
CSE598Z: DISTRIBUTED SYSTEMS

Process Migration via Remote Fork

Branden J. Moore
Department of Computer Science and Engineering

University of Notre Dame
<bmoore@cse.nd.edu>

Abstract

Utilizing multiple computers to complete a task in paral-
lel offers many benefits over serial execution, however the
programmatic interface to distributed computation is non-
trivial at best. This paper introduces and examines the
concept of a Remote Fork. Remote Fork systems allow a
programmer to use a familiar parallel programming model,
that of Fork, to easily harness the power of multiple ma-
chines. Many of the tradeoffs and technical challenges in-
voked in a Remote Fork system including such topics and
Checkpoint/Restart, file descriptor and signal challenges,
as well as fault tolerance, are discussed at length. One im-
plementation of Remote Fork is described and evaluated to
show near linear speedup is shown for a simple matrix mul-
tiplication benchmark utilizing Remote Fork.

1. Introduction

Standard programming models are not well suited to dis-
tributed computing. The language semantics of most stan-
dard programming languages do not provide for the exe-
cution of code on remote processors. Typically when dis-
tributed computing is shoe-horned into standard program-
ming semantics, the abstractions break down[18]. Dis-
tributing computation across disjoint systems increases the
chances for failure in ways that local semantics are not pre-
pared to handle. Remote Procedure Calls (RPC)[4] are
one mechanism to provide for distributed computing with
“close-to-local” semantics. One of the main disadvantages
of the RPC mechanism is that the code to be executed on a
remote machine must provide a “well-known” service. The
programmer wishing to use the RPC system is limited to
running the services provided, and cannot “at will” decide

what code should be executed remotely. This paper presents
a mechanism for programmers to execute their code on re-
mote processors in a model that is as familiar asfork().
This mechanism, known as a “Remote Fork” orrfork(),
allows programmers to create a copy of the current process
and invoke it on a remote processor as easily as a regular
same-machinefork().

The Remote Fork mechanism presents a familiar, but
slightly modified programming model to the application
programmer. This allows programmers to treat collections
of disjoint computer systems as a single, large SMP (Sym-
metric MultiProcessor). Standardfork() based paral-
lel programming is a well-known and understood program-
ming model, but it is limited to working on a single system
image. Remote Fork allows this same programming model
to be extended to work across system boundaries. This can
make certain parallel processes much faster through the use
of external processing resources.

When a process issues anrfork(), a snapshot or
checkpoint image is taken of the current process and
shipped to the target remote computer. The remote machine
takes this image and restores it as a running process, while
the original parent continues execution. This is essentially
the same manner in which standardfork() produces chil-
dren. Child processes are almost exact copies of the parent,
and as such must retain open file descriptors and inherit the
processing environment of the parent. Communication be-
tween a parent process and its child, be it via file descriptors
or signals, presents the paramount difficulties in designing
a valid Remote Fork system.

This paper explores the design space and tradeoffs in-
volved in the development of a Remote Fork system. It
then introduces one implementation of a Remote Fork sys-
tem which strives to maintain most semantics of standard
fork(). It accomplishes this by using a local Child-

1

Pseudo-Process (CPP) and a Remote Fork Daemon (RFD)
on the target computer. Reads and writes to open file de-
scriptors are forward from the child to the parent and visa-
versa via the RFD and CPP. Signals are forwarded as well,
as are exit status messages.

With a simple matrix-multiplication benchmark, an av-
erage speedup of 83% of linear can be ascertained through
the Remote Fork system presented. The main tradeoff
comes in the cost of checkpointing processes with a large
memory footprint, versus the amount of parallelism ob-
tained. While computation time achieved very near linear
speedup, the overhead of executing a Remote Fork over-
whelms the speedup for large memory, small computational
codes. Simple optimization techniques can be applied to
reduce the large overhead of therfork() call, however
these overheads are still quite significant.

The remainder of this paper is organized as follows;
alternate mechanisms for harnessing distributed computa-
tional resources are discussed in section 2. A discussion of
the design requirements and tradeoffs are in section 3, fol-
lowed by a description of one implementation of a Remote
Fork mechanism in section 4. This implementation is eval-
uated and concluding remarks are made in sections 5 and
6, respectively. Appendix A contains an informal specifica-
tion of the protocol used in this implementation of Remote
Fork.

2. Related Work

Process Migration is by no means a new topic, and has
been studied at length in many places, from automatic load-
balancing mechanisms[15] to the cycle scavengers[17].
Most systems which utilize a process migration scheme
concentrate on transparent migration. This removes from
the programmers and/or the users the need to specify when
or where the process will migrate. The Sprite Operating
system[6] accomplishes this goal by integrating process mi-
gration into the internals of the operating system and tunnel-
ing all I/O of remote processes back to the originating com-
puter. The Charlotte system[3] does this as well, but rather
than doing an implicit tunnel for communication, all system
communication is done via message passing. Therefore, re-
mote communication is as trivial as local communication.
[15] attempts to take transparent migration to the next level
by distributing all system-level objects, such as pipes and
timers.

Remote Procedure Calls (RPC) has been a popular
mechanism for remote execution of code[4]. RPC requires
that procedures to be executed remotely be compiled sep-

arately from the rest of the program. These remote pro-
cedures are then explicitly created as services on remote
hosts. These services can be utilized by any authorized
client. RPC attempts to mimic the semantics of local pro-
cedure calls, but adds an extra class of failure error codes.
Through the use of “stub” functions in a library, it is not
necessarily apparent to the the programmer where remote
execution may occur.

Transparent process migration has the advantage of al-
lowing for more automated load balancing and cycle us-
age, but at the same time removes from the programmer
the ability to design the program in a manner which would
best benefit from migration or parallelism. Message Pass-
ing systems such as LAM-MPI[5] are designed to have the
developers split their programs logically around their par-
allel partitions. This tradeoff decreases run-time flexibility,
but may allow for faster execution. Remote Fork allows the
programmer the flexibility to choose how many, and which
hosts to execute on at run-time, as well as giving the benefit
of programmer-knowledgeable partitions for speed.

The ability to move a process from one system to an-
other typically requires homogeneous systems. Almost any
change from one system to another can cause a process to
fail. These changes can range from architecture and op-
erating system changes, to simply different compilations
of libraries. Few attempts have been made at allowing
for heterogeneous process migration[1, 7, 8]. Gulwani and
Tarachandani developed a mechanism to allow for process
migration in a very structured manner in heterogeneous sys-
tems by augmenting the compiler of a C program. The pro-
grammer can specify specific locations where migration can
take place. These places are consistent across systems, and
as such re-invocation on another system does not depend on
the original executable or text segments.

Another large challenge when designing a process mi-
gration system is to keep the semantics of the system
as close to those of a non-migratory system. It has
been challenged that no “good” process migration system
with UNIX-like semantics can be run entirely from user-
space[2]. Systems such as Sprite[6], Locus[19], MDX[15],
DEMOS/MP[11] and Charlotte[3] all base the process mi-
gration schemes in the Operating System. However, it has
been shown that it is not the case that operating system-level
support is required for process migration. [5, 16, 17] have
managed to develop pure-user-level systems for process mi-
gration. The advantages to staying out of the operating sys-
tem run the gamut from security to practicality. In many
cases, it is not possible for a modification to be done to op-
erating system, such as when administrative access is not

2

available or when such actions would have adverse effects
on the rest of the system.

One of the major steps in a Remote Fork is that of check-
pointing and restarting processes. One of the first Check-
point/Restart (CR) mechanisms was presented by Pikner in
1971[12]. This system was designed for a COBOL based
machine, and while not directly usable for most systems to-
day, presents many of the first arguments for a CR system.
CR today sees many implementations, from LAM-MPI[14]
to virtual machines[1] to hardware controlled systems[10].
The mechanisms to perform a transportable checkpoint and
restart that checkpoint are well established and will be dis-
cussed in section 3.1.

Remote Fork systems have been studied in the past[16,
19], but most such systems are integrated with a specific
operating system such as LOCUS, or did not provide suf-
ficient abilities. The system developed by Smith and Ioan-
nidis does not allow for the transfer of open file descriptors
or the ability towait(2) on a child process. This paper
attempts to show that a user-level remote fork mechanism
with acceptable semantics is possible. Waldo et. al, show
that expecting standard local semantics in a distributed sys-
tem is foolish at best, as distributing a system brings to the
expected abstraction new ways of failure, both total and par-
tial, in ways the abstraction is not prepared to handle[18].

3. Mechanisms & Tradeoffs

The design of a Remote Fork system, like any complex
system, requires certain tradeoffs to be evaluated and de-
cided upon, based on the manner in which the system is in-
tended be used. One of the first questions to ask when devel-
oping a Remote Fork system is whether it is even the most
appropriate system to be using. If the intended use is to im-
mediately follow therfork() with anexec(), perhaps
a Remote Exec would be better, for it would have much less
overhead due to not needing a Checkpoint/Restart mecha-
nism. Many computer systems already have a Remote Exec
mechanism available, viarsh or ssh.

The return value fromfork() is the process id of the
child (in the case of the parent), or zero (in the case of the
child). Somehow,rfork() needs to maintain this, or a
similar mechanism to determine which instance of the pro-
cess is the child, and which is the parent. Also, the parent
should receive some bit of information or identifier so that
it can control the child; sending signals to it, for instance.
One common mechanism to allow for this ability is the use
of a shadow process, or child pseudo-process. This process
is the result of a standardfork(), and resides locally to

act as a stub for the remote process.rfork() returns the
process id of the shadow process to the parent, while the
shadow process acts to forward information to and from the
remote child process.

The security of a Remote Fork system must be evaluated
before it can be considered a viable service to use. It would
not be advisable for unauthenticated clients to be able to in-
voke whatever code they wish on a system. Authentication
and encryption methods should be considered an integral
part of any complete Remote Fork system.

Other tradeoffs to consider include how to accomplish
the Checkpoint/Restart, how to handle open files and sig-
nals, and what to do about failure. The following subsec-
tions explore each of these areas in turn.

3.1. Checkpoint & Recovery

Checkpoint/Restart mechanisms come with an entire
suite of details to keep in mind, from where to do the check-
pointing, to how to restore, to what to do about open files.
This paper explores some of the options for these below.

Checkpointing can be done from a variety of places.
The easiest place to checkpoint a process is from the ker-
nel. Only the kernel has complete access to all components
which make up a process. As discussed above however, it
is not always possible or acceptable to modify the kernel
of the operating system. Therefore, there must be methods
to checkpoint a process from outside of the kernel. One
mechanism to accomplish out-of-kernel checkpointing is to
just cause the process to dump core. It is possible to take
a core file from a process, and restart that process. This
is most easily seen, and commonly done with a debugger.
One of the disadvantages of this method is that generating
a core file is often destructive to the original process. For
example, core files are typically produced through the de-
fault action upon receipt of SIGSEGV or SIGQUIT. Both
of these actions also result in the termination of the pro-
cess. Also, only regular files and directories can be restored
via this mechanism; pipes, sockets and other block devices
cannot be restored. Another potential way to checkpoint a
process is to do so from “inside” the process. This requires
that the program be linked with a checkpoint library, so it
cannot be used for on applications that cannot be re-linked.
Internal-checkpointing is beneficial for it can be customized
to a specific purpose. Some of the difficulty of a purely in-
ternal checkpointing is the recording of processor state. It
is easy to write to a file the address space of the process,
but it is much more difficult to dump the current processor
state, for the act of writing the state changes the state. One
way around this is to use a standardfork() call, and use

3

theptrace(2) system to get access to the stopped child
process, and dump its state.

Once a checkpoint image has been created, restoring the
process from that image also has its challenges. For exam-
ple, unless the checkpoint has been stored as a valid exe-
cutable binary file on the system, the user cannot just exe-
cute the image. Rather, there must be some way to load the
image into a process space and begin execution. One design
question here is where to load the process? There are two
choices; either load into the current process space, similar
toexec(2), or into another process space created by fork-
ing a child. It can be quite difficult to replace the current
process image, but it can be done through the use of tem-
porary stacks andlongjmp. This creates the appearance
of directly invoking a checkpoint image. The other mecha-
nism, forking a child and modifying that address space, has
benefits for Remote Fork systems by continuing the envi-
ronment of a child being forked from a parent. One of the
challenges with placing a new process environment over an
existing one is mapping memory segments into the correct
position. Processes do not react well to code and data mov-
ing during execution. Libraries and other memory-mapped
files must be re-mapped to the exact same location, or else
the process will fail.

This leads to the next question in designing a Check-
point/Restart mechanism. Dynamically linked processes
and dynamically loaded libraries (viadlopen(2)) pro-
vide for a large increase in the complexity of the task.
Dynamically linked processes can be checkpointed and
restarted fairly trivially assuming that1) restart is done us-
ing the same libraries as checkpoint, and2) it is determin-
istic and static as to where the libraries will be loaded into
memory. For clarity, if librarieslibc.so andlibm.so
are to be linked to processfoo, upon each invocation of
foo, each library must be loaded into the exact same mem-
ory address. Memory-mapped files and dynamically loaded
libraries must be noted specially, for an ‘exec’ on the origi-
nal executable file will not allocate space or map these files
into place. Care must be taken to restore these during pro-
cess restart code.

A final question that needs to be addressed is that of how
to handle open file descriptors. This question can have dif-
ferent answers based on how the CR mechanism is to be
used. For a Remote Fork system, the programmer can make
different assumptions than a CR mechanism being used for
checkpointing and later restart. For example, file descrip-
tors that are open uponrfork() *should* remain open
after the fork. Named pipes and sockets included. Files that
were open before a checkpoint that is being restarted later

really has no guarantees about the state of the file descrip-
tors, they may all be stale. The semantics for handling this
case must be described. Other questions include: should an
open file remain an open file? should there even be support
for file descriptors? what about pipes and sockets?

3.2. File Descriptors

The semantics behind files in a Remote Fork system are
quite complex. With a regularfork(), all open file de-
scriptors are duplicated into the new process. Open files
remain open, with file pointers in the same location. Pipes
and sockets are open as well with the same permissions.
When invoking a process on a remote system, duplicating
file descriptors is no longer a viable option. Unless there is
a global filesystem, attempting to open a local file is most
likely not going to result in a valid file descriptor. Also,
pipes and sockets will have no connection to the remote ma-
chine. One way around this is to define the semantics such
that any open file descriptors will be closed onrfork(),
but this is not a palatable solution. What is commonly done
is to use a shadow process on the originating computer, and
“tunnel” file descriptor activity between the systems. The
advantage to tunneling is that all file descriptors are auto-
matically duplicated upon the localfork(), and so files,
pipes, sockets, etc. remain open. The disadvantage is that
on the child end, the semantics of the file descriptor must
change to that of a socket or a named piped. Therefore, if
a seek is to be issued it must be “caught” and emulated, or
else theread() or write() will return an error.

3.3. Signals & Process IDs

To some extent, the semantics of signaling and process
identifiers have the same complexity as open file descriptors
in the case of Remote Fork. For example,fork() returns
the process ID of the child process. This can then be used
by the parent to send signals to the child, and wait for an
exit status. In the case of a remote process, either func-
tions such askill(2) andwait(2) must be trapped to
“fake” local operation, or a shadow process must be used.
If a shadow process is used, it must know to pass on signals
that it receives. However, there are some signals that cannot
be trapped by the process: SIGSTOP and SIGKILL. There
must be some mechanism for the child process to detect that
the shadow process has received one of these signals, and
act upon that information. Otherwise standard POSIX se-
mantics have been violated. One potential mechanism is to
use two-layers of shadow. The process ID returned to the
original process could be the grandchild of it, not just the

4

child. The middle process can usewaitpid(2) to watch
the grandchild’s status. It can then detect what signal caused
the process to halt, and the appropriate actions can then be
taken.

Another interesting bit is the use ofgetppid(2) by
the child. This function returns the process ID of the parent
process. In a Remote Fork system, this process ID will not
reflect the actual parent. There should be a solid mecha-
nism for either trapping this function, or forwarding signals
sent by the child to the parent back to the parent. The lat-
ter option makes a solid argument for either a shadow parent
process on the remote host, or perhaps a daemon which han-
dles communication. The actual parent of the child process
on the remote machine is also responsible for collecting the
return status of the child when it terminates to avoid pollut-
ing the system with zombie processes. The shadow parent
or daemon should then forward the exit status back to the
parent in a meaningful manner. For example, the shadow
child on the local machine can choose to exit with the exact
same exit code as the remote child did.

3.4. Fault Tolerance

The laws of probability imply that as components are
added to a system, the probability of failure increases. This
is quite true of distributed systems, and Remote Fork is no
exception. Interestingly, Remote Fork systems are in a po-
sition to easily recover from failure. Through the judicious
use of checkpoint images, applications can recover from
many failures without a significant loss of work.1 Remote
Fork systems already embed the ability to take checkpoints
atrfork() time, and this can easily be extended to allow
for periodic checkpoints.

Keeping checkpoints around can be expensive in terms
of disk space, for all memory segments of a process must
be stored. On a 32bit system, this implies that checkpoints
can reach up to 4GB in size. As a result, the management
of checkpoints must be considered carefully. The Condor
project recommends the use of checkpoint servers to hold in
stable storage the progression of the computation.[13] This
solution can, however, lead to an “all eggs in one basket”
situation. Holding checkpoint images on the computation
nodes avoids the situation where any one system (other than
the “head” node, where computation starts) can bring about
the failure of the entire computation. Without very careful
planning and work, the “head”, or local, node of computa-
tion cannot suffer failure without causing complete program

1A “significant loss of work” is a metric to be determined by the pro-
grammer

failure. This is because of the usual mechanisms of forward-
ing back from the remote nodes reads and writes to local file
descriptors. It is not advisable to store checkpoint images
on the child nodes, for all benefits are lost if the child node
disappears. However, due to the size of the checkpoints,
it can be quite costly in terms of storage and bandwidth to
store the checkpoint images on the parent node.

Recovery from the failure of a remote child process can
be quite complex, especially if the program running con-
tains any side effects such as writing to a file or commu-
nication with other processes. Unless the side effects of
executing the child process are purely idempotent, mecha-
nisms must be developed to undo any actions which a failed
child did. Systems such as Timewarp[9] are designed with
rollback in mind, yet without careful programming, most
applications will lead to incorrect results when communica-
tion is repeated.

One potential mechanism to avoid side effects is to re-
quire no “communication” other than the presentation of
results at the end of computation. In this manner, the par-
ent process need not be informed of a failure, and the child
shadow process can re-invoke the child on another system.
Alternatively, as long as communication is only one-way,
the shadow process can choose to buffer all communica-
tion, and only deliver it to the parent when the child com-
pletes processing. This is analogous to a “commit” phase.
Storing buffered I/O can be accomplished on either the child
node or the parent node, for a computation is not assumed
to “complete” without the final commit. Buffering I/O for
some processes is not advisable, for they may produce very
large amounts of data. Processes such as these can use a
mixed mechanism of buffering I/O up to a certain amount,
and checkpointing the process once the I/O buffer is full.
The buffer can then be sent to the parent, and future failures
can be restored from the new checkpoint. This is not always
an acceptable solution, however. For example, many paral-
lel applications require some amount of communication, be
it for access to results from computation to be used as in-
put to further computation, or even just to establish locks
around shared resources.

Another challenge associated with distributed systems
and failure is that of debugging. It is a rare program that
runs perfectly the first time it is executed. Remote Fork adds
to the challenge of debugging parallel applications by re-
quiring a cross-system debugging mechanism to be in place.
A well designed Remote Fork system will return to the par-
ent thewait(2) status of a child process when it exits, so
it is possible to know with what exit code or what signal
caused the child to terminate. “printf(3) debugging”

5

can also come in very handy when attempting to debug
the application. However, it should be noted that this too
only works if the I/O from child processes is not buffered
until the condition of successful completion. An alternate
method is to shell connect to the remote nodes, and attach
gdb to the child process, however this can be difficult to
accomplish, and a Remote Fork system does not guarantee
shell access is available to the remote nodes.

4. Implementation

This sections describes one implementation of a Remote
Fork mechanism. This implementation is not yet complete,
but is usable at this point. Mechanisms for recovery from
failure and reading from open files have not yet been imple-
mented, but reading from sockets or pipes, and writing to
any file descriptor has been completed. The Remote Fork
Daemon currently only supports one child at a time.

The architecture of this Remote Fork system can be seen
in Figure 1. There are two libraries involved in the Remote
Fork system. One for checkpointing (libcr), which is
generic and can be used outside of the Remote Fork system,
and one to export therfork() interface (librfork).
When the parent process (P1) callsrfork(), a local child
process is forked off which checkpoints the process and
thenexec’s the cpp program. cpp handles all commu-
nication with the remote computer, and passes I/O and sig-
nal information between the remote computer and the par-
ent. On the remote computer lives a Remote Fork Daemon
(RFD) which is responsible for invoking and restoring the
child process, as well as tunneling communication from the
child back to the parent computer. There is a protocol which
the RFD understands, called the “Remote Fork Protocol”
(RFP) which is described in the appendix, section A.

The RFP requires that the client (the “parent process”, or
cpp in this case) establish a connection and transfer a copy
of the executable that is being run to the RFD, followed
by a checkpoint of the process. By sending the executable
to the RFD, there is no requirement of a global filesystem.
However, this does require that either the executable be stat-
ically linked, or that the libraries on the remote host be the
same as those on the local host. Once the RFD has the ex-
ecutable and the checkpoint, the checkpoint is modified to
point file descriptors to named pipes which are connected
to the RFD. In this manner, all open file descriptors remain
open, and the RFD can catch and tunnel I/O back to the
cpp which forwards the data to the parent process. Calls to
open(2) made from the child are not forwarded back to
the parent computer, but rather open files locally. This was

Local Machine

Remote Fork Daemon

Standard I/O
RFP Protocol
Spawns

P1
(Parent) librfork

libcr

librfork

libcrP2
(Child)

Remote Machine

CPP

Figure 1. Architecture of a Remote Fork sys-
tem

done in an effort to avoid re-writing libc. When the child
process ceases to execute, the RFD collects thewait(2)
status and forwards this back to thecpp which exits with
the same status as the child did, thus allowing the parent
process to usewait(2) in the normal manner and receive
accurate results.

Below contains information on the implementation of
the Checkpoint Restart library in section 4.1, followed by
the Remote Fork Daemon in 4.4 and the programmatic in-
terface and shadow process (cpp) in 4.5.

6

4.1. Checkpoint Restart (libcr)

The Checkpoint/Restart library,libcr, has no direct
connection to the Remote Fork system. Rather, it is a
self-contained library which can be used by any applica-
tion wishing to utilize it. It presents two basic functions,
int cr checkpoint(const char *fname) and
pid t cr restart(const char *fname). To
the programmer,cr checkpoint() simply creates a
checkpoint image, and returns.cr restart() acts like
fork() in that it creates a new process and returns the pro-
cess id of the child process.

This CR library supports static and dynamically linked
libraries, but does not supportmmap(2)’d files or dynami-
cally loaded libraries opened bydlopen(3). The check-
pointing will appear to work fine, but upon restart, these
sections will contain stale data, and not be linked to the cor-
rect files. As for file descriptors, all types of descriptors
are supported for checkpointing, with current seek offsets
stored in the image. However, unnamed pipes and sockets
will be closed on restart, for it is not possible to re-connect
these file descriptors.

4.2. Checkpointing

The checkpointing process oflibcr is fairly simple.
First, the process forks to create another copy of itself
which it can use to examine. The child process sets the
“PTRACE TRACEME” flag, and sends itself the STOP sig-
nal. This will be the re-entry point for restore.

The parent process, which is the actual process, does the
bulk of the work in checkpointing. First, it waits for the
child to stop and connects to it via theptrace(2) facility.
It then gathers the current memory break, which reflects the
size of the process heap. It then allocates a structure to hold
all of the data which will go into the checkpoint image. The
break must be recorded before the other steps, for they can
require the use of allocating memory which would change
the size of the heap.

The parent then uses theptrace(2) facility to record
the register state of the child process. Reading the allo-
cated memory segments into the checkpoint image struc-
ture is done by reading out of/proc/<pid>/mem and
writing that data to the image. A listing of the allocated
memory segments can be found on Linux systems by read-
ing /proc/<pid>/maps. After the memory segments
have been recorded, file descriptor information is obtained.
A listing of open file descriptors, and what they point to is
found in the/proc/<pid>/fd/ directory. That direc-
tory contains symbolic links named after the file descrip-

Return OK

fork

Attach

cr_checkpoint()

ptrace(TRACEME)
SIGSTOP

Read Registers
Read Memory
Read File Status (Self)
Write Image
Kill

Figure 2. Checkpoint Timeline

tor number, and pointing to the target of the file descriptor.
This information, coupled with what can be garnered from
fcntl(2) is used to record all pertinent information about
the state of open files in the process.

Once the file descriptor information has been recorded,
the process can then create and open the checkpoint im-
age file and dump into it all of the recorded informa-
tion. The file is then closed, the child process killed, and
cr checkpoint() returns.

4.3. Restarting

Restarting from a checkpoint requires a bit more work
than checkpointing. To completely replace an address space
can be very tricky, for it is not possible for one process to
allocate memory segments inside of another process, even
through the powerfulptrace(2) facility. However, it is
also not a trivial exercise to attempt to restore processor
state to a known value from inside of a process. The tech-
nique described here uses a combination of in- and out-side
of process procedures to accomplish a successful restart.

The first step to restarting is to read in and parse the
checkpoint image. The image contains all of the necessary
information to completely restore the address space, file de-
scriptor table and processor state of the process. Once this
has been read, afork() is called. Both processes now
have a copy of the checkpoint information. The child pro-
cess closes off any currently open file descriptors and at-
tempts to re-open all file descriptors contained in the check-
point. Regular files, directories and named pipes can all
be opened without difficulty. Unnamed pipes and sockets
are not re-opened, and a warning is issued. Subsequent at-
tempts to read or write to those file descriptors will lead to
an EBADF error.

Once the file descriptors have been restored, the child
attempts toexec(2) the original executable. This allows

7

Return Child PID

cr_restart()

Read Image
fork Change Dir

Restore FD Status
Prepare Arguments
ptrace(TRACEME)
Exec Orig Executable

Attach
Continue

Set Break
Allocate Memory Segments
SIGSTOP

Continue from Restart

Attach
Push Registers
Push Segments
Detatch

Figure 3. Restart Timeline

the operating system to take care of flushing the address
space and loading shared libraries into the correct loca-
tions. When a process includes the header forlibcr and
links against the library, the ‘main’ function is changed
to ‘app main’, and a new ‘main’ function is used. The
startup code for the application now includes a check for
the existence of an environment variable$CR RESTART.
If this is set, then the program will read from the argument
list the location of the memory break (size of the heap), and
a listing of memory segments that it should allocate. Using
brk(2) to set the break, and thus allocate all the memory
that resides on the heap, andmmap(2) to allocate other
memory segments, the child establishes the address space.
At this point, the child sends itself a ‘SIGSTOP’ and waits
for its parent to continue it.

The parent process in the restart waits for the child to
stop, and attaches viaptrace(2) to the child. It then uses
the ‘PTRACESETREGS’ and ‘PTRACESETFPREGS’
functions to restore the register state of the child. The
contents of the child’s memory is restored through the use
of ‘PTRACE POKEDATA.’ The parent detaches from the
child and returns the process id of the child to the calling
function. The act of detaching from the child causes the
child to continue execution. At this point, the entire state
of the process has been restored and the child continues as
if it had just received a ‘SIGCONT’ after the ‘SIGSTOP’ it
received in the checkpoint procedure.

4.4. Remote Fork Daemon

The Remote Fork Daemon (RFD) runs on any computer
which will be used as a target host for a child process. It’s

purpose is to start processes and monitor processes received
from checkpoint images, and the funnel I/O to and from
the client. In this section, ‘client’ will refer to the ‘cpp’
program acting as a shadow child for the parent process.
Thecpp program is described later.

The RFD listens for connections on TCP port 30500 for
perspective clients. When one connects, the client sends
the executable, followed by the checkpoint image to restore.
The RFP writes both of these to the local filesystem. It then
modifies the checkpoint image to suit the Remote Fork sys-
tem. Currently open files descriptors are changed to point to
named pipes which the RFD creates and connects to. This
is done so that activity on those file descriptors is forwarded
on to the RFD, which in turn can forward data to the client.
Once the image has been appropriately modified, the RFD
askslibcr to perform a restart on the checkpoint image,
using the executable previously supplied by the client.

Once the child has been restarted, the RFD goes into a
loop of waiting for data on a file descriptor. If data appears
on one of the connection pipes, the RFD packages this data
according to the Remote Fork Protocol (RFP), and sends it
off to the client to handle. If the client has sent data to the
RFD, it will forward it on to the appropriate connection pipe
to deliver it to the right file descriptor of the child. The client
can also request that a signal be sent to the child. When a
command of this accord is received by the RFD, the signal
is sent to the child.

On each cycle through the idle loop, the RFD executes a
non-blockingwaitpid(2) on the child process Id. If the
child has exited, the RFD will send the status information
off to the client. When this has been completed, the RFD
performs cleanup actions, closing and removing the named
pipes, as well as removing the checkpoint image and local
copy of the executable. The RFD then returns to await an-
other connection.

4.5. librfork & cpp

librfork itself is fairly simple. It consists of a signal
handler and therfork() function. rfork() is accom-
plished by first performing afork() to establish the local
shadow process. The parent then waits for the child process
to send it a signal, or for the child to exit. If the child exits,
then the Remote Fork was unsuccessful, andrfork() re-
turns an error code which corresponds to the exit status of
the child process. This code can be used to determine what
failed in the attempt.

The child process starts by recording its current pro-
cess id. It does this to be able to determine, after calling
cr checkpoint(), if it is the original process or the

8

restarted one. A checkpoint is then taken. At this point,
the process id is gathered again. If the two process Ids are
identical, then it is assumed that the process is the shadow
process, if they are distinct, then it is the restarted code.

The restarted process will just return with no error at
this point. The shadow process executes thecpp pro-
gram, passing the names of the executable, the check-
point file, and the remote host as arguments. The name of
the executable is garnered by reading where the symbolic
link /proc/self/exe points to. Using this mechanism,
rather than argument zero of the program, guarantees re-
turning the full path to the actual executable file which the
loader had invoked.

Whencpp is invoked, it first builds a map of all currently
open file descriptors. This is used to verify write commands
from the RFD, and for use withselect(2) to watch for
new data. Once a this map has been created,cpp connects
to the RFD server on the remote host. Upon successful con-
nection, the executable is sent to the RFD, followed by the
checkpoint image. If the RFD returns an OK to these re-
quests, it can be assumed that the child is running correctly
on the remote host.cpp then sends a signal to the par-
ent process, informing it of a successful start. If it was not
successful,cpp exits with an error code indicative of the
reason for failure.

Once the parent has been informed of a successful start,
cpp establishes a signal handler for all potential signals it
may receive (and that it can catch). It then enters a main
loop of watching for data on the open file descriptors, and
on the connection to the RFD. If data becomes available on
an open file descriptor, it forwards the data on to the RFD.
When the RFD sends a command tocpp, it must determine
the appropriate action. For writes, the accompanying data is
forwarded to the corresponding file descriptor. If the RFD
claims that the child closed a file descriptor,cpp will do
the same. When the RFD reports that the child has exited,
cpp disconnects from the RFD and. It then analyzes the
return status, and applies the same signal to itself - after
resetting the signal handlers to SIGDFL - or exits with the
same return code.

If cpp receives a trap-able signal during execution, it
crafts a message to the RFD containing the signal num-
ber received, and sends this message off to the RFD. In
this manner,cpp acts as a forwarding agent for most all
communication between the parent process and the remote
child.

5. Evaluation

In this section, an evaluation of the effectiveness of
the implementation of Remote Fork this paper describes is
done. The benchmark used here is a naive parallel matrix-
multiply algorithm. The benchmark receives a list of hosts
and two matrix sizes on the command line. It then allo-
cates space for all three matrices (A ∗ B = C). Matrices
A and B are filled with random integers. The computation
space is divided up amongst the number of hosts listed on
the command line. The parent process records the current
time, and then begins callingrfork() to each of the chil-
dren. The child processes compute their space of the C ma-
trix, and send back to the parent the resulting data. Child
processes are spawned after the matrices have been initial-
ized, but computation does not begin until after all child
processes are ready. At that time, a signal is sent to each
child to tell it to begin computation. This allows for the
measurement of the overhead of callingrfork(), as well
as measuring the advantage to computation alone. Other
than sending the results back to the parent process via un-
named pipe, there is no communication between processes.
The overhead of communication tunneled through the RFD
andcpp processes is not explicitly measured, however it
is logical to expect that the overhead involved in communi-
cation is non-trivial, due to the many context switches and
network latency incurred.

The benchmark was run on a spectrum of square matrix
sizes, and on up to 8 computers. The same benchmarks
were also run using standardfork() on a single system,
which happens to be a dual processor. The benchmark was
also run for each size in a serial manner to establish a base-
line.

Figure 4 shows the results of running the matrix multi-
ply benchmark on two square matrices of size1024x1024.
There are three bars for each processor count. The first, la-
beled ‘fork’ is representative of the benchmark using stan-
dardfork() rather than anrfork(). Thus, the gains of
parallelism are limited to 2 processes. It should be noted
that all benchmarks were run on dual-cpu systems, which
leads to the benefit for 2 processes on the local system, with
severely diminished returns for additional processes.

The next bar, labeled ‘rfork’ represents the time required
for the benchmark to complete when usingrfork().
There is an obvious trend upwards as the number of pro-
cessors increase. This is due to the large overhead of call-
ing rfork(). On this size of a benchmark, it required
about 6.5 seconds for eachrfork() to establish the re-
mote process. The third bar, labeled ‘rfork, computation’
represents the time required for computation and commu-

9

0

10

20

30

40

50

60

1 2 4 8

Processes

S
e
c
o
n
d
s

fork rfork rfork, computation

Figure 4. 1024x1024 * 1024x1024 Matrix

nication only. Timing was taken from the moment all pro-
cesses were ready for computation until the time computa-
tion finished. As can be seen, the time for actual computa-
tion sees a benefit for each additional process. In fact, the
speedup is close to linear, with an average speedup of1.62x

for a doubling of processes, or 81.2% of linear speedup.

Figure 5 reflects the same benchmark configurations run,
but for matrix sizes of2048x2048. In this case, the compu-
tational time has increased approximately 10-fold over the
1024x1024 matrices. As before, the local-system bench-
mark receives a large benefit with the addition of an ex-
tra process, but after that the returns are negligible. For
this benchmark, the time required for a singlerfork()
is 25.25 seconds. With a constant per-process overhead of
close to 33% of the single-process time,rfork() is still
not well suited for this class of codes. However, after sub-
tracting the overhead of the Remote Fork, speedup is again
around 81% of linear.

By increasing the size of the benchmark again, this time
to matrices of a size4096x4096, a clear advantage to using
rfork() is made apparent. Figure 6 demonstrates this.
Due to the large amount of computation and communication
of results, there is no noticeable gain for usingfork()
on a matrix multiply of this size. However, there is a very
clear gain in using Remote Fork here. Although the per-
process remote fork overhead is 110 seconds, no longer is
the overhead the primary consumer of time. Computation
has reached the point where a single process takes over an
hour to compute the answer. The speedup in computation is
86.6% of linear, and the overall speedup of 62.8% of linear,
including overhead!

This demonstrates that a Remote Fork system shines the

0

50

100

150

200

250

1 2 4 8

Processes

S
e
c
o
n
d
s

fork rfork rfork, computation

Figure 5. 2048x2048 * 2048x2048 Matrix

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 4 8

Processes

S
e
c
o
n
d
s

fork rfork rfork, computation

Figure 6. 4096x4096 * 4096x4096 Matrix

most when the computational requirements of the dataset
are much more costly than the memory requirements. It
should also be pointed out that the Remote Fork imple-
mentation was not optimized in any manner. Many trivial
optimizations could be applied to the process to increase
the gains seen here. One of the large time-consumers of
checkpoint-restart code is in the recovery of the process’s
address space. Theptrace(2) system only allows for the
reading and writing of one word (4-bytes on the x86 archi-
tecture) at a time. Restoring the state of file descriptors and
cpu state is quite fast, but recovering large address spaces
takes a long time. Checkpointing is quite fast through the
use of reading/proc/<pid>/mem, but writing to that
file is not available due to security concerns.

10

6. Conclusions & Future Work

This paper introduced the concept of a Remote Fork for
the purposes of computation in a distributed environment.
It discussed many of the technical challenges and tradeoffs
associated with implementing a Remote Fork mechanism
on Linux. Remote Fork is essentially an extension of a
Checkpoint/Restart system, with connections between pro-
cesses that may reside on separate computers after restart.
The ability to communicate between these processes pro-
vide many technical challenges. Failure of a component in a
distributed system must be expected and handled in a clean
fashion. The use of CR allows for the potential ability to
recover from failure without undue loss of effort.

Remote Fork has been shown to be a valid mechanism
for distributed computation. However, there are significant
detractors to such a mechanism. The overhead from check-
pointing a processes can be quite significant, and for many
codes, this overhead does not outweigh the benefits gained
from running on parallel resources. However, for suffi-
ciently complex computational codes, Remote Fork does
allow for a large speed boost. Many optimizations could
be applied to reduce this overhead and grant a even larger
speed improvement. For example, rather than taking a new
checkpoint for eachrfork(), in a situation where many
processes will be spawned in a row, such as in the matrix-
multiply benchmark, one checkpoint could be taken and
used for multiplerfork() calls.

Another potential benefit for large-memory codes would
be an implementation of copy-on-access. Rather than trans-
ferring the contents of the entire address space atrfork(),
establish a system where page-faults are trapped and at that
time, pages from the checkpoint would be mapped into
memory.

[18] gives a solid argument for avoiding such systems as
rfork(), which attempts to emulate local-system seman-
tics in a distributed environment. The draw of Remote Fork
lies in extending the familiarfork() to a distributed en-
vironment, however with a small investment into learning
alternate paradigms such as MPI, parallelism can easily be
harnessed in a manner which exposes the distributed nature
of the application, thus allowing for stronger semantics and
better mechanisms for handling failure.

Future efforts applied towards a Remote Fork facility
should be applied to the handling of failure, primarily. Be-
fore a Remote Fork facility can be considered “production
quality” it must have its semantics well defined, and an ap-
propriate mechanism to recover from failure. Rollback and
buffered I/O have both benefits and detractions, so the key
is to find a set of semantics that work well with the desired

computational environment.

A. Remote Fork Protocol

• The Remote Fork Daemon (RFD) listens on TCP port
30500.

• The Remote Fork Protocol (RFP) uses TCP and con-
nections are persistent. A broken TCP connection will
result in any remote child processes being killed by
the RFD, for it will be assumed that the Child Pseudo-
Process (CPP) on the client has been killed.

• Communication inside the full-duplex TCP stream is
based on messages.

• Messages contain two components, the Header and the
Data. The message structure is defined below (Fig-
ure 7). The messages do not have a set size, but the
headers are constant-sized, and give the length of the
data segment.

+---------+------------...... ------+
| Header | Data |
+---------+------------...... ------+

Figure 7. Layout of an RFP message

A.1. RFP Message Header

The RFP message header has 4 fields, as described be-
low. The values for these fields are described in tables 1 and
2. The layout of the header is shown in Figure 8.

• Message ID: 32-bit message identifier. Used to con-
nect commands with responses. Client sends unique
positive values. Server responses contain the same
Message ID as the client sent. Server-originating mes-
sages contain a unique negative value.

• Command: 16-bit Command to the target, or a re-
sponse code. See Tables 1 and 2 for a list of possible
commands.

• Tag: 16-bit tag. Used as an argument to the Command.

• Data Size: 32-bit value to inform the receiver of the
length of the data segment following the header, ex-
cept in the case ofRFP DEATH, where it contains the
wait(2) exit code of the child process.

11

0 32
+-------+-------+-------+-------+
|Message ID.....................| 4 B
+-------+-------+-------+-------+
|Command........|Tag............| 8 B
+-------+-------+-------+-------+
|Data Size......................| 12 B
+-------+-------+-------+-------+

Figure 8. Layout of an RFP header

Table 1. Client ⇒ Server Commands
Value Name Description

0 RFP EXEC Sends the executable for the later
RFP RESTORE

1 RFP RESTORE Invoke a checkpoint image in the
child. Tag ignored. Data con-
tains checkpoint image.

2 RFP SIGNAL Send signal ‘TAG’ to child.
3 RFP WRITE Write ‘DATA’ to file descriptor

‘TAG’.
4 RFP CLOSE Close connection, killing child if

necessary.
5 RFP NOP NO-OP. Must be sent one minute

after the last message sent (other
than RFP CLOSE) to keep the
connection alive. If the RFD
has not received any communica-
tion for 2 minutes, it assumes the
client has disappeared and cuts
the connection, terminating the
child in the process.

References

[1] A. Agbaria and R. Friedman. Virtual machine based hetero-
geneous checkpointing. InProceedings of the International
Parallel and Distributed Processing Symposium, April 2002.

[2] C. Allison. Wanted: an application aware checkpointing ser-
vice. InProceedings of the 6th workshop on ACM SIGOPS
European workshop, pages 178–183. ACM Press, 1994.

[3] Y. Artsy and R. A. Finkel. Designing a process migration fa-
cility: The Charlotte experience.IEEE Computer, 22(9):47–
56, 1989.

[4] A. D. Birrell and B. J. Nelson. Implementing remote proce-
dure calls.ACM Trans. Comput. Syst., 2(1):39–59, 1984.

[5] G. Burns, R. Daoud, and J. Vaigl. LAM: An Open Cluster
Environment for MPI. InProceedings of Supercomputing
Symposium, pages 379–386, 1994.

Table 2. Server ⇒ Client Commands
Value Name Description

0 RFP OK Sent in acknowledgment of the
SUCCESSFUL completion of a
command from the child. Mes-
sage ID contains the Message ID
of the command from the child.

1 RFP NO Sent in acknowledgment of the
FAILED completion of a com-
mand from the child. Message
ID contains the Message ID of
the command from the child.

2 RFP DEATH Child exited. ‘Data Size’ is the
waitpid() ‘status’ value.

3 RFP WRITE Child wrote ‘DATA’ to file de-
scriptor ‘TAG’.

4 RFP READ Child wishes to read from file de-
scriptor ‘TAG’.

5 RFP CLOSEFD Child closed file descriptor
‘TAG’.

[6] F. Douglis and J. K. Ousterhout. Transparent process mi-
gration: Design alternatives and the Sprite implementation.
Software - Practice and Experience, 21(8):757–785, 1991.

[7] F. B. Dubach and C. M. Shub. Process-originated migra-
tion in a heterogeneous environment. InProceedings of the
seventeenth annual ACM conference on Computer science :
Computing trends in the 1990’s, pages 98–102. ACM Press,
1989.

[8] S. Gulwani and A. Tarachandani. Platform independent
checkpointing of a c-program in execution. Technical re-
port, University of California, Berkeley, 1999.

[9] D. Jefferson, B. Beckman, F. Wieland, L. Blume, and
M. Diloreto. Time warp operating system. InProceedings
of the eleventh ACM Symposium on Operating systems prin-
ciples, pages 77–93. ACM Press, 1987.

[10] K. Li, J. F. Naughton, and J. S. Plank. Real-time, concurrent
checkpoint for parallel programs. InProceedings of the sec-
ond ACM SIGPLAN symposium on Principles & practice of
parallel programming, pages 79–88. ACM Press, 1990.

[11] B. P. Miller, D. L. Presotto, and M. L. Powell. Demos/mp:
the development of a distributed operating system.Softw.
Pract. Exper., 17(4):277–290, 1987.

[12] H. Pikner. Programmed restarts. InProceedings of the 1971
26th Annual Conference, pages 13–27. ACM Press, 1971.

[13] J. Pruyne and M. Livny. Managing Checkpoints for Paral-
lel Programs. In D. G. Feitelson and L. Rudolph, editors,
Job Scheduling Strategies for Parallel Processing, IPPS’96
Workshop), volume 1162, pages 140–154. Springer, 1996.

[14] S. Sankaran, J. M. Squyres, B. Barrett, A. Lumsdaine, J. Du-
ell, P. Hargrove, and E. Roman. The LAM/MPI check-
point/restart framework: System-initiated checkpointing. In

12

Proceedings, LACSI Symposium, Sante Fe, New Mexico,
USA, October 2003.

[15] H. Schrimpf. Migration of processes, files, and virtual de-
vices in the mdx operating system.SIGOPS Oper. Syst. Rev.,
29(2):70–81, 1995.

[16] J. Smith and J. Ioannidis. Notes on the implementation of a
remote fork mechanism, 1989.

[17] D. Thain, T. Tannenbaum, and M. Livny. Distributed com-
puting in practice: The condor experience.Concurrency and
Computation: Practice and Experience, 2004.

[18] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall. A note on
distributed computing. InMobile Object Systems: Towards
the Programmable Internet, pages 49–64. Springer-Verlag:
Heidelberg, Germany, 1997.

[19] B. Walker, G. Popek, R. English, C. Kline, and G. Thiel.
The LOCUS distributed operating system. InProceedings of
the ninth ACM symposium on Operating systems principles,
pages 49–70. ACM Press, 1983.

13

