
Patisserie: Support for Parameter Sweeps in a
Fault-Tolerant, Massively Parallel, Peer-to-Peer

Simulation Environment
Tim Schoenharl and Scott Christley

Dept. of Computer Science and Engineering
University of Notre Dame

Email: {tschoenh,schristl}@nd.edu

Abstract— We propose and implement a parameter sweep
framework built upon a fault tolerant, massively parallel, peer-to-
peer infrastructure. Our framework is composed of a scheduling
algorithm based on the Particle Swarm Optimization algorithm
and peer-to-peer storage and query functionality, built on the
Pastry peer-to-peer framework. The Particle Swarm Optimiza-
tion algorithm is a perfect fit for a fault tolerant, distributed
environment, as it is able to steer the simulations using local
information and minimal communication. PSO is naturally fault
tolerant through redundancy and an underlying structure of
neighborhoods. Building query and storage functionality on top
of a peer-to-peer network addresses scalability of the number of
compute nodes, and we describe how fault-tolerance of simulation
results is maintained by the framework.

Key Words: Autonomic Computing, Swarm Intelligence,
Peer-to-Peer Systems, Distributed Systems, Parameter Sweep
Applications

I. I NTRODUCTION

Simulation has become a fundamental tool for scientists.
Computational simulations have helped to push the boundary
of knowledge in pharmaceutical research, climate modeling,
global economics and countless other fields. Often when
developing simulations, scientists are confronted with a huge
parameter space and very little notion of reasonable values.
This necessitates a parameter sweep, the running of many
simulations in order to determine reasonable values. This type
of work is often highly parallelizable and very time consum-
ing. Additionally, given a large parameter space, enumeration
of every possible combination of parameters is out of the
question. This suggests a need for an adaptive scheduling
algorithm that can steer a parameter sweep towards interesting
regions. In this paper, we seek to provide such a framework.
We introduce a swarm intelligence-based approach that is
highly decentralized, fault tolerant and yet yields excellent
results.

Our framework provides a decentralized, fault tolerant ap-
proach to exploring complex parameter spaces. It extends the
work that others have done [1][2][3], but differs in several im-
portant ways from these other efforts. The AppLeS Parameter

Sweep Template [1] provides a centralized scheduler, which
provides better steering performance than our approach, but is
subject to the limitations of a centralized system, such as limit
scalling. The Organic Grid [3] arranges computational nodes
in a hierarchy, which requires enormous effort to maintain.
Patisserie is built upon a peer-to-peer network and is resilient
to network change. The SOMCP2PN framework [2] is very
close to our work, but provides a novel scheduler that has
not been peer-reviewed to the level of the Particle Swarm
Algorithm. We present a more in-depth discussion of related
research in Section VIII.

Our target application is a simulation that has a large param-
eter space and for which there exists some type of objective
function. The fitness value for a set of parameters is a result of
the objective function and is used in the global optimization
process. An objective function could be the minimization of
resting energy of one protein conformation, for example. We
do not currently consider cases where the transmission of
input/output data is a limiting factor. Nor do we rely on
a master/worker relationship, which we feel presents certain
challenges in an unreliable computational network.

We demonstrate the functionality of our framework with
canonical examples from optimization. We evaluate the per-
formance, fault tolerance and scalability of our system and on
several variations. Finally we comment on the strengths and
weaknesses of the system and lay out a series of extensions
that will make the system more useful to researchers.

II. PATISSERIEFRAMEWORK OVERVIEW

Our goal is to provide a simulation framework that scales
well, offers robust fault tolerant performance, provides decen-
tralized scheduling of simulations and allows researchers to
locate and retrieve relevant simulation results. We built our
framework on top of the Pastry peer-to-peer framework, giving
us a peer-to-peer foundation. We implemented a decentralized
Particle Swarm Optimization algorithm for scheduling simu-
lations. And we created a Query API for managing simulation
results. Together these components provide a coherent, well-

matched ensemble enabling parameter sweeps on a massive
scale.

The Patisserie framework is composed of three core com-
ponents: the peer-to-peer network, the particle swarm op-
timization scheduling algorithm, and the simulation results
manager. The peer-to-peer network provides functionality for
sending and receiving network messages between compute
nodes; peer-to-peer networks have the capability to scale to
a massive number of nodes because no single node requires
global knowledge of the network. The particle swarm opti-
mization scheduling algorithm runs on each compute node
and determines the set of parameter values for the next
run of the simulation on that compute node. Lastly, after a
single simulation run finishes on a compute node, results are
produced in both raw data form and as summary metrics; the
management of these results require them to be stored so that
the user may query the results at a later time. In the following
sections, we will describe each component in more detail.

III. PARTICLE SWARM OPTIMIZATION SCHEDULING

Particle swarm optimization (PSO) is a swarm intelligence-
based approach to optimization where a collection of au-
tonomous particles “fly” through a parameter space, exploring
it in loose cooperation[7]. Swarm intelligence refers to the
ability of groups of simple agents with limited communication
to cooperate and create complex behaviors. PSO is an example
of a complex adaptive system, which can be characterized as a
system where a large number of autonomous agents cooperate
using simple local rules to accomplish a global task. In the case
of PSO, the particle agents communicate their best observed
value to the other agents (in one implementation, values are
shared with a particle’s neighbors, in another method results
are shared globally). This best observed value is used by other
agents as a target, they create a vector from their current
position to the best position, add some random noise, and
this vector determines their new location in the parameter
space. The attractiveness of a swarm approach is that it is
decentralized, highly fault tolerant (achieved via redundancy),
requires, in its simplest form, limited communication and
achieves good results. Each of these criteria are important in
a decentralized, peer-to-peer simulation environment.

A. Particle Swarm Optimization: The Algorithm

The fundamental element of the PSO algorithm is a particle.
A particle is essentially an agent that has three roles: It holds
a parameter list which is its “location” in state space, it has a
method for moving from its current location to a new location
and it has a neighbor relationship with one or more other
particles whereby information is passed back and forth. Each
particle represents its location as a vector of values (usually
integers or real numbers, in some cases binary or categorical
values). In order to explore search space effectively, it is

important for the agent to store another vector of values
corresponding to the most fit point it has visited thus far.
This “best” value is used in the selection of a new location to
evaluate. When a new best value is encountered, the particle
will alert its neighbors by sending a message with the location
and evaluation of that vector. The standard procedure for
iterating from one location to another is as follows. For each
value in the position vector, compute its velocity according to
Equation 1 (As given in [7]).

vid(t) = vid(t−1)+ϕ1(pid−xid(t−1))+ϕ2(pgd−xid(t−1))
(1)

Theϕ terms simply represent positive values that are taken
from a uniform random distribution and satisfyingϕ1 +ϕ2 =
4. The valuespid and pgd are the values from the particle’s
personal best vector and from its neighbors’ best vector,
respectively. The valuexid(t − 1) is the associated value in
the particle’s current position vector. Oncevid(t) has been
calculated, it is important to make sure that it falls within the
acceptable range of velocities. The velocity must be damped
to keep the particle from oscillating out of control. Here the
standard practice is to select a value,Vmax and restrict the
velocity to−Vmax ≤ v(t) ≤ Vmax. Equation 1 demonstrates
how the particle’s velocity is affected by its current position,
the best location that it has personally visited and the best
location visited by one of its neighbors.

In order to finally create a location vector for its next
position, the particle simply adds the velocity vector to its
current position vector. The velocity vector is stored for use in
the next iteration of the algorithm. The particle’s old position
vector is discarded, unless it evaluates to a new personal best,
in which case it is stored as the personal best vector.

Implicit in this definition of a particle is the existence of
a method of translating the particle’s position into a fitness
value. The fitness value helps to direct the particle’s flight
through the search space. The particle need not be in control
of the evaluation, a black box will suffice. The particle is only
concerned with the resulting fitness value and not with the
manner of the evaluation. This property is another attractive
feature of the PSO algorithm.

The particle’s neighborhood is important in evaluating the
search space. The neighbor relationship allows several par-
ticles to collaboratively evaluate search space, while passing
only useful information. There is certainly the potential for
a particle to evaluate a location that has already been visited
by one of its neighbors. The cost of this repeated evaluation
is directly proportional to the cost of the evaluation function
(which is important in our context). For a simple polynomial
equation, repeating an evaluation is trivial. In the case where
an evaluation entails the running of a simulation, the cost is
high. In circumstances where the cost to benefit ratio is high, it

might make sense to store a small amount of data enumerating
the locations in search space that have been visited. However,
this decision must take into account the likelihood of revisiting
a location, which might be low in a search space such as<20,
as used in our examples.

The restriction placed on velocity will have consequences
on the behavior of the PSO algorithm. For large values of
Vmax, the algorithm will converge quickly around a solution.
However, this comes at a cost in terms of the accuracy
of the solution. Large values ofVmax have the unintended
consequence of preventing a particle from getting within an
associated range of the optimal value. Smaller values ofVmax

will be able to get closer to the optimal value, as their step
size is smaller, and thus they are less likely to overshoot the
optimum. A consequence of using a smallerVmax is that it
takes the algorithm far longer to converge. TheVmax value
can be seen as the size of the biggest jump in state space. Big
jumps get particles close to the optimum faster, but prevent
it from getting within a certain radius of the optimum. And
conversely for small jumps, particles can get closer to the
optimum, but they will take much longer to get there. There
are more sophisticated methods of dealing with velocity, such
as using inertia weights[7].

Pseudocode for the main loop of the Particle Swarm Op-
timization Algorithm is provided in Figure 1 (Taken from
[7]). In the standard implementation, each Particle queries its
neighbors at each iteration to determine the new local best
value. We felt that this was an unnecessary waste of messages,
and so inverted the procedure. Now each node maintains a
local best value and upon discovering a new personal best,
nodes will send out messages to their neighbors.

Readers who are interested in learning more about the
intricacies of Particle Swarm Optimization are encouraged
to read “Swarm Intelligence” [7] by Kennedy and Eberhart.
The text identifies several modifications to the standard PSO
algorithm that are beyond the scope of this paper, among them
using inertia weights to ameliorate the velocity trade-off.

B. The PSO Algorithm in a Peer-to-Peer Context

Our approach to scheduling uses the standard particle swarm
optimization, with a few small changes required by the nature
of the distributed system. Here, each computational agent
(a compute node in the p2p network) explores some area
of parameter space and informs its PSO neighbors when
a particular vector of parameters evaluates to a new best
value. We define PSO neighbor relations using the peer-to-peer
framework, which has certain implications. In the traditional,
centralized PSO, neighbor relations are static, symmetric and
defined a priori. In the Pastry framework, neighbor relations
are dynamic and are not symmetric. We accept the dynamic
neighbor relations as provided by Pastry, but keep the overall
number of PSO neighbors constant. Given the importance of

while(!simulationEnd){
for i=1 to number of particles {

if fitness(i.pos) < fitness(i.perBest) {
i.perBest = i.pos;

}
}
g = i;
for j= indexes of neighbors{

if fitness(j) < fitness(i.localBest){
i.localBest = j.pos;

}
}
for d=1 to number of dimensions{

i.nextVel[d] = i.curVel[d] \
+ q1*(i.perBest[d] - i.pos[d]) \
+ q2*(i.localBest[d]-i.pos[d]);

if i.nextVel[d] > velocityMax {
i.nextVel[d] = velocityMax;

} else if i.nextVel[d] > velocityMin {
i.nextVel[d] = velocityMin;

}
i.nextPos[d] = i.pos[d] + i.nextVel[d];

}
}

Fig. 1. Pseudocode for the Particle Swarm Optimization algorithm

neighbor relationships to the performance of the PSO, we
made PSO neighbor relationships symmetric.

We take advantage of the flexibility of the PSO algorithm by
separating the fitness evaluation and the position calculation.
In order to make our system flexible, the particle’s responsibil-
ity is to maintain its current location and personal and global
best locations and to iterate from the current location to the
next location. Details of this are given in Section VI.

It should be noted that it was necessary to make only
minimal modifications to adapt the PSO algorithm to a peer-to-
peer context. PSO is inherently fault tolerant, has low message
traffic and is useful as a general purpose optimizer. The fault
tolerance of PSO comes through redundancy and ambivalence
to neighbor failures. It exhibits graceful degradation in the
face of increasing rates of failure. The fault tolerance and
graceful degradation both relate to the way PSO neighbors
contribute information. When a node disappears, its PSO
neighbors no longer receive its input, however, they remain
connected to their other PSO neighbors, so the algorithm can
continue to function. Since only useful results are passed
between particles, and because communication is local, at
least in the standard version of the algorithm, the number
of messages passed through the network is relatively small.

Another strength is that the PSO algorithm works with a
variety of fitness functions, which makes it possible to use PSO
as a steering mechanism for a wide variety of simulations. A
final advantage of PSO is that it maps well to an environment
with heterogeneous computing resources. Fast nodes are not
penalized when a slow node joins the network. Given the
communication mechanism, there is no scenario where one
node can cause the entire system (or even a neighborhood) to
slow down or block.

C. Variations of the Particle Swarm Optimization Algorithm

We present and evaluate three variations on scheduling
using Particle Swarm Optimization: Centralized scheduling
with a global-knowledge PSO, centralized scheduling using a
local-knowledge PSO and distributed scheduling using a local-
knowledge PSO.

1) Centralized, Global-Best PSO:In the centralized imple-
mentation, the nodes in the network rely on a central server.
The central server maintains neighbor relationships and is in
charge of updating particles with new local or global best
vectors. Each node maintains its own ability to calculate a
new position in the state space and handles the evaluation of
its location. The central server acts as an aggregator of the
personal best vectors, making it easy for a researcher to see
the progress of the optimization.

In a global-best implementation of PSO, neighborhoods are
not important. Each particle shares its personal best result with
the entire swarm (in our context we will refer to it as the
network). This implementation is ideal for a central server,
as the server need not maintain neighborhood relationships
and nodes only need to be aware of the central server. The
server needs to maintain only a simple list of the nodes in
the network and a global best vector. The global algorithm,
according to the literature, provides the fastest convergence
behavior. However, in a peer-to-peer context, this requires at
least O(N) messages for every global best update.

2) Centralized, Local-Best PSO:The local-best PSO is as
described above. Here the central server is responsible for
forwarding local best messages between neighbors, as well
as maintaining neighborhoods as nodes join and leave the
network. In a centralized system, we have more control over
the topology of the neighborhood. Kennedy and Eberhart
in [7] note that the neighborhood topology can effect the
performance of the PSO algorithm. For more discussion of
this, see section IX. The local-best PSO provides slower
convergence compared to the global method, but there is a
reduction in the required number of messages, O(K), where K
is the number of neighbors. However, the central server still
provides a single point of failure and a limiting factor on the
scalability of the system.

3) Peer-to-Peer, Local-Best PSO:The peer-to-peer imple-
mentation is the focus of this paper. In this version, each node

maintains its own neighbor list and handles communication
with its neighbors. The algorithm is as discussed in Section III-
B. This implementation was by far the easiest to implement,
however, it presents certain challenges to the researcher. With
no central server, it is not possible to view the state of the
current system. This limitation is what drove the creation of
the Query API. The behavior of the peer-to-peer, local-best
algorithm is equivalent to that of the centralized, local-best
algorithm, but without a central point of failure.

IV. PEER-TO-PEER NETWORK

The peer-to-peer network software component provides
functionality to send and receive network messages in an
asynchronous, event-driven manner. Recent work in peer-to-
peer networks include definition of a common API[5] across
implementations which allows applications to explore chang-
ing the underlying peer-to-peer implementation; however, we
currently just use the Pastry[6] implementation. Pastry pro-
vides each node with a unique identifier and partitions a key
space across all nodes such that each node has a roughly
equal distribution of that key space. Nodes can join and leave
the network dynamically, and Pastry maintains the underlying
routing tables so that messages are efficiently transmitted to
the destination node; likewise, it performs redistribution of the
key space for the nodes to maintain the uniform distribution.
These capabilities provide for high scalability of the network
because the routing tables only need to maintain links to
a relatively few number of neighbors nodes for network
connectivity, and notification of network changes provides for
fault-tolerance that we utilize at the application layer.

Figure 2 shows a typical network topology for Patisserie.
Pasty has its set of neighbors for maintenance of the peer-
to-peer network topology and routing of messages; the PSO
neighbors are a subset of the Pastry neighbors which are used
by the PSO algorithm as part of its search mechanics. There-
fore, Patisserie automatically defines the PSO neighborhood
as an overlay network on top of the physical peer-to-peer
network, and adjustments to the peer-to-peer network due to
node joins and removals are automatically reflected in the PSO
neighborhood which keeps the neighborhoods balanced among
all particles for the PSO scheduling.

V. M ANAGEMENT OF SIMULATION RESULTS

A. Storage and Backup Copies

When a simulation run finishes, the raw data files should be
saved such that those results can be queried and retrieved at a
later time. We make the assumption that the raw data is large in
size, so transferring the data from one node to another should
be avoided whenever possible. Likewise, in a large network,
we assume that no shared file system is available; only local
storage on each compute node can be used. For this reason,
our design is to leave the raw data files on the local compute

bootstrap

ccl00:0

ccl03:1

cclbuild01:0

wombat00:1

ccl07:0

ccl03:0

cclbuild00:1
ccl04:1

ccl06:0

ccl05:0

wombat02:1

cclbuild03:1

cclbuild00:0

cclbuild03:0

ccl05:1

ccl06:1

ccl00:1

cclbuild01:1

wombat00:0

cclbuild02:0

ccl07:1

cclbuild02:1

wombat02:0

wombat03:0

wombat03:1

ccl02:1

ccl04:0
ccl02:0

wombat01:0

wombat01:1

Fig. 2. Peer-to-peer network of sixteen machines each with two virtual nodes.
Each node has seven PSO neighbors represented by directed edges with the
topology defined by the Pastry network.

node and just store referential data that points back to the
compute node. Our framework provides theStore, Lookup,
andRetrievemessage types which are implemented on top of
the distributed hash table functionality supplied by the peer-
to-peer network.Store takes a key/data pair; the key is the
computed value from the PSO evaluation function, and the
data contains the parameter set for the simulation run, the
compute node identifier that stores the raw data files, local
pathnames for the raw data files, and possibly some computed
summary metrics for the simulation run. The key is mapped
to a node in the peer-to-peer network, generally different from
the original compute node, and that node stores the referential
data.Lookupperforms the inverse ofStore; given a key value
it returns the referential data associated with that key.Retrieve
is used if the raw data is desired, so given the referential data
from a Lookup message,Retrievewill transfer the raw data
files from the original compute node back to the requester.

Storage of a simulation result in the peer-to-peer network
requires transforming the result into the key space for the
network so that the appropriate node can be determined;
however, the peer-to-peer network key space generally has a
vastly different range. For example, the Pastry implementation
provides a2160 bit key space, so if the simulation produces
results in a small range then most likely all of those results
will get stored onto a single node in the network; this can

defeat both scalability and fault tolerance. Therefore, given
that the simulation produces a single value from the evaluation
function, the approach we take is to scale that value to the
key space range; this requires that the simulation provides
the range of values that will be produced by the evaluation
function. This, however, is not an optimal solution because
while we may have alleviated results being all stored at
a single node, the distribution of storage across nodes is
directly correlated to the distribution of results generated by
the simulations. If the distribution of results are not uniform
across the range; which they most likely are not, then the
storage of results will not be uniform across all the nodes in
the peer-to-peer network. We are continuing investigation into
other techniques which will provide better storage distribution.

Our framework must adjust to a dynamically changing
network environment. Nodes may leave or join the network
at any time. When nodes leave, they can either gracefully
leave by cleaning up and letting their neighbors know, or they
can die with no warning. When a node leaves gracefully, we
want to migrate simulation data to other nodes, and when a
node involuntarily dies then we want data redundancy in the
network so that simulation results are not lost. Our mechanism
for storage of simulation results degrades as nodes leave the
network because the raw data files and the referential data
can be lost. There are two viewpoints that can be considered;
one recognizes that simulation runs may be cheap so it is
more efficient to regenerate the simulation results when they
are lost. The other approach is to store backup copies of the
data on other nodes; this is often called replication but we
use the terminology of backup copies to avoid conflict with
the notion of replication runs for a simulation. Backup copies
need to be stored for both the referential data and for the raw
data files. Additional copies of the referential data is handled
by constructing slightly different key values, so the different
keys will be mapped and stored on different nodes in the peer-
to-peer network. If lookup fails on the main key, the backup
keys can be constructed for lookup. Backup copies of the raw
data files requires that the data be copied from one node to
another; then the referential data can hold names for all of
the nodes with copies, so the requester can try any of the
nodes to retrieve the data. It should be noted that with the
first viewpoint where simulations are cheap, referential data
backup copies should be kept in case a node goes away, while
if simulation data cannot be cheaply reproduced then both
referential data and raw data files should have backup copies.
Our framework does not currently implement replication, but
we intend to provide it in the future. The main implementation
consideration is how to generate different key values that map
to different nodes; one approach we are investigating is using
a permutation modulo based upon the number of replications,
so the key is shifted around the key space in a circular fashion.

B. User Queries

If the researcher knows the exact PSO evaluation function
value then the lookup and retrieval functionality described
in the previous section is sufficient to get simulation results;
however, this is generally not the case. What we describe is
an algorithm for how the researcher can obtain the simulation
results for a range of values; and because referential data is
stored, the researcher can preview the query results before
deciding on retrieving the actual simulation data.

Structured peer-to-peer designs, like Pastry[6] and
others[8][9][10], provide functionality for exact match lookup
of key values, but we can build support for range lookups on
top of that functionality. Essentially when processing a range,
take the lower bound of the range and perform a exact match
lookup for the lower bound. Each node in the peer-to-peer
network knows the range of key values that it maintains, so
it compares its key range to the query range. If the node’s
key range covers the query range then the node holds all
the simulation results; otherwise, the node constructs a new
range using its key upper bound as the query lower bound
and passes the new range to its next peer neighbor. Each node
sends its results, even if null results, back to the requesting
node which combines the results from each subrange into a
total set of results.

One relaxation we apply is that timeliness is more important
than completeness for query results. New simulation results
may be generated in the middle of processing a query that
are relevant to that query, so providing an exact set of
results would entail synchronizing the query with the currently
running simulations. Such a synchronization requires non-
scalable and global communication, so by not requiring exact
results; range queries can be processed quickly and involves
only nodes which are known to contain store relevant results.

VI. I MPLEMENTATION

Here we present all relevant details of the Patisserie system
that were not explicitly covered in earlier sections. Figure 3
shows the architecture for a Patisserie node in the frame-
work. The ResultsManager sends and receives peer-to-peer
network messages using Pastry. Incoming messages related
to simulation results are handled by ResultsManager while
messages dealing with currently executing simulations are
forwarded to the SimulationManager. The SimulationManager
is responsible for management of the executing simulation; the
PSO algorithm is consulted for the set of parameter values
to be used, and simulation results are passed back to the
ResultsManager for storage in the peer-to-peer network. Both
the ResultsManager and the SimulationManager execute in
separate threads allowing them to work independently and
communication between the two is asynchronous.

Results
Manager

Simulation
Manager

PSO

Simulation

Pastry

Local Storage

Network

Fig. 3. Architecture of a Patisserie Node.

A. SimulationManager

The SimulationManager is responsible for running simu-
lations, storing the results of the simulations and managing
the PSO algorithm. The SimulationManager runs in a separate
thread from the ResultsManager and runs a simple loop until
it is called to exit. The execution loop consists of generating
a vector using the PSO, using the vector as input to the
simulation, running the simulation, storing the output of the
simulation (which entails a method call to the ResultsManager)
and, if the result of the simulation is a new personal best,
sending a message to neighboring nodes. We use a shared
data structure to hold local best results. Thus if the Sim-
ulationManager is running a simulation when a “new local
best value” message arrives, the ResultsManager can directly
modify the data structure. The update of the data structure
is atomic, which prevents problems with the PSO receiving
corrupted local best vectors.

At the beginning of each iteration of SimulationManager’s
main loop, its personal best and local best values are synchro-
nized with the PSO object. Since the evaluation of position
vectors is done by the Simulation object, the Simulation-
Manager is responsible for closing the loop and returning
the feedback to the PSO object. During the initialization
phase, the SimulationManager gives the PSO object a random
starting vector. This is done as a convenience. It is certainly
conceivable that a researcher will provide a starting position
for the Simulation, in which case we will generate a starting
position using the given input as a base.

It is important at this point to mention the method that we
use to make PSO neighbor relations symmetric. In the peer-
to-peer implementation, we use the neighbors provided by the
Pastry framework. Pastry neighbors are called leaves and the

neighborhood (set of all leaves) is referred to as the leaf set.
A node has access to its leaf set, and thus can determine its
outgoing PSO neighbors. However, it has no idea of which
nodes have it in their leaf sets. In the interest of frugality, we
refrain from sending a notification to nodes in the leaf set.
Instead, we use an implicit join mechanism that works in the
following manner. Given two nodes, A and B, where A has B
in its leaf set and B does not have A in its leaf set. When A
encounters a new personal best, it notifies its PSO neighbors
by sending a message to every member of its leaf set. Node
B will receive the message and note that A is not in B’s leaf
set. B will then add A to its leaf set, but no acknowledgment
is sent to A.

The PSO neighbor relation method is not without problems.
Pastry does not guarantee delivery of messages, therefore node
A cannot be sure whether B has successfully added A to its
leaf set. Conceivably a reliable transmission protocol could
be built on top of Pastry, but this is beyond the scope of our
project. We are content to suffer the occasional error, and as
our results demonstrate, the functioning of the algorithm does
not appear to be affected.

B. Particle Swarm Optimization Class

The Particle Swarm Optimization class is essentially as
described above. Several small details differ from the algo-
rithm and merit mention. The data structures in the Particle
Swarm Optimization object are not directly accessible to
outside classes, and in our design, only the SimulationManager
directly interacts with the PSO object. Most of the methods in
the PSO class are idempotent. The exception to this rule is the
computeNextPosition() method. This method is not idempotent
owing to the use of a pseudo-random number generator in the
velocity computation. This method could be made idempotent
by exposing the random seed in the pseudo-random number
generator, however we currently have no compelling reason to
do this. This limitation could pose a problem when attempting
to replicate results, as non-idempotent methods will generate
different results each time they are called.

Given the number of steps involved in passing local best
values around the network and between objects (and threads),
the peer-to-peer implementation of the Particle Swarm Opti-
mization algorithm will not react as quickly to change as the
centralized algorithm on a uniprocessor machine. This is a
concern, but it is notable only in the speed of the algorithm’s
convergence and not on the quality of the final result. That
is assuming that users will run simulations based on given
minimization criteria, e.g. “Run until f(x) is below 500.0”. If
the users are forced to bound their simulation ensembles on
computation time, then this may be an issue. We currently do
not consider the impact of this on the overall system.

C. Simulation

The simulation is our black-box evaluation function. The
SimulationManager passes a vector to the Simulation and
the Simulation returns a scalar value. The generic structure
of this solution allows a broad range of simulations to be
evaluated using this framework. Should a research have a
custom-tailored implementation of the PSO, suited to the needs
of the associated simulation, our modular design will allow her
to replace the provided implementation.

In the Patisserie reference implementation, we provide 3
different implementations of the Simulation class. Two are
canonical examples from optimization and the third is a
research simulation. Researchers wishing to incorporate an
existing simulation into Patisserie should consult the Patisserie
API JavaDocs.

The two reference functions from optimization are DeJong’s
Sphere, Equation 2, and the Rastrigin function, Equation
3. Figure 4 shows the Rastrigin function in 2 dimensions.
This function is used to demonstrate the effectiveness of
optimization algorithms. It is an attractive choice given its
infinite local minima and single global minimum. DeJong’s
sphere is a relatively simple function that is routinely used to
measure the performance of optimization algorithms. In our
implementation, we evaluate both functions in 20 dimensions.

f(x) =
n∑

i=1

(x2
i) (2)

f(x) =
n∑

i=1

(x2
i − 10 cos(2πxi) + 10) (3)

These functions were chosen for their simple implementa-
tion and their level of challenge to the optimization algorithm.
Also, owing to their prevalent use in optimization literature, we
have a reference point with which to compare our algorithm.

In addition to the detailed studies done with the optimization
functions, we present results using a research simulation,
Schoenharl’s Agent-Based Neural Network Simulator[4]. This
biologically inspired neural network simulator is used to
explore the various structures that can emerge using only
local communication. The simulation currently exists in an
11-dimension parameter space, with a mixture of discrete
and continuous values. Potential applications of this research
include building large neural networks that scale better than
current approaches, as well as suggesting possible methods
that biological neural networks self-organize. In our frame-
work, the objective function is the minimization of several
topological parameters on the generated neural network.

The Agent-Based Neural Network Simulator is useful in
that not only benefits from the PSO steering algorithm, but
also in the Query API’s ability to store and retrieve results.
The power of Patisserie yields a noticeable benefit in terms

Fig. 4. The Rastrigin Function in 2 Dimensions

of simplifying the researcher’s regime of running simulations
and collecting data.

D. ResultsManager

The ResultsManager implements the MessageReceiver in-
terface and extends the PastryApp class. This gives the
ResultsManager the ability to run as a Pastry Application
and send and receive messages over the Pastry peer-to-peer
network. Being a Pastry Application exposes several useful
aspects of the Pastry API to the Patisserie system. Among
these are the ability to detect when Pastry has changed the
leaf set (neighbors), to lookup nodes in the network and to
view the network routing table.

As mentioned above, ResultsManager maintains a reference
to the SimulationManager. When ResultsManager receives a
message with a neighbors’ new personal best, it will compare it
to the local best value stored in SimulationManager, and if the
new value is better, it will replace the value. It may seem like
there is potential for error here. Potentially ResultsManager
could read the current local best value in SimulationManager,
then SimulationManager could finish running a simulation
and read the local best value and pass it on to the PSO,
and after that ResultsManager could update the local best
value. This is certainly a possibility, however there would be
little noticeable effect on the overall system. It would merely
delay the updating of the PSO. Also of importance is to
consider whether SimulationManager could read the local best
vector while it is being written by the ResultsManager. This
situation might have the potential to corrupt data, so we have
synchronized the personal best vector so that updates to it are
atomic.

E. Virtual Nodes

For scalability testing, acquiring the utilization of thousands
of machines is not generally practical, so the solution is to
use virtual nodes. Virtual nodes are full peer-to-peer nodes
that reside within the same process; each has its own unique
node identifier but network communication and CPU usage
is multiplexed. Virtual nodes allow much larger networks to
be simulated; however, one has to be careful not to introduce
artifacts into the simulation by loading too many virtual nodes
onto a single machine. Pastry provides support for virtual
nodes by simply making additional nodes within the same
process, and each Pastry node gets its own ResultsManager
object for sending and receiving peer-to-peer network mes-
sages. The Patisserie framework creates a SimulationManager
object running in its own thread for each virtual node. In
terms of particle swarm optimization, each peer-to-peer node
corresponds to a particle, so virtual nodes allow multiple
particles to be executed on a single machine.

We can claim validity with results from virtual nodes as
we leverage the power of threads and make use of the delay
that we were forced to put in the evaluation process. Each
SimulationManager will evaluate its current location and then
sleep for a period of time. The length of the sleep dominates
by far the computation time, thus most threads are sleeping
most of the time. This allows the computation to be interleaved
without putting a burden on performance.

VII. R ESULTS

We will show that our approach yields good performance,
scalability and fault tolerance. Where certain simulations re-
main to be done, we have inserted discussion relating to
experimental setup and evaluation criteria. Where evaluations
have been run, we provide the results as well as discussion.

A. Performance Evaluation on Optimization Functions

Our first evaluation is a demonstration of the performance
of the system on the DeJong’s Sphere optimization function.
We present the results to demonstrate the behavior of the
working system. Figure 5 shows the trajectories of a sample of
particles for a 64 virtual node Patisserie as they optimize the
DeJong’s Sphere function; this implementation of the function
has a 20 dimension parameter space. Each particle is initialized
to a random position in parameter space and, as the figure
indicates, the particles converge in a relatively small number
of iterations to a minimum. The lines in the figure represent the
evaluation of a particle’s location over time. At the beginning
of the simulation, the particles are at relatively “high” points
in state space. As the simulation progresses, the individual
particles move to positions with a lower evaluation in state
space. This behavior is encouraging, as researchers will not
want to run many iterations of a long running simulation. It
is possible to decipher from the picture that several nodes are

in communication during the optimization routine. Several of
the lines display interesting similarities in terms of slopes and
curves.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 20 40 60 80 100 120 140 160 180 200

De
Jo

ng
’s

Sp
he

re

Number of Iterations

Fig. 5. Optimization of DeJong’s Sphere by 64 virtual nodes

Figures 6 and 7 shows the total number of iterations, or
PSO evaluations of a simulation, performed by all of the
particles versus the number of virtual nodes in the network
for two different simulations. The simulation for Figure 6
optimizes a twenty parameter DeJong’s Sphere function, and
the simulation for Figure 7 optimizes a twenty parameter
Rastrigin function. Both simulations are throttled with a five
second delay to prevent flooding of the network, and they
are run until one of the virtual nodes reaches a sufficiently
small threshold value. The plots indicates that a linear increase
in the number of simulations performed is obtained as the
number of virtual nodes is increased; this provides an initial
indication that the system can be scaled to a larger number of
nodes. The base assumption is that the execution time for a
simulation is significantly greater than the latency for peer-to-
peer network messages; therefore, storage of simulation results
in the peer-to-peer network does not significantly impact
performance and scalability. If this assumption is violated then
the network will be flooded with storage messages; and while
many simulations will continue to be executed, the peer-to-
peer network messages for storage of simulation results will
get dropped as send and receive queues overflow. In the future,
we will investigate guaranteed delivery of storage messages

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 20 40 60 80 100 120 140

Av
er

ag
e

To
ta

l I
te

ra
tio

ns
Network Size

Fig. 6. The average number of total iterations with error bars of five
replications for optimization of DeJong’s Sphere on a Patisserie network of
16, 32, 64, and 128 virtual nodes across 16 machines.

which may adversely affect the number of simulations that
can be performed.

Figure 8 shows a different viewpoint versus Figure 6 with
the average number of iterations per node before the threshold
value is reached. The plot seems to indicate that the number
of iterations per node actually increases then tapers off as
more nodes are added to the system; however, the error
bars show significant overlap which makes that conclusion
questionable. A plausible explanation is that when one node
has reached the threshold, it takes longer to stop all of the
nodes in a larger network then in a smaller network; and in
the meantime, those nodes are continuing to run simulations.
We need to investigate further to determine if this behavior
is an artifact of our simulation runs or intrinsic to Patisserie.
One would expect that adding more nodes would make the
convergence to the threshold faster, but this is not a guarantee
with the PSO algorithm. However, Figures 6 and 7 indicate
encouraging results that adding more nodes to the network
does provide more exploration of the parameter space, due to
more simulation runs, which is one of the primary goals of
Patisserie.

B. Evaluation Platform

All the testing and development was conducted on the NOM
Research Group Computing Cluster (NGCC). NGCC is a 10

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 20 40 60 80 100 120 140

Av
er

ag
e

To
ta

l I
te

ra
tio

ns

Network Size

Fig. 7. The average number of total iterations with error bars of five
replications for optimization of Rastrigin function on a Patisserie network
of 16, 32, 64, and 128 virtual nodes across 16 machines.

node cluster comprised of 7 simulation servers (dual 650mHz
Pentium III, 2GB RAM), 2 database servers (1 dual 3.2gHz
Xeon, 2GB RAM, 1 dual 650mHz Pentium III, 2GB RAM)
and a file server (dual 650mHz Pentium III, 2GB RAM) with
attached 1.2TB storage. All machines run RedHat Advanced
Server 3.0. The system runs proprietary scheduling and load
balancing software, as well as the Condor system. We used
Condor’s scheduler to distribute and manage our simulations.

Data collection was conducted on the Cooperative Comput-
ing Lab’s combined Condor cluster. It is comprised of the 8
node Wombat cluster, the 12 node CCL cluster, the 8 node,
dual-processor GIPSE cluster and various workstations around
the department. We restricted our experiments to the Wombat
and CCL machines, as there appears to be an issue with our
threaded code running on the dual-processor machines.

VIII. R ELATED WORK

The AppLeS Parameter Sweep Template [1] is middleware
that attempts to simplify the use of computational grids for
Parameter Sweep Applications. Its focus is on scheduling
simulations in a grid environment. The application consists
of four different components: a Controller that acts as an
interface between the user and the Scheduler, a Scheduler
with several heuristics for scheduling jobs, an Actuator, which
implements the schedule and attempts to move input/output

 0

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100 120 140

Av
er

ag
e

Ite
ra

tio
ns

 p
er

 N
od

e
Network Size

Fig. 8. The average number of iterations per node with error bars of five
replications for optimization of DeJong’s Sphere on a Patisserie network of
16, 32, 64, and 128 virtual nodes across 16 machines.

data and processes around to minimize communication and
finally a Meta-Data Bookkeeper, which stores information on
observed and predicted resources, ie network performance,
application state, predicted load, etc. The AppLeS Scheduler
is better suited to the task of parameter sweeps, however, it
has a single point of failure and does not display the kind of
scaling behavior of the distributed PSO. Our project addresses
a niche that is not well served by APST, applications with
high parallelism and low input data requirements, but which
may require steering during the running of the application.
AppLeS is designed to integrate well into a grid environment,
whereas Patisserie can be used as a stand-alone component.
The implications of this are that AppLeS can take advantage
of existing grid resources, but new users must become masters
of the grid environment in order to use it. Patisserie does not
require that users become familiar with grid tools and software,
but places the burden on the user of finding and accessing
computational resources.

The Organic Grid approach [3] uses an overlay network
to create a tree structure, where the root node is essentially
the master of the simulation and determines which jobs will
be scheduled on the child nodes. The child nodes, as in a
self-scheduled workqueue [11], query their parent for jobs
to execute. This approach, while interesting, suffers from
many of the same problems as a centralized approach, namely

any adaptation must take place at a central location and be
propagated down the tree. Our approach does not suffer from
this limitation, nor does it introduce the attendant problems
with a centralized approach: costly workarounds to recover
when a parent node dies and limited scalability. Additionally,
there is not an intuitive mapping between the tree-structured
hierarchy and the peer-to-peer network.

The latest contribution to this area is “Self-Organizing
Monte Carlo Optimization in Peer-to-Peer Networks” [2].
In this application the authors present a parameter sweep
application scheduler that is very similar to our proposed
architecture. The authors designate each machine in a grid
as a computational agent and connect these agents using an
overlay network. They use a given algorithm to ensure that the
overlay network displays several desired characteristics: it is a
scale-free network which has a small overall distance between
nodes in the graph, and it is resilient in the face of random
node failure. In this network, each agent begins working on
some piece of the optimization problem. When it finishes its
piece it compares its result to its neighbors. Agents discard
bad solutions and replace them with better solutions from their
neighbors and use this as a starting point in a local search. In
this way good solutions can propagate throughout the network
via local communication.

Although the SOMCOP2PN approach appears similar to
Patisserie, there are significant differences. The authors note
that their Monte Carlo optimization can be viewed as similar
to particle swarm optimization; however, their computation
network converges to a single solution while PSO continues
to randomly explore solution space which is more appropriate
behavior for parameter sweeps. Additionally, scale-free net-
works have the property that some nodes are hubs with a large
degree which means they have a disproportionate amount of
communication, and this property is a hinderance to scalability.
The authors suggest that this condition can be alleviated by
imposing a maximum degree; though this causes a deviation
from a scale-free distribution. By using the structured network
overlay provided by peer-to-peer networks, we can guarantee
that no single node has a inordinate number of neighbors and
still maintain a short distance between any two nodes in the
network. Our Query API makes the retrieval and management
of results feasible.

IX. FUTURE WORK

In the future we intend to develop Patisserie by imple-
menting a more sophisticated version of the Particle Swarm
Optimization algorithm. Possible modifications include adding
an adjustment to the simple velocity maximum, such as the
inertia weights of Shi and Eberhart [12].

We intend to demonstrate the fault-tolerant behavior of the
system by running simulations and subjecting the network to
random node failure. Literature on PSO lead us to believe

that the system should perform well and display graceful
degradation. We would also like to explore the effects of
network partitioning on the system. The PSO should continue
to perform, assuming that the partitioning doesn’t leave nodes
without PSO neighbors. Rejoining a Patisserie network that
is separated by a network partition would be a function
of the underlying Pastry framework, but is an interesting
consideration.

We would like to study the effects of indirection and storage
replication on the performance and scalability of the Query
API. Important results should be replicated on the network,
both for availability and performance (in terms of latency).

After some interesting results are found, the researcher may
wish to run multiple replications using different random seeds
for the simulation to statistically validate the results of the
single run. We intend to implement aReplicatemessage type
that specifies a parameter set, a number of replication runs
to perform, and optionally a set of random seeds to use; and
these replication simulations will be scheduled in the Patisserie
network. The raw data files from each simulation run can have
the random seed as part of its identification, so each replication
run will create separate raw data files that can be analyzed.
Beyond support for replication runs, we are investigating
the ability to allow additional metrics and computation to
be performed on simulation results without requiring a new
version of the simulation or framework executable to be
distributed.

Similarly we would like to investigate the effect of modi-
fying the neighborhoods so that they more closely correspond
to communication latency between nodes. Nodes with lower
communication latency should be more likely to be neighbors
than nodes with high latency. The effect of this modification
would be to reduce the cost of communication in the system.
However, one consequence of this would be to expose the
algorithm to site failures. A power outage or shut-down due
to a cooling system malfunction would affect nodes in the
same location. Nodes that were grouped by location would
suffer with the loss of (potentially) entire neighborhoods,
whereas if the neighbor relations were distributed evenly,
many neighborhoods would suffer the loss of a few neighbors.
Simulations are warranted to explore this issue and see if it
would affect the performance of the system.

Study the effects of alternate neighborhood topology on sys-
tem performance. We would like to examine the performance
of the PSO on networks exhibiting small-worlds topologies,
as well as scale-free and exponential networks.

Finally, it would be enticing for researchers to have a
visualization tool for monitoring the progress of the system.
One of us (Schoenharl) has created a visualizer for the
uniprocessor PSO implementation. The visualization consists
of a 2-dimensional grid, where each grid location represents a
particle. Each grid square is color coded with a color whose

intensity matches the objective function evaluation of that
particle’s personal best. This visualizer offers an interesting
glimpse into the functioning of the system, and the color
coding is an excellent method of concisely conveying a large
amount of information.

X. CONCLUSION

A. Benefits of Patisserie

We have demonstrated the Patisserie framework for con-
ducting parameter sweeps in a heterogeneous peer-to-peer
environment. Our demonstration system utilizes several canon-
ical functions from the optimization field. Based on our results,
we claim that we have met our goals of scalability and fault
tolerance and that we also have demonstrated the system under
a representative load.

Our results show that the Particle Swarm Optimization al-
gorithm is an excellent match for our simulation environment.
It is robust, displays graceful degradation and scales well.
Its performance as a general-purpose optimizer make it an
attractive choice in a context where a variety of simulations
and parameter spaces must be evaluated. Our Query API
provides simple, intuitive commands that are powerful and
extensible and aid considerably in the evaluation, storage and
management of simulation data. They display favorable scaling
properties and are resistant to random node failure.

We feel that our system goes beyond competing projects.
Our design is more fault tolerant and maps better to our project
domain than the Organic Grid. Our scheduling algorithm is
more robust than AppLeS, and our simple design and inter-
faces make our system more attractive to researchers who de-
sire a working system and not an education in grid computing.
Finally our design rivals that of the “Self-Organizing Monte
Carlo Optimization in Peer-to-Peer Networks”, mainly through
our use of the proven PSO algorithm and the advanced query
API. Overall our system is simple, easily extensible, highly
robust and ideally suited to the task of running simulations in
a peer-to-peer environment.

B. Limitations

There are several issues that we have not addressed, as well
as several overall limitations of our framework. The validity
of our work hinges at least in part on the assumption that
virtual nodes are a reasonable facsimile of real individual
nodes. This may not be the case, as network latency and
cost will be magnified considerably in a geographically diverse
system. The cost of network latency and speed in the reference
simulation may be minimized if several neighbors a running
on the same CPU and communicating over the loopback
interface. In a real system these values may be orders of
magnitude higher for each communication, compounding the
problem. Further testing and exploration are required before
any definitive claims concerning network performance can be

made. That said, results for the iteration to message ratio
should remain valid and give us a guideline should we get
better information on network speed and latency.

The framework as a whole is useful for simulations that
have one output that needs to be minimized. It is possible
that Patisserie could be modified to satisfy multiobjective
functions, but this is well beyond the scope of our current
work. Additionally, we need better tools for running and
managing jobs in a batch system, such as the SunONE Grid
Engine that schedules jobs for HPCC and BOB. Finally we
need to prove with a compelling example that results similar
to our Query API could not be achieved by merely running
simulations and storing the results in a large, fast database.

Given the independent nature of the Particle Swarm Op-
timization scheduling algorithm, it is not easy to specify a
priori an ensemble of parameter sets to evaluate. This is one
area where Patisserie lags behind competitors such as AppLeS
and the Organic Grid. This functionality could be built on top
of the Query API, but it would be a bit of a hack and goes
against the basic principles of the system.

XI. A CKNOWLEDGEMENTS

The authors would like to thank Professor Greg Madey for
the use of the NOM Research Group Computing Cluster.

This work was supported in part by a Fellowship provided
by the Arthur J. Schmidt Foundation.

REFERENCES

[1] H. Casanova, G. Obertelli, F. Berman, and R. Wolski, “The AppLeS
parameter sweep template: User-level middleware for the grid,” in
Proceedings of Super Computing 2000, pp. 75–76, 2000.

[2] J. Saramaki and K. Kaski, “Self-organizing monte carlo optimization in
peer-to-peer networks,” 2004.

[3] A. J. Chakravarti, G. Baumgartner, and M. Lauria, “The organic grid:
Self-organizing computation,” inProceedings of ICAC 2004, 2004.

[4] T. Schoenharl and G. Madey, “Using agent-based modeling in the
simulation of self-organizing neural networks,” inProceedings of the
Workshop on Agent/Swarm Programming (WASP) ’03, pp. 27–32, Oc-
tober 2003.

[5] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica, “Towards
a common api for structured peer-to-peer overlays,” inSecond Interna-
tional Workshop on Peer-to-Peer Systems (IPTPS 2003), 2003.

[6] A. I. T. Rowstron and P. Druschel, “Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems,” in
Proceedings of the IFIP/ACM International Conference on Distributed
Systems Platforms Heidelberg, pp. 329–350, Springer-Verlag, 2001.

[7] J. Kennedy and R. Eberhart, “Particle swarm optimization,” inInterna-
tional Conference on Neural Networks, IV, pp. 1942–1948, 1995.

[8] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker,
“A scalable content-addressable network,” inProceedings of the 2001
conference on Applications, technologies, architectures, and protocols
for computer communications, pp. 161–172, ACM Press, 2001.

[9] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and
J. D. Kubiatowicz, “Tapestry: A resilient global-scale overlay for service
deployment,” IEEE Journal on Selected Areas in Communications,
vol. 22, pp. 41–53, Jan. 2004.

[10] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in Proceedings of the 2001 conference on Applications, technologies,
architectures, and protocols for computer communications, pp. 149–160,
ACM Press, 2001.

[11] T. Hagerup, “Allocating independent tasks to parallel processors: an
experimental study,” inJournal of Parallel and Distributed Computing,
vol. 47, pp. 185–197, December 1997.

[12] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in
Proceedings of the IEEE International Conference on Evolutionary
Computation, 1998.

XII. B IOGRAPHY

Fig. 9. Scott ”You Said This Would Only Take Two Hours!” Christley

Scott Christley is Mr. EverQuest. He spends the majority of
his day wasting his colleagues time recounting his adventures
in the virtual world. The included shot is Scott hard at work
running simulations after a long night of EverQuest.

Fig. 10. Tim ”Behold the Effect of 9 Months Without Sunlight!” Schoenharl

Tim Schoenharl is a 14th Century Shaolin monk trapped in
a 21st century hacker’s body. He works hard at maintaining
his heroin chic physique by guzzling coffee and incessantly
clicking his ballpoint pen. He hopes to one day finish writing
his Master’s Thesis.

