Makeflow Evaluation for Efficient Pre-Allocation of Resources

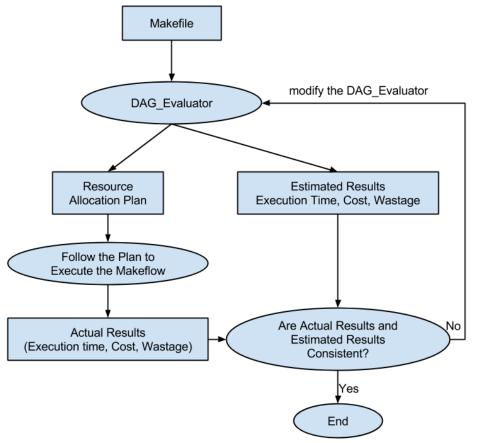
Haiyan Meng, Olivia Choudhury

Motivation

Two steps of executing a makeflow:

1. Start your makeflow

% makeflow -T wq example.makeflow


 Submit worker processes to execution engine % condor_submit_workers barney.nd.edu 9123 10

Problem: Why do we allocate 10 worker machines? Why not 1 or 100?

Aim:

Given a makefile, decide optimal number of machines to be allocated in **reasonable** time.

Methods

DAG_Evaluator Factors:

Total task number DAG height Average DAG width = Total task number / DAG height Width of each level DAG Width = max {width of each level} Distribution of level widths Task Durations Task Dependency Relationship

Measurements:

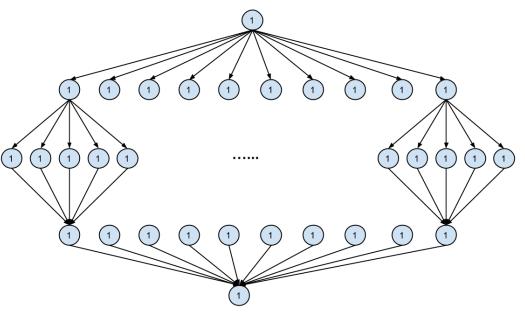
Time of DAG_Evaluator Real cost = sum {each task duration} Execution time = time to finish the whole DAG Total cost = Execution time * machine number Idle cost = Total cost - Real cost Wastage = Idle cost / Total cost

Core Algorithm: Topological sort

DAG Categories

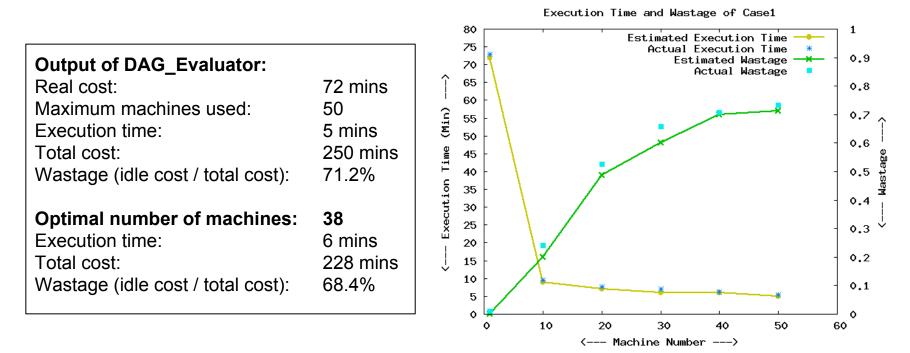
	Task durations known in advance	Task durations not known in advance
Tasks in the same level require similar time	Case 1	Case 3
Tasks in the same level require different times	Case 2	Case 4

For all cases:


Given a makefile, decide a near-optimal number of machines (DAG_Evaluator).

For cases 1 and 2:

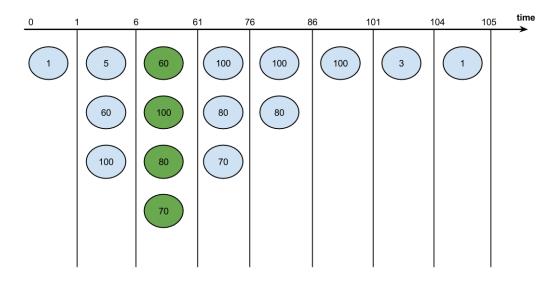
Given a makefile and number of machines, estimate the execution time, total cost, and wastage (Task_Scheduler).

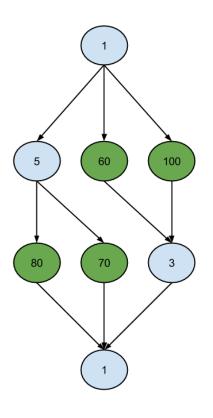

Factors:

- 1. Width of each level
- 2. Distribution of level widths
- 3. Task duration at each level
- 4. Task Dependency Relationship

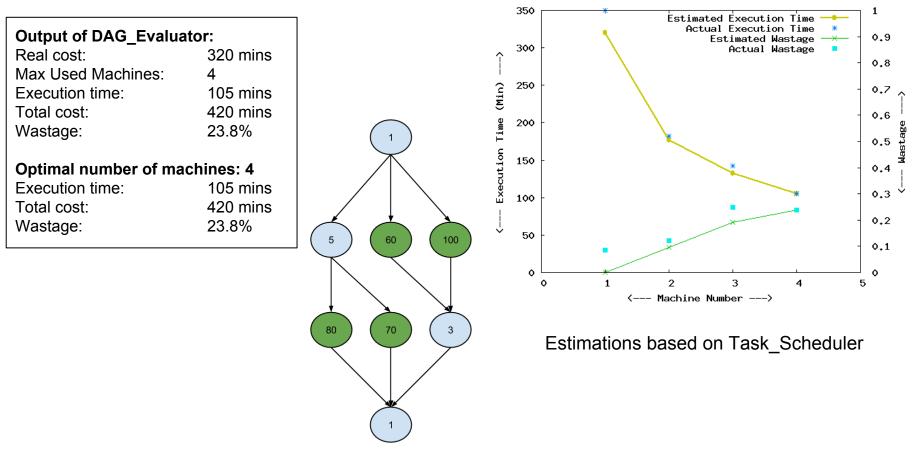
$$Machine \ number = \sum_{1 \le i \le n} width \ of \ level \ i \times \frac{total \ time \ taken \ at \ level \ i}{real \ cost}$$

 $total \ time \ taken \ at \ level \ i = width \ of \ level \ i \times each \ task \ duration \ of \ level \ i$

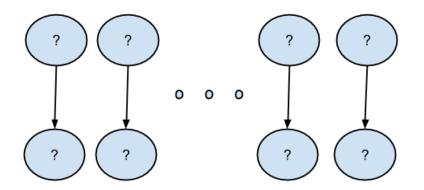

Estimations based on Task_Scheduler

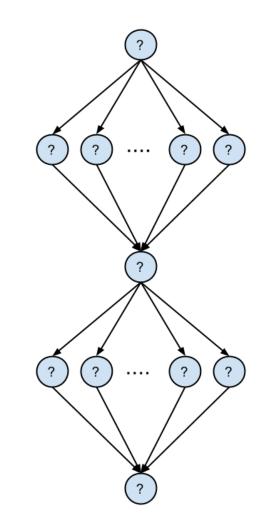

Factors:

- 1. Task duration
- 2. Task Dependency Relationship

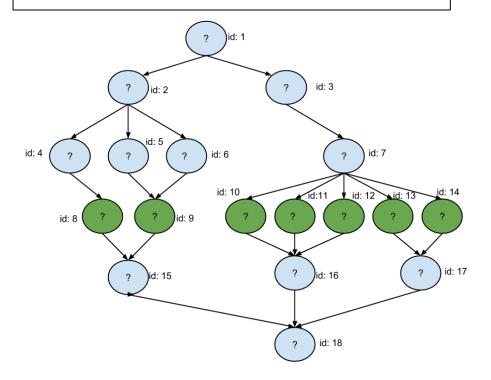

$$Machine \ number = \sum_{1 \le i \le n} width \ of \ time \ interval \ i \times \frac{total \ task \ duration \ of \ time \ interval \ i}{real \ cost}$$

Total task duration of time interval i = length of time interval i x width of time interval i



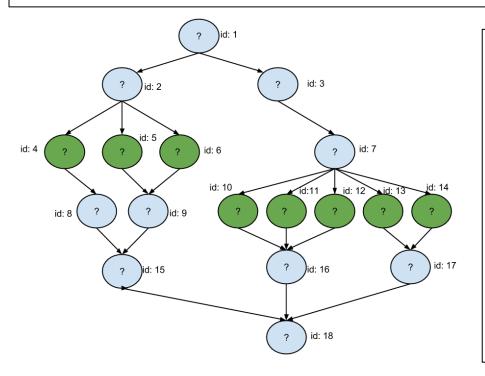

Execution Time and Wastage of Case2

Pilot tasks



	Avg. Time (Mins.)	S.D.
Level 1	53.4	34.7
Level 2	29.7	14.1

Factors:


- 1. Tasks in the same level require similar time
- 2. Task Dependency Relationship

Output of DAG_Evaluator: Number of machines: 7		
Topological sort (Task queue):		
1 2, 3		
3, 4, 5, 6		
4, 5, 6, 7		
5, 6, 7, 8		
6, 7, 8		
7, 8, 9		
<mark>8, 9, 10, 11, 12, 13, 14</mark>		
9, 10, 11, 12, 13, 14		
10, 11, 12, 13, 14, 15		
11, 12, 13, 14, 15 12, 13, 14, 15		
13, 14, 15, 16		
14, 15, 16		
15, 16, 17		
16, 17		
17		
18		
NULL		

Factors:

- 1. Tasks in the same level require different times (times not known in advance)
- 2. Task Dependency Relationship

Output of DAG_Evaluator:

(1)	Total task number:	18
	DAG height:	6
	Average DAG width:	3
(2)	Distribution of level width:	1, 2, 4, 7, 3, 1
	DAG width:	7

Number of machines= max {Average DAG width, DAG width} = 7

Summary

DAG Categories	Approach	
Similar time, known	DAG_Evaluator, Task_Scheduler	
Different times, known	DAG_Evaluator, Task_Scheduler	
Similar time, not known	Topological Sort	
Different times, not known	DAG width, DAG height, Average DAG width, Total task number	

DAG_Evaluator: Evaluates optimal number of machines.

Task_Scheduler: Estimates execution time, cost, wastage of a DAG for a given number of machines.

Future Work

- For Case 1 and Case 2, integrate DAG_Evaluator and Task_Scheduler
 - Optimize execution time, cost, and wastage
- For Case 4, develop an algorithm to find maximum possible concurrent tasks in a DAG
 - Maximum number of machines
 - Estimate execution time, cost, wastage
 - Compare with actual execution time, cost, wastage
- For Case 3 and Case 4, design test cases