
Introduction to Compilers and Language Design
Copyright © 2023 Douglas Thain.
Paperback ISBN: 979-8-655-18026-0
Second edition.

Anyone is free to download and print the PDF edition of this book for per-
sonal use. Commercial distribution, printing, or reproduction without the
author’s consent is expressly prohibited. All other rights are reserved.

You can find the latest version of the PDF edition, and purchase inexpen-
sive hardcover copies at http://compilerbook.org

Revision Date: August 24, 2023

227

Appendix C – Coding Conventions

C has been the language of choice for implementing low-level systems like
compilers, operating systems, and drivers since the 1980s. However, it is
fair to say that C does not enforce a wide variety of good programming
practices, in comparison to other languages. To write solid C, you need to
exercise a high degree of self-discipline. 1

For many students, a compilers course in college is the first place where
you are asked to create a good sized piece of software, refining it through
several development cycles until the final project is reached. This is a good
opportunity for you to pick up some good habits that will make you more
productive.

To that end, here are the coding conventions that I ask my students to
observe when writing C code. Each of these recommendations requires a
little more work up front, but will save you headaches in the long run.

Use a version control system. There are a variety of nice open source
systems for keeping track of your source code. Today, Git, Mercurial, and
Subversion are quite popular, and I’m sure next year will bring a new one.
Pick one, learn the basic features, and shape your code gradually by mak-
ing small commits.2

Go from working to working. Never leave your code in a broken state.
Begin by checking in the simplest possible sketch of your program that
compiles and works, even if it only prints out “hello world”. Then, add
to the program in a minor way, make sure that it compiles and runs, and
check it in again. 3

Eliminate dead code. Students often pick up the habit of commenting
out one bit of code while they attempt to change it and test it. While this

1Why not use C++ to address some of these disciplines? Although C++ is a common
part of many computer science curricula, I generally discourage the use of C++ by students.
Although it has many features that are attractive at first glance, they are not powerful enough
to allow you to dispense with the basic C mechanisms. (For example, even if you use the C++
string class, you still need to understand basic character arrays and pointers.) Further, the
language is so complex that very few people really understand the complete set of features
and how they interact. If you stick with C, what you see is what you get.

2Some people like to spend endless hours arguing about the proper way to use arcane
features of these tools. Don’t be one of those people: learn the basic operations and spend
your mental energy on your code instead.

3This advice is often attributed as one of Jim Gray’s “Laws of Data Engineering” in slide
presentations, but I haven’t been able to find an authoratative reference.

227

228 APPENDIX C. CODING CONVENTIONS

is a reasonable tactic to use for a quick test, don’t allow this dead code to
pile up in your program, otherwise your source code will quickly become
incomprehensible. Remove unused code, data, comments, files, and any-
thing else that is unnecessary to the program, so that you can clearly see
what it does now. Trust your version control system to allow you to go
back to a previously working version, if needed.

Use tools to handle indenting. Don’t waste your time arguing about
indenting style; find a tool that does it for you automatically, and then
forget about it. Your editor probably has a mode to indent automatically.
If not, use the standard Unix tool indent.

Name things consistently. In this book, you will see that every func-
tion consists of a noun and a verb: expr typecheck, decl codegen,
etc. Each one is used consistently: expr is always used for expressions,
codegen is always used for code generation. Every function dealing with
expressions is in the expr module. It may be tempting to take shortcuts
or make abbreviations in the heat of battle, but this will come back to bite
you. Do it right the first time.

Put only the interface in a header file. In C, a header file (like expr.h)
is used to describe the elements needed to call a function: function proto-
types and the types and constants necessary to invoke those functions. If a
function is only used within one module, it should not be mentioned in the
header file, because nobody outside the module needs that information.

Put only the implementation in a source file. In C, a source file (like
expr.c) is used to provide the definitions of functions. In the source
file, you should include the corresponding header (expr.h) so that the
compiler can check that your function definitions match the prototypes.
Any function or variable that is private to the module should be declared
static.

Be lazy and recursive. Many language data structures are hierarchi-
cally nested. When designing an algorithm, take note of the nested data
structures, and pass responsibility to other functions, even if you haven’t
written them yet. This technique generally results in code that is simple,
compact, and readable. For example, to print out a variable declaration,
break it down into printing the name, then the type, then the value, with
some punctuation in between:

printf("%s:\n",d->name);

type_print(d->type);

printf(" = ");

expr_print(d->value);

printf(" ;\n");

Then proceed to writing type print and expr print, if you haven’t
done them already.

Use a Makefile to build everything automatically. Learn how to write
a Makefile, if you haven’t already. The basic syntax of Make is very simple.

228

229

The following rule says that expr.o depends upon expr.c and expr.h,
and can be built by running the command gcc:

expr.o: expr.c expr.h

gcc expr.c -c -o expr.o -Wall

There are many variations of Make that include wildcards, pattern sub-
stitution, and all manner of other things that can be confusing to the non-
expert. Just start by writing plain old rules whose meaning is clear.

Null pointers are your friends. When designing a data structure, use
null pointers to indicate when nothing is present. You cannot dereference
a null pointer, of course, and so you must check before using it. This can
lead to code cluttered with null checks everywhere, like this:

void expr_codegen(struct expr *e, FILE *output)

{

if(e->left) expr_codegen(e->left,output);

if(e->right) expr_codegen(e->right,output);

. . .

}

You can eliminate many of them by simply placing the check at the
beginning of the function, and programming in a recursive style:

void expr_codegen(struct expr *e, FILE *output)

{

if(!e) return;

expr_codegen(e->left,output);

expr_codegen(e->right,output);

. . .

}

Automate regression testing. A compiler has to handle a large number
of details, and it is all too easy for you to accidentally introduce a new bug
when attempting to fix an old one. To handle this, create a simple test suite
that consists of a set of sample programs, some correct and some incorrect.
Write a little script that invokes your compiler on each sample program,
and makes sure that it succeeds on the good tests, and fails on the bad
tests. Make it a part of your Makefile, so that every time you touch the
code, the tests are run, and you will know if things are still working.

229

230 INDEX

Index

a.out, 146
absolute address, 143
abstract syntax tree, 75
abstract syntax tree (AST), 7, 8,

85
accepting states, 16
accepts, 16
Acorn Archimedes, 167
Acorn RISC Machine, 167
address computation, 143
Advanced RISC Machine (ARM),

167
alternation, 14
ambiguous grammar, 38
ARM (Advanced RISC Machine),

167
assembler, 6
associativity, 15
AST (abstract syntax tree), 7, 8,

85
atomic types, 103

backtracking, 13
base pointer, 140
base-relative, 155
base-relative address, 143
basic block, 125
binary blob, 146
bottom-up derivation, 37
break, 136
BSS size, 147
bytecode, 1

callee-saved, 160
caller-saved, 160
calling convention, 141

canonical collection, 51
CFG (context-free grammar), 36
Chomsky hierarchy, 63
CISC (Complex Instruction Set Com-

puter), 167
closure, 51
code generator, 7
code hoisting, 201
code segment, 136
comments, 11
commutativity, 15
compact finite state machine, 51
compiler, 1, 5
complex, 155
Complex Instruction Set Computer

(CISC), 167
compound types, 104
concatenation, 14
conditional execution, 173
conflict graph, 209
constant folding, 124, 198
context free languages, 63
context sensitive languages, 64
context-free grammar (CFG), 36
control flow graph, 125, 202
core, 62
crystal ball interpretation, 18

DAG (directed acyclic graph), 120
data segment, 136
data size, 147
declaration, 85
delete, 138
derivation, 37
deterministic finite automaton (DFA),

16

230

INDEX 231

directed acyclic graph (DAG), 120
directives, 151
distribution, 15
domain specific languages, 2
dot, 51
dynamically typed language, 101

entry point, 147
enumerations, 104
epsilon closure, 22
evaluated, 85
executable formats, 146
explicitly typed language, 102
expression, 85
Extensible Linking Format (ELF),

147
external format, 119

FA (finite automaton), 15
finite automata, 13
finite automaton (FA), 15
frame pointer, 140
free, 138
function inlining, 201

GIMPLE (GNU Simple Represen-
tation), 130

Global data, 143
global value, 154
GNU Simple Representation (GIM-

PLE), 130
grammar, 7, 8
graph coloring, 209
guard page, 137

Heap data, 144
heap segment, 136

idempotency, 15
identifiers, 11
immediate value, 154
implicitly typed language, 102
indirect value, 155
instruction selection, 7
instructions, 151

intermediate representation (IR),
7, 119

interpreter, 1, 69
IR (intermediate representation),

119
items, 51

Java Virtual Machine (JVM), 132
JIT, 1
just in time compiling, 1
JVM (Java Virtual Machine), 132

kernel, 51, 196
keywords, 11
Kleene closure, 14

labels, 151
LALR (Lookahead LR), 62
language, 37
leaf function, 143, 162, 175
left recursion, 41
lifetime, 128
linker, 6
literal pool, 170
little languages, 2
live ranges, 209
LL(1) parse table, 47
Local data, 144
logical segments, 135
lookahead, 59
Lookahead LR (LALR), 62
loop unrolling, 199
LR(0) automaton, 51

magic number, 147
malloc, 138
many-worlds interpretation, 18
memory fragmentation, 139

name resolution, 99, 111
new, 138
NFA (nondeterministic finite au-

tomaton), 17
non-terminal, 36
nondeterministic finite automaton

(NFA), 17

231

232 INDEX

numbers, 11

object code, 6
optimization, global, 195
optimization, interprocedural, 195
optimization, local, 195
optimization, peephole, 204
optimizers, 7

page fault, 137
parser, 7
parser generator, 69
partial execution, 124
PC-relative address, 144
preprocessor, 5

record type, 104
recursive descent parser, 45
recursively enumerable languages,

64
reduce, 50
reduce-reduce conflict, 54
Reduced Instruction Set Computer

(RISC), 167
redundant load elimination, 204
register allocation, 7, 208
register value, 154
regular expression, 14
regular expressions, 13
regular languages, 63
rejects, 16
RISC (Reduced Instruction Set Com-

puter), 167
rules, 36
runtime library, 191

safe programming language, 101
scanner, 6
scanner generator, 27
scope, 108
scratch registers, 181
section table, 147
segmentation fault, 137
semantic actions, 74
semantic routines, 7, 8
semantic type, 79

semantic values, 74
semantics, 99
sentence, 36
sentential form, 36
shift, 50
shift-reduce, 50
shift-reduce conflict, 54
side effect, 85
side effects, 187
sigil, 11
Simple LR (SLR), 55
SLR (Simple LR), 55
SLR grammar, 55
SLR parse tables, 55
source language, 1
SSA (static single assignment), 127
stack, 140
stack backtrace, 177
stack frame, 140, 163
stack machine, 129
stack pointer, 140, 159, 173
stack segment, 136
start symbol, 36
statement, 85
static single assignment (SSA), 127
statically typed language, 101
strength reduction, 199
strings, 11
structure tag, 145
structure type, 104
subset construction, 22
symbol table, 99, 107, 147
System V ABI, 160

target language, 1
terminal, 36
text segment, 136
text size, 147
tokens, 6, 7, 11
toolchain, 5
top-down derivation, 37
translator, 69
tree coverage, 204
type, 100
type checking, 99

232

INDEX 233

typechecking, 8

union types, 104
unrolling factor, 199
unsafe programming language, 100
user-defined types, 103

validator, 69, 73
value, 85, 187
value-number method, 123
variant type, 105
virtual machine, 1
virtual registers, 128
virtual stack machine, 129

weak equivalence, 37
whitespace, 11

YYSTYPE, 79

233

