else {

Return false

}

}

struct type * type_copy(struct type *t)

{

Return a duplicate copy of t, making sure

to duplicate subtype and params recursively.

}

void type_delete(struct type *t)

{

Free all the elements of t recursively.

}

Next, we construct a function expr typecheck that will compute the
proper type of an expression, and return it. To simplify our code, we assert
that expr typecheck, if called on a non-null expr, will always return
a newly-allocated type structure. If the expression contains an invalid
combination of types, then expr typecheck will print out an error, but
return a valid type, so that the compiler can continue on and find as many
errors as possible.

The general approach is to perform a recursive, post-order traversal of
the expression tree. At the leaves of the tree, the type of the node simply
corresponds to the kind of the expression node: an integer literal has inte-
ger type, a string literal has string type, and so on. If we encounter a vari-
able name, the type can be determined by following the symbol pointer

113

114 CHAPTER 7. SEMANTIC ANALYSIS

to the symbol structure, which contains the type. This type is copied and
returned to the parent node.

For interior nodes of the expression tree, we must compare the type
of the left and right subtrees, and determine if they are compatible with
the rules indicated in Section 7.3. If not, we emit an error message and
increment a global error counter. Either way, we return the appropriate
type for the operator. The types of the left and right branches are no longer
needed and can be deleted before returning.

Here is the basic code structure:

struct type * expr_typecheck(struct expr *e)

{

if(!e) return 0;

struct type *lt = expr_typecheck(e->left);

struct type *rt = expr_typecheck(e->right);

struct type *result;

switch(e->kind) {

case EXPR_INTEGER_LITERAL:

result = type_create(TYPE_INTEGER,0,0);

break;

case EXPR_STRING_LITERAL:

result = type_create(TYPE_STRING,0,0);

break;

/* more cases here */

}

type_delete(lt);

type_delete(rt);

return result;

}

114

7.6. IMPLEMENTING TYPE CHECKING 115

Let’s consider the cases for a few operators in detail. Arithmetic oper-
ators can only be applied to integers, and always return an integer type:

case EXPR_ADD:

if(lt->kind!=TYPE_INTEGER ||

rt->kind!=TYPE_INTEGER) {

/* display an error */

}

result = type_create(TYPE_INTEGER,0,0);

break;

The equality operators can be applied to most types, as long as the
types are equal on both sides. These always return boolean.

case EXPR_EQ:

case EXPR_NE:

if(!type_equals(lt,rt)) {

/* display an error */

}

if(lt->kind==TYPE_VOID ||

lt->kind==TYPE_ARRAY ||

lt->kind==TYPE_FUNCTION) {

/* display an error */

}

result = type_create(TYPE_BOOLEAN,0,0);

break;

An array dereference like a[i] requires that a be an array, i be an
integer, and returns the subtype of the array:

case EXPR_DEREF:

if(lt->kind==TYPE_ARRAY) {

if(rt->kind!=TYPE_INTEGER) {

/* error: index not an integer */

}

result = type_copy(lt->subtype);

} else {

/* error: not an array */

/* but we need to return a valid type */

result = type_copy(lt);

}

break;

Most of the hard work in typechecking is done in expr typecheck,
but we still need to implement typechecking on declarations, statements,
and the other elements of the AST. decl typecheck, stmt typecheck

115

116 CHAPTER 7. SEMANTIC ANALYSIS

and the other typechecking methods simply traverse the AST, compute the
type of expressions, and then check them against declarations and other
constraints as needed.

For example, decl typecheck simply confirms that variable declara-
tions match their initializers and otherwise typechecks the body of func-
tion declarations:

void decl_typecheck(struct decl *d)

{

if(d->value) {

struct type *t;

t = expr_typecheck(d->value);

if(!type_equals(t,d->symbol->type)) {

/* display an error */

}

}

if(d->code) {

stmt_typecheck(d->code);

}

}

Statements must be typechecked by evaluating each of their compo-
nents, and then verifying that types match where needed. After the type
is examined, it is no longer needed and may be deleted. For example,
if-then statements require that the control expression have boolean type:

void stmt_typecheck(struct stmt *s)

{

struct type *t;

switch(s->kind) {

case STMT_EXPR:

t = expr_typecheck(s->expr);

type_delete(t);

break;

case STMT_IF_THEN:

t = expr_typecheck(s->expr);

if(t->kind!=TYPE_BOOLEAN) {

/* display an error */

}

type_delete(t);

stmt_typecheck(s->body);

stmt_typecheck(s->else_body);

break;

/* more cases here */

}

}

116

7.7. ERROR MESSAGES 117

7.7 Error Messages

Compilers in general are notorious for displaying terrible error messages.
Fortunately, we have developed enough code structure that it is straight-
forward to display an informative error message that explains exactly what
types were discovered, and what the problem is.

For example, this bit of B-Minor code has a mess of type problems:

s: string = "hello";

b: boolean = false;

i: integer = s + (b<5);

Most compilers would emit an unhelpful message like this:

error: type compatibility in expression

But, your project compiler can very easily have much more detailed
error messages like this:

error: cannot compare a boolean (b) to an integer (5)

error: cannot add a boolean (b<5) to a string (s)

It’s just a matter of taking some care in printing out each of the expres-
sions and types involved when a problem is found:

printf("error: cannot add a ");

type_print(lt);

printf(" (");

expr_print(e->left);

printf(") to a ");

type_print(rt);

printf(" (");

expr_print(e->right);

printf(")\n");

117

118 CHAPTER 7. SEMANTIC ANALYSIS

7.8 Exercises

1. Implement the symbol and scope functions in symbol.c and
scope.c, using an existing hash table implementation as a starting
point.

2. Complete the name resolution code by writing stmt resolve()

and param list resolve() and any other supporting code needed.

3. Modify decl resolve() and expr resolve() to display errors
when the same name is declared twice, or when a variables is used
without a declaration.

4. Complete the implementation of expr typecheck so that it checks
and returns the type of all kinds of expressions.

5. Complete the implementation of stmt typecheck by enforcing the
constraints particularly to each kind of statement.

6. Write a function myprintf that displays printf-style format strings,
but supports symbols like %T for types, %E for expressions, and so
forth. This will make it easier to emit error messages, like this:

myprintf(

"error: cannot add a %T (%E) to a %T (%E)\n",

lt,e->left,rt,e->right

);

Consult a standard C manual and learn about the functions in the
stdarg.h header for creating variadic functions.

7.9 Further Reading

1. H. Abelson, G. Sussman, and J. Sussman, “Structure and Interpreta-
tion of Computer Programs”, MIT Press, 1996.

2. B. Pierce, “Types and Programming Languages”, MIT Press, 2002.

3. D. Friedman and D. Christiansen, “The Little Typer”, MIT Press,
2018.

118

