
Introduction to Compilers and Language Design
Copyright © 2023 Douglas Thain.
Paperback ISBN: 979-8-655-18026-0
Second edition.

Anyone is free to download and print the PDF edition of this book for per-
sonal use. Commercial distribution, printing, or reproduction without the
author’s consent is expressly prohibited. All other rights are reserved.

You can find the latest version of the PDF edition, and purchase inexpen-
sive hardcover copies at http://compilerbook.org

Revision Date: August 24, 2023

135

Chapter 9 – Memory Organization

9.1 Introduction

Before digging into the translation of intermediate code to assembly lan-
guage, we must discuss how the internal memory of a running program
is laid out. Although a process is free to use memory in any way that it
likes, a convention has developed that divides the areas of a program into
logical segments, each with a different internal management strategy.

9.2 Logical Segmentation

A conventional program sees memory as a linear sequence of words, each
with a numeric address starting at zero, and increasing up to some large
number (e.g. 4GB on a 32-bit processor.)

Program Memory

0 4GB

Figure 9.1: Flat Memory Model

In principle, the CPU is free to use memory in any way it sees fit. Code
and data could be scattered and intermixed across memory in any order
that is convenient. It is even technically possible for a CPU to modify the
memory containing its code while it is running. It goes without saying that
programming in this fashion would be complex, confusing, and difficult
to debug.

Instead, program memory is commonly laid out by separating it into
logical segments. Each segment is a sequential address range, dedicated
to a particular purpose within the program. The segments are typically
laid out in this order:

135

136 CHAPTER 9. MEMORY ORGANIZATION

Code Data Heap→ . . . ← Stack

0 4GB

Figure 9.2: Logical Segments

• The code segment (also known as the text segment) contains the ma-
chine code of the program, corresponding to the bodies of functions
in a C program.

• The data segment contains the global data of the program, corre-
sponding to the global variables in a C program. The data seg-
ment may further be sub-divided into read-write data (variables)
and read-only data (constants).

• The heap segment contains the heap, which is the area of memory
that is managed dynamically at runtime by malloc and free in a
C program, or new and delete in other languages. The top of the
heap is historically known as the break.

• The stack segment contains the stack, which records the current ex-
ecution state of the program as well as the local variables currently
in use.

Typically, the heap grows “up” from lower addresses to higher ad-
dresses, while the stack grows “down” from higher to lower. In between
the two segments is an invalid region of memory that is unused until over-
taken by one segment or the other.

On a simple computer such as an embedded machine or microcon-
troller, logical segments are nothing more than an organizational conven-
tion: nothing stops the program from using memory improperly. If the
heap grows too large, it can run into the stack segment (or vice versa), the
program will crash (if you are lucky) or suffer silent data corruption (if
you are unlucky).

On a computer with an operating system that employs multiprogram-
ming and memory protection, the situation is better. Each process running
in the OS has its own private memory space, with the illusion of starting
at address zero and extending to a high address. As a result, each process
can access its own memory arbitrarily but is prevented from accessing or
modifying other processes. Within its own space, each process lays out its
own code, data, heap, and stack segments.

In some operating systems, when a program is initially loaded into
memory, permissions are set on each range of memory corresponding to
its purpose: memory corresponding to each segment can be set appropri-

136

9.2. LOGICAL SEGMENTATION 137

OS Kernel Process 1 Process 2

Code Data Code Data Heap Stk Code Data Heap Stk

Virtual Addrs: 0 −→ 4GB 0 −→ 4GB

Figure 9.3: Multiprogrammed Memory Layout

ately: read-write for data, heap, and stack; read-only for constants; read-
execute for code; and none for the unused area.

The permissions on the logical segments also protect a process from
damaging itself in certain ways. For example, code cannot be modified
at runtime because it is marked read/execute, while items on the heap
cannot be executed, because they are marked read/write. (To be clear, this
only prevents against accidents, not malice; a program can always ask the
operating system to change the permissions on one of its own pages. For
an example, look up the mprotect system call in Unix.)

If a process attempts to access memory in a prohibited way or attempts
to access the unused area, a page fault occurs. This forces a transfer of
control to the OS, which considers the process and the faulting address. If
the access indicates a violation of the logical segmentation of the program,
then the process is forcibly killed with the error message segmentation
fault.1

Initially, a process is given a small amount of memory for the heap
segment, which it manages internally to implement malloc and free. If
this area is exhausted and the program still needs more, it must explicitly
request it from the operating system. On traditional Unix systems, this
is done with the brk system call, which requests that the heap segment
be extended to a new address. If the OS agrees, then it will allocate new
pages at the beginning of the invalid area, effectively extending the heap
segment. If the OS does not agree, then brk will return an error code,
causing malloc to return an error (indicated as a null pointer) which the
program must handle.

The stack has a similar problem, in that it must be able to grow down.
It is not so easy for a program to determine exactly when more stack is
needed, because that happens whenever a new function is invoked, or new
local variables are allocated. Instead, modern operating systems maintain
a guard page at the top of the invalid area, adjacent to the current stack.
When a process attempts to extend the stack into the invalid area, a page
fault occurs, and control is transferred to the OS. If the OS sees that the
faulting address is in the guard page, it can simply allocate more pages
for the stack, set the page permissions appropriately, and move the guard
page down to the new top of the invalid area.

Of course, there are limits on how big the heap and the stack may grow;

1And now you understand this mysterious Unix term!

137

138 CHAPTER 9. MEMORY ORGANIZATION

every OS implements policies controlling how much memory any process
or user may consume. If any of these policies are violated, the OS may
decline to extend the memory of the process.

The idea of breaking a program into segments is so powerful and use-
ful that it was common for many decades to have the concept implemented
in hardware. (If you have taken a class in computer architecture and op-
erating systems, you have probably studied this in some detail.) The basic
idea is that the CPU maintains a table of segments, recording the starting
address and length, along with the permissions associated with each seg-
ment. The operating system would typically set up a hardware segment
to correspond to the logical organization just described.

Although hardware segmentation was widely used in operating sys-
tems through the 1980s, it has been largely replaced by paging, which
was seen as simpler and more flexible. Processor vendors have responded
by removing support for hardware segmentation in new designs. For ex-
ample, every generation of the Intel X86 architecture from the 8086 up to
the Pentium supported segmentation in 32-bit protected mode. The latest
64-bit architectures provide only paging facilities, and no segmentation.
Logical segmentation continues as a useful way to organize programs in
memory.

Let’s continue by looking at each of the logical segments in more detail.

9.3 Heap Management

The heap contains memory that is managed dynamically at runtime. The
OS does not control the internal organization of the heap, except to limit
its total size. Instead, the internal structure of the heap is managed by the
standard library or other runtime support software that is automatically
linked into a program. In a C program, the functions malloc and free al-
locate and release memory on the heap, respectively. In C++, new and
delete have the same effect. Other languages manipulate the heap implic-
itly when objects and arrays are created and deleted.

The simplest implementation of malloc and free is to treat the entire
heap as one large linked list of memory regions. Each entry in the list
records the state of the region (free or in use), the size of the region, and
has pointers to the previous and next regions. Here’s what that might look
like in C:

struct chunk {

enum { FREE, USED } state;

int size;

struct chunk *next;

struct chunk *prev;

char data[0];

};

138

9.3. HEAP MANAGEMENT 139

(Note that we declared data as an array of length zero. This is a little
trick that allows us to treat data as a variable length array, provided that
the underlying memory is actually present.)

Under this scheme, the initial state of the heap is simply one entry in a
linked list:

FREE 1000 data
prev next

Suppose that the user calls malloc(100) to allocate 100 bytes of mem-
ory. malloc will see that the (single) chunk of memory is free, but much
larger than the requested size. So, it will split it into one small chunk of
100 bytes and one larger chunk with the remainder. This is accomplished
by simply writing a new chunk header into the data area after 100 bytes.
Then, connect them together into a linked list:

USED 100 data FREE 900 data
prev next prev next

Once the list has been modified, malloc returns the address of the
data element within the chunk, so that the user can access it directly. It
doesn’t return the linked list node itself, because the user doesn’t need to
know about the implementation details. If there is no chunk available that
is large enough to satisfy the current request, then the process must ask
the OS to extend the heap by calling brk.

When the user calls free on a chunk of memory, the state of the chunk
in the linked list is marked FREE, and then merged with adjacent nodes, if
they are also free.

(Incidentally, now you can see why it is dangerous for a program to
modify memory carelessly outside a given memory chunk. Not only could
it affect other chunks, but it could damage the linked list itself, resulting
in wild behavior on the next malloc or free!)

If the program always frees memory in the opposite order that it was
allocated, then the heap will be nicely split into allocated and free memory.
However, that isn’t what happens in practice: memory can be allocated
and freed in any order. Over time, the heap can degenerate into a mix
of oddly sized chunks of allocated and freed memory. This is known as
memory fragmentation.

Excessive fragmentation can result in waste: if there are many small
chunks available, but none of them large enough to satisfy the current
malloc, then the process has no choice but to extend the heap, leaving
the small pieces unused. This increases pressure on total virtual memory
consumption in the operating system.

In a language like C, memory chunks cannot be moved while in use,
and so fragmentation cannot be fixed after it has already occurred. How-

139

140 CHAPTER 9. MEMORY ORGANIZATION

ever, the memory allocator has some limited ability to avoid fragmenta-
tion by choosing the location of new allocations with care. Some simple
strategies are easy to imagine and have been studied extensively:

• Best Fit. On each allocation, search the entire linked list and find the
smallest free chunk that is larger than the request. This tends to leave
large spaces available but generates tiny leftover free fragments that
are too small to be used.

• Worst Fit. On each allocation, search the entire linked list and find
the largest free chunk that is larger than the request. Somewhat coun-
terintuitively, this method tends to reduce fragmentation by avoid-
ing the creation of tiny unusable fragments.

• First Fit. On each allocation, search the linked list from the begin-
ning, and find the first fragment (large or small) that satisfies the
request. This performs less work than Best Fit or Worst Fit, but per-
forms an increasing amount of work as the linked list increases in
size.

• Next Fit. On each allocation, search the linked list from the last ex-
amined location, and find the next fragment (large or small) that sat-
isfies the request. This minimizes the amount of work done on each
allocation, while distributing allocations throughout the heap.

For general purpose allocators where one cannot make assumptions
about application behavior, the conventional wisdom is that Next Fit re-
sults in good performance with an acceptable level of fragmentation.

9.4 Stack Management

The stack is used to record the current state of the running program. Most
CPUs have a specialized register – the stack pointer – which stores the
address where the next item will be pushed or popped. Because the stack
grows down from the top of memory, there is a confusing convention:
pushing an item on the stack causes the stack pointer to move to a lower
numbered address, while popping an item off the stack causes the stack
pointer to move to a higher address. The “top” of the stack is actually at
the lowest address!

Each invocation of a function occupies a range of memory in the stack,
known as a stack frame. The stack frame contains the parameters and
the local variables used by that function. When a function is called, a
new stack frame is pushed; when the function returns, the stack frame
is popped, and execution continues in the caller’s stack frame.

Another specialized register known as the frame pointer (or some-
times base pointer) indicates the beginning of the current frame. Code

140

9.4. STACK MANAGEMENT 141

within a function relies upon the frame pointer to identify the location of
the current parameters and local variables.

For example, suppose that the main function calls function f, and then
f calls g. If we stop the program in the middle of executing g, the stack
would look like this:

Stack Frame Parameters to main
for main: Old Frame Pointer

Local Variables
Return Address

Stack Frame Parameters to f
for f: Old Frame Pointer

Local Variables
Return Address

Stack Frame Parameters to g ← Frame Pointer
for g: Old Frame Pointer

Local Variables ← Stack Pointer
↓ (stack grows down) ↓

The order and details of the elements in a stack frame differ somewhat
between CPU architectures and operating systems. As long as both the
caller and the callee agree on what goes in the stack frame, then any func-
tion may call another, even if they were written in different languages, or
built by different compilers.

The agreement on the contents of the activation record is known as a
calling convention. This is typically written out in a detailed technical
document that is used by the designers of compilers, operating systems,
and libraries to ensure that code is mutually interoperable.

There are two broad categories of calling conventions, with many op-
portunities for variation in between. One is to put the arguments to a
function call on the stack, and the other is to place them in registers.

9.4.1 Stack Calling Convention

The conventional approach to calling a function is to push the arguments
to that function on the stack (in reverse order), and then to jump to the
address of the function, leaving behind a return address on the stack. Most
CPUs have a specialized CALL instruction for this purpose. For example,
the assembly code to call f(10,20) could be as simple as this:

PUSH $20

PUSH $10

CALL f

When f begins executing, it saves the old frame pointer currently in
effect and makes space for its own local variables. As a result, the stack
frame for f(10,20) looks like this:

141

142 CHAPTER 9. MEMORY ORGANIZATION

2nd Argument (20)
1st Argument (10)
Return Address
Old Frame Pointer ← Frame Pointer

Local Variables
← Stack Pointer

↓ (stack grows down) ↓

To access its arguments or local variables, fmust load them from mem-
ory relative to the frame pointer. As you can see, the function arguments
are found at fixed positions above the frame pointer, while local variables
are found below the frame pointer. 2

9.4.2 Register Calling Convention

An alternate approach to calling a function is to put the arguments into
registers, and then call the function. For example, let us suppose that our
calling convention indicates that registers %R10, %R11, etc are to be used
for arguments. Under this calling convention, the assembly code to invoke
f(10,20) might look like this:

MOVE $10 -> %R10

MOVE $20 -> %R11

CALL f

When f begins executing, it still must save the old frame pointer and
make room for local variables. It doesn’t have to load arguments from the
stack; it simply expects the values in %R10 and %R11 and can compute
on them right away. This could confer a significant speed advantage by
avoiding memory accesses.

But, what if f is a complex function that needs to invoke other func-
tions? It will still need to save the current values of the argument registers,
in order to free them up for its own use.

To allow for this possibility, the stack frame for f must leave space for
the arguments, in case they must be saved. The calling convention must
define the location of the arguments, and they are typically stored below
the return address and old frame pointer, like this:

2The arguments are pushed in reverse order in order to allow the possibility of a variable
number of arguments. Argument 1 is always two words above the frame pointer, argument
2 is always three words above, and so on.

142

9.5. LOCATING DATA 143

Return Address
Old Frame Pointer ← Frame Pointer
1st Argument (10)
2nd Argument (20)

Local Variables
← Stack Pointer

↓ (stack grows down) ↓

What happens if the function has more arguments than there are reg-
isters set aside for arguments? In this case, the additional arguments are
pushed on to the stack, as in the stack calling convention.

In the big picture, the choice between stack and register calling conven-
tions doesn’t matter much, except that all parties must agree on the details
of the convention. The register calling convention has the slight advan-
tage that a leaf function (a function that does not call other functions) can
compute a simple result without accessing memory. Typically, the regis-
ter calling convention is used on architectures that have a large number of
registers that might otherwise go unused.

It is possible to mix the conventions in a single program, as long as
both caller and callee are informed of the distinction. For example, the
Microsoft X86 compilers allow keywords in function prototypes to select a
convention: cdecl selects the stack calling convention, while fastcall
uses registers for the first two arguments.

9.5 Locating Data

For each kind of data in a program, there must be an unambiguous method
of locating that data in memory. The compiler must generate an address
computation using the basic information available about the symbol. The
computation varies with the storage class of the data:

• Global data has the easiest address computation. In fact, the com-
piler doesn’t usually compute global addresses, but rather passes the
name of each global symbol to the assembler, which then selects the
address computation. In the simplest case, the assembler will gen-
erate an absolute address giving the exact location of the data in
program memory.

However, the simple approach isn’t necessarily efficient, because an
absolute address is a full word (e.g. 64 bits), the same size as an
instruction in memory. This means that the assembler must use sev-
eral instructions (RISC) or multi-word instructions (CISC) to load the
address into a register. Assuming that most programs don’t use the
entire address space, it isn’t usually necessary to use the entire word.

An alternative is to use a base-relative address that consists of a base
address given by a register plus a fixed offset given by the assembler.

143

144 CHAPTER 9. MEMORY ORGANIZATION

For example, global data addresses could be given by a register in-
dicating the beginning of the data segment, plus a fixed offset, while
a function address could be given by a register indicating the begin-
ning of the code segment plus a fixed offset. Such an approach can
be used in dynamically loaded libraries, when the location of the li-
brary is not fixed in advance, but the location of a function within
the library is known.

Yet another approach is to use a PC-relative address in which the
exact distance in bytes between the referring instruction and the tar-
get data is computed, and then encoded into the instruction. This
works as long as the relative distance is small enough (e.g. 16 bits)
to fit into the address field of the instruction. This task is performed
by the assembler and is usually invisible to the programmer.

• Local data works differently. Because local variables are stored on
the stack, a given local variable does not necessarily occupy the same
absolute address each time it is used. If a function is called recur-
sively, there may be multiple instances of a given local variable in
use simultaneously! For this reason, local variables are always speci-
fied as an offset relative to the current frame pointer. (The offset may
be positive or negative, depending on the function calling conven-
tion.) Function parameters are just a special case of local variables:
a parameter’s position on the stack is given precisely by its ordinal
position in the parameters.

• Heap data can only be accessed by way of pointers that are stored
as global or local variables. To access data on the heap, the compiler
must generate an address computation for the pointer itself, then de-
reference the pointer to reach the item on the heap.

So far, we have only considered atomic data types that are easily stored
in a single word of memory: booleans, integers, floats, and so forth. How-
ever, any of the more complex data types can be placed in any of the three
storage classes, and require some additional handling.

An array can be stored in global, local, or heap memory, and the be-
ginning of the array is found by one of the methods above. An element in
the array is found by multiplying the index by the size of the items in the
array, and adding that to the address of the array itself:

address(a[i]) = address(a) + sizeof(type) * i

The more interesting question is how to deal with the length of the
array itself. In an unsafe language like C, the simple approach is to simply
do nothing: if the program happens to run off the end of the array, the
compiler will happily compute an address outside the array bounds, and
chaos results. For some applications where performance is paramount, the
simplicity of this approach trumps any increase in safety.

144

9.5. LOCATING DATA 145

A safer approach is to store the length of the array at the base address
of the array itself. Then, the compiler may generate code that checks the
actual index against the array bounds before generating the address. This
prevents any sort of runtime accident by the programmer. However, the
downside is performance. Every time the programmer mentions a[i],
the resulting code must contain this:

1. Compute address of array a.

2. Load length of a into a register.

3. Compare array index i to register.

4. If i is outside of array bounds, raise an exception.

5. Otherwise, compute address of a[i] and continue.

This pattern is so common that some computer architectures provide
dedicated support for array bounds checking. The Intel X86 architecture,
(which we will examine in detail in the next chapter) provides a unique
BOUND instruction, whose only purpose is to compare a value against two
array bound values, and then raise a unique “Array Bounds Exception” if
it falls outside.

Structures have similar considerations. In memory, a structure is very
much like an array, except that it can contain items of irregular size. To
access an item within a structure, the compiler must generate an address
computation of the beginning of the structure, and then add an offset cor-
responding to the name of item (known as the structure tag) within the
structure. Of course, it is not necessary to perform bounds checking since
the offsets are fixed at compile time.

For complex nested data structures, the address computation necessary
to find an individual element can become quite complicated. For example,
consider this bit of code to represent a deck of cards:

struct card {

int suit;

int rank;

};

struct deck {

int is_shuffled;

struct card cards[52];

};

struct deck d;

d.cards[10].rank = 10;

145

146 CHAPTER 9. MEMORY ORGANIZATION

To compute d.cards[10].rank, the compiler must first generate an
address computation for d, depending on whether it is a local or global
variable. From there, the offset of cards is added, then the offset of the
tenth item, then the offset of rank within the card. The complete address
computation is:

address(d.card[10].rank) =

address(d)

+ offset(cards)

+ sizeof(struct card)*10

+ offset(rank)

9.6 Program Loading

Before a program begins executing in memory, it first exists as a file on
disk, and there must be a convention for loading it into memory. There are
a variety of executable formats for organizing a program on disk, ranging
from very simple to very complex. Here are a few examples to give you
the idea.

The simplest computer systems simply store an executable as a binary
blob on disk. The program code, data, and initial state of the heap and
stack are simply dumped into one file without distinction. To run the pro-
gram, the OS must simply load the contents of the file into memory, and
then jump to the first location of the program to begin execution.

This approach is about as simple as one can imagine. It does work, but
it has several limitations. One is that the format wastes space on uninitial-
ized data. For example, if the program declares a large global array where
each element has the value zero, then every single zero in that array will
be stored in the file. Another is that the OS has no insight into how the
program intends to use memory, so it is unable to set permissions on each
logical segment, as discussed above. Yet another is that the binary blob
has no identifying information to show that it is an executable.

However, the binary blob approach is still occasionally used in places
where programs are small and simplicity is paramount. For example, the
very first boot stage of a PC operating system reads in a single sector from
the boot hard disk containing a binary blob, which then carries out the sec-
ond stage of booting. Embedded systems often have very small programs
measured in a few kilobytes, and rely on binary blobs.

An improved approach used in classic Unix systems for many years
is the a.out executable format. 3 There are many slight variations on the
format, but they all share the same basic structure. The executable file
consists of a short header structure, followed by the text, initialized data,
and symbol table:

3The first Unix assembler sent its output to a file named a.out by default. In the absence
of any other name for the format, the name stuck.

146

9.6. PROGRAM LOADING 147

Header Text Data Symbols

The header structure itself is just a few bytes that allow the operating
system to interpret the rest of the file:

Magic Number
Text Section Size
Data Section Size

BSS Size
Symbol Table Size

Entry Point

The magic number is a unique integer that clearly defines the file as an
executable: if the file does not begin with this magic number, the OS will
not even attempt to execute it. Different magic numbers are defined for
executables, unlinked object files, and shared libraries. The text size field
indicates the number of bytes in the text section that follows the header.
The data size field indicates the amount of initialized data that appears in
the file, while the BSS size field indicates the amount of uninitialized data.
4

The uninitialized data need not be stored in the file. Instead it is simply
allocated in memory as part of the data segment when the program is
loaded. The symbol table in the executable lists each of the variable and
function names used in the program along with their locations in the code
and data segment; this permits a debugger to interpret the meaning of
addresses. Finally, the entry point gives the address of the starting point of
the program (typically main) in the text segment. This allows the starting
point to be something other than the first address in the program.

The a.out format is a big improvement over a binary blob, and is still
supported and usable today in many operating systems. However, it isn’t
quite powerful enough to support many of the features needed by modern
languages, particularly dynamically loaded libraries.

The Extensible Linking Format (ELF) is widely used today across many
operating systems to represent executables, object files, and shared libraries.
Like a.out, an ELF file has multiple sections representing code, data, and
bss, but it can have an arbitrary number of additional sections for debug-
ging data, initialization and finalization code, metadata about the tools
used, and so forth. The number of sections in the file outnumbers the seg-
ments in memory, and so a section table in the ELF file indicates how mul-
tiple sections are to be mapped into a single segment.

4BSS stands for “Block Started by Symbol” and first appeared in an assembler for IBM 704
in the 1950s.

147

148 CHAPTER 9. MEMORY ORGANIZATION

File Header
Program Header

Code Section
Data Section

Read-Only Section
. . .

Section Header

9.7 Further Reading

1. Remzi Arpaci-Dusseau and Andrea Arpaci-Dusseau, “Operating Sys-
tems: Three Easy Pieces”, Arpaci-Dusseau Books, 2015.
http://www.ostep.org

Operating systems is usually the course in which memory management is
covered in great detail. If you need a refresher on memory allocators (or
anything else in operating systems), check out this online textbook.

2. John R. Levine, “Linkers and Loaders”, Morgan Kaufmann, 1999.
This book provides a detailed look at linkers and loaders, which is an often-
overlooked topic that falls in cracks between compilers and operating sys-
tems. A solid understanding of linking is necessarily to create and use
libraries effectively.

3. Paul R. Wilson, “Uniprocessor Garbage Collection Techniques”, Lec-
ture Notes in Computer Science, volume 637, 1992.
https://link.springer.com/chapter/10.1007/BFb0017182

This widely-read article gives an accessible overview of the key techniques
of garbage collection, which is an essential component of the runtime of
modern dynamic languages.

148

