
Introduction to Compilers and Language Design
Copyright © 2023 Douglas Thain.
Paperback ISBN: 979-8-655-18026-0
Second edition.

Anyone is free to download and print the PDF edition of this book for per-
sonal use. Commercial distribution, printing, or reproduction without the
author’s consent is expressly prohibited. All other rights are reserved.

You can find the latest version of the PDF edition, and purchase inexpen-
sive hardcover copies at http://compilerbook.org

Revision Date: August 24, 2023



217

Appendix A – Sample Course Project

This appendix describes a semester-long course project which is the sug-
gested companion to this book. Your instructor may decide to use it as-is,
or make some modifications appropriate to the time and place of your
class. The overall goal of the project is to build a complete compiler that
accepts a high-level language as input and produces working assembly
code as output. It can naturally be broken down into several stages, each
one due at an interval of a few weeks, allowing for 4-6 assignments over
the course of a semester.

The recommended project is to use the B-Minor language as the source,
and X86 or ARM assembly as the output, since both are described in this
book. But you could accomplish similar goals with a different source lan-
guage (like C, Pascal, or Rust) or a different assembly language or inter-
mediate representation (like MIPS, JVM, or LLVM).

Naturally, the stages are cumulative: the parser cannot work correctly
unless the scanner works correctly, so it is important for you to get each
one right, before moving onto the next one. A critical development tech-
nique is to create a large number (30 or more) test cases for each stage, and
provide a script or some other automated means for running them auto-
matically. This will give you confidence that the compiler works across
all the different aspects of B-Minor, and that a fix to one problem doesn’t
break something else.

A.1 Scanner Assignment

Construct a scanner for B-Minor which reads in a source file and produces
a listing of each token one by one, annotated with the token kind (iden-
tifier, integer, string, etc) and the location in the source. If invalid input
is discovered, produce a message, recover from the error, and continue.
Create a set of complete tests to exercise all of the tricky corner cases of
comments, strings, escape characters, and so forth.

A.2 Parser Assignment

Building on the scanner, construct a parser for B-Minor using Bison (or
another appropriate tool) which reads in a source file, determines whether

217



218 APPENDIX A. SAMPLE COURSE PROJECT

the grammar is valid, and indicates success or failure. Use the diagnostic
features of Bison to evaluate the given grammar for ambiguities and work
to resolve problems such as the dangling-else. Create a set of complete
tests to exercise all of the tricky corner cases.

A.3 Pretty-Printer Assignment

Next, use the parser to construct the complete AST for the source program.
To verify the correctness of the AST, print it back out as an equivalent
source program, but with all of the whitespace arranged nicely so that it is
pleasant to read. This will result in some interesting discussions with the
instructor about what constitutes an “equivalent” program. A necessary
(but not sufficient) requirement is that the output program should be re-
parseable by the same tool. This requires attention to some details with
comments, strings, and general formatting. Again, create a set of test cases.

A.4 Typechecker Assignment

Next, add methods which walk the AST and perform semantic analysis
to determine the correctness of the program. Symbol references must be
resolved to definitions, the type of expressions must be inferred, and the
compatibility of values in context must be checked. You are probably used
to encountering incomprehensible error messages from compilers: this is
your opportunity to improve upon the situation. Again, create a set of test
cases.

A.5 Optional: Intermediate Representation

Optionally, the project can be extended by adding a pass to convert the
AST into an intermediate representation. This could be a custom three or
four-tuple code, an internal DAG, or a well established IR such as JVM
or LLVM. The advantage of using the later is that output can be easily
fed into existing tools and actually executed, which should give you some
satisfaction. Again, create a set of test cases.

A.6 Code Generator Assignment

The most exciting step is to finally emit working assembly code. Straight-
forward code generation is most easily performed on the AST itself, or a
DAG derived from the AST in the optional IR assignment, following the
procedure in Chapter 11. For the first attempt, it’s best not to be concerned
about the efficiency of the code, but allow each code block to conserva-
tively stand on its own. It is best to start with some extremely simple
programs (e.g. return 2+2;) and gradually add complexity bit by bit.
Here, your practice in constructing test cases will really pay off, because

218



A.7. OPTIONAL: EXTEND THE LANGUAGE 219

you will be able to quickly verify how many test programs are affected by
one change to the compiler.

A.7 Optional: Extend the Language

In the final step, you are encouraged to develop your own ideas for ex-
tending B-Minor itself with new data types or control structures, to create
a new backend targeting a different CPU architecture, or to implement one
or more optimizations described in Chapter 12.

219



220 APPENDIX A. SAMPLE COURSE PROJECT

220


