
Introduction to Compilers and Language Design
Copyright © 2023 Douglas Thain.
Paperback ISBN: 979-8-655-18026-0
Second edition.

Anyone is free to download and print the PDF edition of this book for per-
sonal use. Commercial distribution, printing, or reproduction without the
author’s consent is expressly prohibited. All other rights are reserved.

You can find the latest version of the PDF edition, and purchase inexpen-
sive hardcover copies at http://compilerbook.org

Revision Date: August 24, 2023

119

Chapter 8 – Intermediate Representations

8.1 Introduction

Most production compilers make use of an intermediate representation
(IR) that lies somewhere between the abstract structure of the source lan-
guage and the concrete structure of the target assembly language.

An IR is designed to have a simple and regular structure that facilitates
optimization, analysis, and efficient code generation. A modular compiler
will often implement each optimization or analysis tool as a separate mod-
ule that consumes and produces the same IR, so that it is easy to select and
compose optimizations in different orders.

It is common for an IR to have a defined external format that can be
written out to a file in text form, so that it can be exchanged between unre-
lated tools. Although it may be visible to the determined programmer, it
usually isn’t meant to be easily readable. When loaded into memory, the
IR is represented as a data structure, to facilitate algorithms that traverse
its structure.

There are many different kinds of IR that can be used; some are very
close to the AST we used up to this point, while others are only a very
short distance from the target assembly language. Some compilers even
use multiple IRs in decreasing layers of abstraction. In this chapter, we
will examine different approaches to IRs and consider their strengths and
weaknesses.

8.2 Abstract Syntax Tree

First, we will point out that the AST itself can be a usable IR, if the goal is
simply to emit assembly language without a great deal of optimization or
other transformations. Once typechecking is complete, simple optimiza-
tions like strength reduction and constant folding can be applied to the
AST itself. Then, to generate assembly language, you can simply perform
a post-order traversal of the AST and emit a few assembly instructions
corresponding to each node. 1

1This is the approach we use in a one-semester course to implement a project compiler,
since there is a limited amount of time to get to the final goal of generating assembly lan-
guage.

119

120 CHAPTER 8. INTERMEDIATE REPRESENTATIONS

typedef enum {

DAG_ASSIGN,

DAG_DEREF,

DAG_IADD,

DAG_IMUL,

...

DAG_NAME,

DAG_FLOAT_VALUE,

DAG_INTEGER_VALUE

} dag_kind_t;

struct dag_node {

dag_kind_t kind;

struct dag_node *left;

struct dag_node *right;

union {

const char *name;

double float_value;

int integer_value;

} u;

};

Figure 8.1: Sample DAG Data Structure Definition

However, in a production compiler, the AST isn’t a great choice for an
IR, mainly because the structure is too rich. Each node has a large number
of different options and substructure: for example, an addition node could
represent an integer addition, a floating point addition, a boolean-or, or a
string concatenation, depending on the types of the values involved. This
makes it difficult to perform robust transformations, as well as to generate
an external representation. A more low-level representation is needed.

8.3 Directed Acyclic Graph

The directed acyclic graph (DAG) is one step simplified from the AST. A
DAG is similar to the AST, except that it can have an arbitrary graph struc-
ture, and the individual nodes are greatly simplified, so that there is little
or no auxiliary information beyond the type and value of each node. This
requires that we have a greater number of node types, each one explicit
about its purpose. For example, Figure 8.1 shows a definition of a DAG
data structure that would be compatible with our project compiler.

120

8.3. DIRECTED ACYCLIC GRAPH 121

Now suppose we compile a simple expression like x=(a+10)*(a+10).
The AST representation of this expression would directly capture the syn-
tactic structure:

ADD

a 10

ASSIGN

x MUL

ADD

a 10

After performing typechecking, we may learn that a is a floating point
value, and therefore 10 must be converted into a float before performing
floating point arithmetic. In addition, the computation a+10 need only be
performed once, and the resulting value used twice.

All of that can be represented with the following DAG, which intro-
duces a new type of node ITOF to perform integer-to-float conversion,
and nodes FADD and FMUL to perform floating point arithmetic:

ASSIGN

x FMUL

FADD

a ITOF

10

121

122 CHAPTER 8. INTERMEDIATE REPRESENTATIONS

It is also common for a DAG to represent address computations related
to pointers and arrays in greater detail, so that they can be shared and
optimized, where possible. For example, the array lookup x=a[i] would
have a very simple representation in the AST:

ASSIGN

x LOOKUP

a i

However, an array lookup is actually accomplished by adding the start-
ing address of the array a with the index of the item i multiplied by the
size of objects in the array, determined by consulting the symbol table.
This could be expressed in a DAG like this:

ASSIGN

x DEREF

IADD

a IMUL

i 4

As a final step before code generation, the DAG might be expanded
to include the address computations for local variables. For example, if a
and i are stored on the stack at sixteen and twenty bytes past the frame
pointer FP, respectively, the DAG could be expanded like this:

122

8.3. DIRECTED ACYCLIC GRAPH 123

DEREF

IADD

FP 16

DEREF

IADD

FP 20

ASSIGN

x DEREF

IADD

IMUL

4

The value-number method can be used to construct a DAG from an
AST. The idea is to build an array where each entry consists of a DAG
node type, and the array index of the child nodes. Every time we wish to
add a new node to the DAG, we search the array for a matching node and
re-use it to avoid duplication. The DAG is constructed by performing a
post-order traversal of the AST and adding each element to the array.

The DAG above could be represented by this value-number array:

Type Left Right Value

0 NAME x
1 NAME a
2 INT 10
3 ITOF 2
4 FADD 1 3
5 FMUL 4 4
6 ASSIGN 0 5

Obviously, searching the table for equivalent nodes every time a new
node gets added is going to have polynomial complexity. However, the
absolute sizes stay relatively small, as long as each individual expression
has its own DAG.

123

124 CHAPTER 8. INTERMEDIATE REPRESENTATIONS

By designing the DAG representation such that all necessary informa-
tion is encoded into the node type, it becomes easy to write a portable
external representation. For example, we could represent each node as a
symbol, followed by its children in parentheses:

ASSIGN(x,DEREF(IADD(DEREF(IADD(FP,16)),

IMUL(DEREF(IADD(FP,20)),4))))

Clearly, this sort of code would not be easy for a human to read and
write manually, but it is trivial to print and trivial to parse, making it easy
to pass between compiler stages for analysis and optimization.

Now, what sort of optimizations might you do with the DAG? One
easy optimization is constant folding. This is the process of reducing an
expression consisting of only constants into a single value. 2 This capabil-
ity is handy, because the programmer may wish to leave some expressions
in an explicit form for the sake of readability or maintainability while still
having the performance advantage of a single constant in the executable
code.

DAG Constant Folding Algorithm
Examine a DAG recursively and collapse all operators on
two constants into a single constant.

ConstantFold(DagNode n):

If n is a leaf:
return;

Else:
n.left = ConstantFold(n.left);
n.right = ConstantFold(n.right);

If n.left and n.right are constants:
n.value = n.operator(n.left,n.right);
n.kind = constant;
delete n.left and n.right;

2Constant folding is a narrow example of the more general technique of partial execution
in which some parts of the program are executed at compile time, while the rest is left for
runtime.

124

8.4. CONTROL FLOW GRAPH 125

Figure 8.2: Example of Constant Folding

IMUL

IMUL 24

60 60

ASSIGN

secs IMUL

days

IMUL

24 3600

ASSIGN

secs IMUL

days

ASSIGN

secs IMUL

days 86400

Suppose you have an expression that computes the number of sec-
onds present in the number of days. The programmer expresses this as
secs=days*24*60*60 to make it clear that there are 24 hours in a day,
60 minutes in an hour, and 60 seconds in a minute. Figure 8.2 shows how
ConstantFold would reduce the DAG. The algorithm descends through
the tree and combines IMUL(60,60) into 3600, and then IMUL(3600,24)
into 86400.

8.4 Control Flow Graph

It is important to note that a DAG by itself is suitable for encoding expres-
sions, but it isn’t as effective for control flow or other ordered program
structures. Common sub-expressions are combined under the assumption
that they can be evaluated in any order (consistent with operator prece-
dence) and the values already in the DAG do not change. This assumption
does not hold when we consider multiple statements that modify values,
or control flow structures that repeat or skip statements.

To reflect this, we can use a control flow graph to represent the higher-
level structure of the program. The control flow graph is a directed graph
(possibly cyclic) where each node of the graph consists of a basic block
of sequential statements. The edges of the graph represent the possible
flows of control between basic blocks. A conditional construct (like if or
switch) results in branches in the graph, while a loop construct (like for
or while) results in reverse edges.

125

126 CHAPTER 8. INTERMEDIATE REPRESENTATIONS

For example, this bit of code:

for(i=0;i<10;i++) {

if(i%2==0) {

print "even";

} else {

print "odd";

}

print "\n";

}

return;

Would result in this control flow graph:

i=0;

if(i<10)

if(i%2==0)

true

return;

false

print "even";

true

print "odd";

false

print "\n";

i++;

Figure 8.3: Example Control Flow Graph

Note that the control flow graph has a different structure than the AST.
The AST for a for-loop would have each of the control expressions as an
immediate child of the loop node, whereas the control flow graph places
each one in the order it would be executed in practice. Likewise, the if
statement has edges from each branch of the conditional to the following
node, so that one can easily trace the flow of execution from one compo-
nent to the next.

126

8.5. STATIC SINGLE ASSIGNMENT FORM 127

8.5 Static Single Assignment Form

The static single assignment (SSA) [1] form is a commonly-used represen-
tation for complex optimizations. SSA uses the information in the control
flow and updates each basic block with a new restriction: variables cannot
change their values. Instead, whenever a variable is assigned a new value,
it is given a new version number.

For example, suppose that we have this bit of code:

int x = 1;

int a = x;

int b = a + 10;

x = 20 * b;

x = x + 30;

We could re-write it in SSA form like this:

int x_1 = 1;

int a_1 = x_1;

int b_1 = a_1 + 10;

x_2 = 20 * b_1;

x_3 = x_2 + 30;

A peculiarity comes when a variable is given a different value in two
branches of a conditional. Following the conditional, the variable could
have either value, but we don’t know which one. To express this, we in-
troduce a new function φ(x, y) which indicates that either value x or y

could be selected at runtime. The φ function may not necessarily translate
to an instruction in the assembly output, but serves to link the new value
to its possible old values, reflecting the control flow graph.

For example, this code fragment:

if(y<10) {

x=a;

} else {

x=b;

}

Becomes this:

if(y_1<10) {

x_2=a;

} else {

x_3=b;

}

x_4 = phi(x_2,x_3);

127

128 CHAPTER 8. INTERMEDIATE REPRESENTATIONS

8.6 Linear IR

A linear IR is an ordered sequence of instructions that is closer to the final
goal of an assembly language. It loses some of the flexibility of a DAG
(which does not commit to a specific ordering) but can capture expres-
sions, statements, and control flow all within one data structure. This en-
ables some optimization techniques that span multiple expressions.

There is no universal standard for a linear IR. A linear IR typically looks
like an idealized assembly language with a large (or infinite) number of
registers and the usual arithmetic and control flow operations. Here, let
us assume an IR where LOAD and STOR are used to move values between
memory and registers, and three-address arithmetic operations read two
registers and write to a third, from left to right. Our example expression
would look like this:

1. LOAD a -> %r1

2. LOAD $10 -> %r2

3. ITOF %r2 -> %r3

4. FADD %r1, %r3 -> %r4

5. FMUL %r4, %r4 -> %r5

6. STOR %r5 -> x

This IR is easy to store efficiently, because each instruction can be a
fixed size 4-tuple representing the operation and (max) of three arguments.
The external representation is also straightforward.

As the example suggests, it is most convenient to pretend that there are
an infinite number of virtual registers, such that every new value com-
puted writes to a new register. In this form, we can easily identify the
lifetime of a value by observing the first point where a register is written,
and the last point where a register is used. Between those two points, the
value of register one must be preserved. For example, the lifetime of %r1
is from instruction 1 to instruction 4.

At any given instruction, we can also observe the set of virtual registers
that are live:

1. LOAD a -> %r1 live: %r1

2. LOAD $10 -> %r2 live: %r1 %r2

3. ITOF %r2 -> %r3 live: %r1 %r2 %r3

4. FADD %r1, %r3 -> %r4 live: %r1 %r3 %r4

5. FMUL %r4, %r4 -> %r5 live: %r4 %r5

6. STOR %r5 -> x live: %r5

This observation makes it easy to perform operations related to instruc-
tion ordering. Any instruction may be moved to an earlier position (within
one basic block) as long as the values it reads are not moved above their
definitions. Likewise, any instruction may be moved to a later position

128

8.7. STACK MACHINE IR 129

as long as the values it writes are not moved below their uses. Moving
instructions can reduce the number of physical registers needed in code
generation, as well as reduce execution time in a pipelined architecture.

8.7 Stack Machine IR

An even more compact intermediate representation is a stack machine IR.
Such a representation is designed to execute on a virtual stack machine
that has no traditional registers, but only a stack to hold intermediate reg-
isters. A stack machine IR typically has a PUSH instruction which pushes
a variable or literal value on to the stack and a POP instruction which re-
moves an item and stores it in memory. Binary arithmetic operators (like
FADD or FMUL) implicitly pop two values off the stack and push the result
on the stack, while unary operators (ITOF) pop one value and push one
value. A few utility instructions are needed to manipulate the stack, like a
COPY instruction which pushes a duplicate value on to the stack.

To emit a stack machine IR from a DAG, we simply perform a post-
order traversal of the AST and emit a PUSH for each leaf value, an arith-
metic instruction for each interior node, and a POP instruction to assign a
value to a variable.

Our example expression would look like this in a stack machine IR:

PUSH a

PUSH 10

ITOF

FADD

COPY

FMUL

POP x

If we suppose that a has the value 5.0, then executing the IR directly
would result in this:

IR Op: PUSH a PUSH 10 ITOF FADD COPY FMUL POP x

Stack 5.0 10 10.0 15.0 15.0 225.0 -
State: - 5.0 5.0 - 15.0 - -

A stack machine IR has many advantages. It is much more compact
than a 3-tuple or 4-tuple linear representation, since there is no need to
record the details of registers. It is also straightforward to implement this
language in a simple interpreter.

However, a stack-based IR is slightly more difficult to translate to a
conventional register-based assembly language, precisely because the ex-
plicit register names are lost. Further transformation or optimization of
this form requires that we transform the implicit information dependen-
cies in the stack-basic IR back into a more explicit form such as a DAG or
a linear IR with explicit register names.

129

130 CHAPTER 8. INTERMEDIATE REPRESENTATIONS

8.8 Examples

Nearly every compiler or language has its own intermediate representa-
tion with some peculiar local features. To give you a sense of what’s pos-
sible, this section compares three different IRs used by compilers in 2017.
For each one, we will show the output of compiling this simple arithmetic
expression:

float f(int a, int b, float x) {

float y = a*x*x + b*x + 100;

return y;

}

8.8.1 GIMPLE - GNU Simple Representation

The GNU Simple Representation (GIMPLE) is an internal IR used at the
earliest stages of the GNU C compiler. GIMPLE can be thought of as a
drastically simplified form of C in which all expressions have been broken
down into individual operators on values in static single assignment form.
Basic conditionals are allowed, and loops are implemented using goto.

Our simple function yields the following GIMPLE. Note that each SSA
value is declared as a local variable (with a long name) and the type of
each operator is still inferred from the local type declaration.

f (int a, int b, float x)

{

float D.1597D.1597;

float D.1598D.1598;

float D.1599D.1599;

float D.1600D.1600;

float D.1601D.1601;

float D.1602D.1602;

float D.1603D.1603;

float y;

D.1597D.1597 = (float) a;

D.1598D.1598 = D.1597D.1597 * x;

D.1599D.1599 = D.1598D.1598 * x;

D.1600D.1600 = (float) b;

D.1601D.1601 = D.1600D.1600 * x;

D.1602D.1602 = D.1599D.1599 + D.1601D.1601;

y = D.1602D.1602 + 1.0e+2;

D.1603D.1603 = y;

return D.1603D.1603;

}

130

8.8. EXAMPLES 131

8.8.2 LLVM - Low-Level Virtual Machine

The Low-Level Virtual Machine (LLVM)3 project is a language and a corre-
sponding suite of tools for building optimizing compilers and interpreters.
A variety of compiler front-ends support the generation of LLVM interme-
diate code, which can be optimized by a variety of independent tools, and
then translated again into native machine code, or bytecode for virtual
machines like Oracle’s JVM, or Microsoft’s CLR.

Our simple function yields this LLVM. Note that the first few alloca

instructions allocate space for local variables, followed by store instruc-
tions that move the parameters to local variables. Then, each step of the
expression is computed in SSA form and the result stored to the local vari-
able y. The code is explicit at each step about the type (32-bit integer or
float) and the alignment of each value.

define float @f(i32 %a, i32 %b, float %x) #0 {

%1 = alloca i32, align 4

%2 = alloca i32, align 4

%3 = alloca float, align 4

%y = alloca float, align 4

store i32 %a, i32* %1, align 4

store i32 %b, i32* %2, align 4

store float %x, float* %3, align 4

%4 = load i32* %1, align 4

%5 = sitofp i32 %4 to float

%6 = load float* %3, align 4

%7 = fmul float %5, %6

%8 = load float* %3, align 4

%9 = fmul float %7, %8

%10 = load i32* %2, align 4

%11 = sitofp i32 %10 to float

%12 = load float* %3, align 4

%13 = fmul float %11, %12

%14 = fadd float %9, %13

%15 = fadd float %14, 1.000000e+02

store float %15, float* %y, align 4

%16 = load float* %y, align 4

ret float %16

}

3http://llvm.org

131

132 CHAPTER 8. INTERMEDIATE REPRESENTATIONS

8.8.3 JVM - Java Virtual Machine

The Java Virtual Machine (JVM) is an abstract definition of a stack-based
machine. High-level code written in Java is compiled into .class files
which contain a binary representation of the JVM bytecode. The earliest
implementations of the JVM were interpreters which read and executed
the JVM bytecode in the obvious way. Later implementations performed
just-in-time (JIT) compiling of the bytecode into native assembly language,
which can be executed directly.

Our simple function yields the following JVM bytecode. Note that each
of the iload instructions refers to a local variable, where parameters are
considered as the first few local variables. So, iload 1 pushes the first
local variable (int a) on to the stack, while fload 3 pushes the third
local variable (float x) on to the stack. Fixed constants are stored in
an array in the class file and referenced by position, so ldc #2 pushes
constant in position two (100) on to the stack.

0: iload 1

1: i2f

2: fload 3

4: fmul

5: fload 3

7: fmul

8: iload 2

9: i2f

10: fload 3

12: fmul

13: fadd

14: ldc #2

16: fadd

17: fstore 4

19: fload 4

21: freturn

132

8.9. EXERCISES 133

8.9 Exercises

1. Add a step to your compiler to convert the AST into a DAG by per-
forming a post-order traversal and creating one or more DAG nodes
corresponding to each AST node.

2. Write the code to export a DAG in a simple external representation as
shown in this chapter. Extend the DAG suitably to represent control
flow structures and function definitions.

3. Write a scanner and parser to read in the DAG external representa-
tion and reconstruct it as a data structure. Think carefully about the
grammar class of the IR, and choose the simplest implementation
that works.

4. Building on steps 2 and 3, write a standalone optimization tool that
reads in the DAG format, performs a simple optimization like con-
stant folding, and writes the DAG back out in the same format.

133

134 CHAPTER 8. INTERMEDIATE REPRESENTATIONS

8.10 Further Reading

1. R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and F. Kenneth Zadeck.
“Efficiently computing static single assignment form and the con-
trol dependence graph.” ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) volume 13, number 4, 1991.
https://doi.org/10.1145/115372.115320

2. J. Merrill, “Generic and GIMPLE: A new tree representation for en-
tire functions.” GCC Developers Summit, 2003.

3. C. Lattner and V. Adve, “LLVM: A Compilation Framework for Life-
long Program Analysis & Transformation”, IEEE International Sym-
posium on Code Generation and Optimization, 2004.
https://dl.acm.org/citation.cfm?id=977673

134

