
Introduction to Compilers and Language Design
Copyright © 2023 Douglas Thain.
Paperback ISBN: 979-8-655-18026-0
Second edition.

Anyone is free to download and print the PDF edition of this book for per-
sonal use. Commercial distribution, printing, or reproduction without the
author’s consent is expressly prohibited. All other rights are reserved.

You can find the latest version of the PDF edition, and purchase inexpen-
sive hardcover copies at http://compilerbook.org

Revision Date: August 24, 2023

221

Appendix B – The B-Minor Language

B.1 Overview

The B-Minor language is a “little” language suitable for use in an un-
dergraduate compilers class. B-Minor includes expressions, basic control
flow, recursive functions, and strict type checking. It is object-code com-
patible with ordinary C and thus can take advantage of the standard C
library, within its defined types.

B-Minor is similar enough to C that it should feel familiar, but has
enough variations to allow for some discussion of how different language
choices affect the implementation. For example, the type syntax of B-
Minor is closer to that of Pascal or SQL than of C. Students may find this
awkward at first, but its value becomes clearer when constructing a parser
and when discussing types independently of the symbols that they apply
to. The print statement gives an opportunity to perform simple type
inference and interact with runtime support. A few unusual operators
cannot be implemented in a single assembly instruction, illustrating how
complex language intrinsics are implemented. The strict type system gives
the students some experience with reasoning about rigorous type algebras
and producing detailed error messages.

A proper language definition would be quite formal, including regular
expressions for each token type, a context-free-grammar, a type algebra,
and so forth. However, if we provided all that detail, it would rob you
(the student) of the valuable experience of wrestling with those details.
Instead, we will describe the language through examples, leaving it to you
to read carefully, and then extract the formal specifications needed for your
code. You are certain to find some details and corner cases that are unclear
or incompletely specified. Use that as an opportunity to ask questions
during class or office hours and work towards a more precise specification.

221

222 APPENDIX B. THE B-MINOR LANGUAGE

B.2 Tokens

In B-Minor, whitespace is any combination of the following characters:
tabs, spaces, linefeed, and carriage return. The placement of whitespace is
not significant in B-Minor. Both C-style and C++-style comments are valid
in B-Minor:

/* A C-style comment */

a=5; // A C++ style comment

Identifiers (i.e. variable and function names) may contain letters, num-
bers, and underscores. Identifiers must begin with a letter or an under-
score. These are examples of valid identifiers:

i x mystr fog123 BigLongName55

The following strings are B-Minor keywords and may not be used as
identifiers:

array boolean char else false for function if

integer print return string true void while

B.3 Types

B-Minor has four atomic types: integers, booleans, characters, and strings.
A variable is declared as a name followed by a colon, then a type and an
optional initializer. For example:

x: integer;

y: integer = 123;

b: boolean = false;

c: char = ’q’;

s: string = "hello world\n";

An integer is always a signed 64 bit value. boolean can take the lit-
eral values true or false. char is a single 8-bit ASCII character. string
is a double-quoted constant string that is null-terminated and cannot be
modified. (Note that, unlike C, string is not an array of char, it is a
completely separate type.)

Both char and string may contain the following backslash codes. n
indicates a linefeed (ASCII value 10), 0 indicates a null (ASCII value zero),
and a backslash followed by anything else indicates exactly the following
character. Both strings and identifiers may be up to 256 characters long.

B-Minor also allows arrays of a fixed size. They may be declared with
no value, which causes them to contain all zeros:

a: array [5] integer;

Or, the entire array may be given specific values:

a: array [5] integer = {1,2,3,4,5};

222

B.4. EXPRESSIONS 223

B.4 Expressions

B-Minor has many of the arithmetic operators found in C, with the same
meaning and level of precedence:

[] f() array subscript, function call
++ -- postfix increment, decrement
- ! unary negation, logical not
ˆ exponentiation

* / % multiplication, division, modulus
+ - addition, subtraction
< <= > >= == != comparison
&& || logical and, logical or
= assignment

B-Minor is strictly typed. This means that you may only assign a value
to a variable (or function parameter) if the types match exactly. You can-
not perform many of the fast-and-loose conversions found in C. For ex-
ample, arithmetic operators can only apply to integers. Comparisons can
be performed on arguments of any type, but only if they match. Logical
operations can only be performed on booleans.

Following are examples of some (but not all) type errors:

x: integer = 65;

y: char = ’A’;

if(x>y) ... // error: x and y are of different types!

f: integer = 0;

if(f) ... // error: f is not a boolean!

writechar: function void (char c);

a: integer = 65;

writechar(a); // error: a is not a char!

b: array [2] boolean = {true,false};

x: integer = 0;

x = b[0]; // error: x is not a boolean!

Following are some (but not all) examples of correct type assignments:

b: boolean;

x: integer = 3;

y: integer = 5;

b = x<y; // ok: the expression x<y is boolean

f: integer = 0;

223

224 APPENDIX B. THE B-MINOR LANGUAGE

if(f==0) ... // ok: f==0 is a boolean expression

c: char = ’a’;

if(c==’a’) ... // ok: c and ’a’ are both chars

B.5 Declarations and Statements

In B-Minor, you may declare global variables with optional constant ini-
tializers, function prototypes, and function definitions. Within functions,
you may declare local variables (including arrays) with optional initial-
ization expressions. Scoping rules are identical to C. Function definitions
may not be nested.

Within functions, basic statements may be arithmetic expressions,
return statements, print statements, if and if-else statements, for
loops, or code within inner {} groups. B-Minor does not have switch state-
ments, while-loops, or do-while loops, since those are easily represented
as special cases of for and if.

The print statement is a little unusual because it is a statement and
not a function call. print takes a list of expressions separated by commas,
and prints each out to the console, like this:

print "The temperature is: ", temp, " degrees\n";

Note that each element in the list following a print statement is an
expression of any type. The print mechanism will automatically infer
the type and print out the proper representation.

B.6 Functions

Functions are declared in the same way as variables, except giving a type
of function followed by the return type, arguments, and code:

square: function integer (x: integer) = {

return xˆ2;

}

The return type of a function must be one of the four atomic types,
or void to indicate no type. Function arguments may be of any type.
integer, boolean, and char arguments are passed by value, while
string and array arguments are passed by reference. As in C, arrays
passed by reference have an indeterminate size, and so the length is typi-
cally passed as an extra argument:

224

B.7. OPTIONAL ELEMENTS 225

printarray: function void

(a: array [] integer, size: integer) = {

i: integer;

for(i=0;i<size;i++) {

print a[i], "\n";

}

}

A function prototype states the existence and type of the function, but
includes no code. This must be done if the user wishes to call an external
function linked by another library. For example, to invoke the C function
puts:

puts: function void (s: string);

main: function integer () = {

puts("hello world");

}

A complete program must have a main function that returns an inte-
ger. The arguments to main may either be empty, or use argc and argv

in the same manner as C. (The declaration of argc and argv is left as an
exercise to the reader.)

B.7 Optional Elements

Creating a complete implementation of the language above from begin-
ning to end should be more than enough to keep an undergraduate class
busy for a semester. However, if you need some additional challenge, con-
sider the following ideas:

• Add a new native type complex which implements complex num-
bers. To make this useful, you will need to add some additional func-
tions or operators to construct complex values, perform arithmetic,
and extract the real and imaginary parts.

• Add a new automatic type var which allows one to declare a vari-
able without a concrete type. The compiler should infer the type
automatically based on assignments made to that variable. Consider
carefully what should happen if a function definition has a parame-
ter of type var.

• Improve the safety of arrays by making the array accesses automat-
ically checked at runtime against the known size of the array. This
requires making the length of the array a runtime property stored in
memory alongside the array data, checking each array access against

225

226 APPENDIX B. THE B-MINOR LANGUAGE

the boundaries, and taking appropriate action on a violation. Com-
pare the performance of checked arrays against unchecked arrays.
(The X86 BOUND instruction might be helpful.)

• Add a new mutable string type mutstring which has a fixed size,
but can be modified in place, and can be converted to and from a
regular string as needed.

• Add an alternative control flow structure like switch, which eval-
uates a single control expression, and then branches to alternatives
with matching values. For an extra challenge, allow switch to select
value ranges, not just constant values.

• Implement structure types that allow multiple data items to be
grouped together in a simple type. At the assembly level, this is
not very different from implementing arrays, because each element
is simply at a known offset from the base object. However, parsing
and typechecking become more complicated because the elements
associated with a structure type must be tracked.

226

