
Case Study: Amazon AWS
CSE	40822	–	Cloud	Computing	

Prof.	Douglas	Thain	
University	of	Notre	Dame	

Caution to the Reader:

Herein are examples of prices consulted in fall
2018, to give a sense of the magnitude of costs.
Do your own research before spending your own
money!

Several Historical Trends
•  Shared	Utility	Computing	

•  1960s	–	MULTICS	–	Concept	of	a	Shared	Computing	Utility	
•  1970s	–	IBM	Mainframes	–	rent	by	the	CPU-hour.		(Fast/slow	switch.)	

•  Data	Center	Co-location	
•  1990s-2000s	–	Rent	machines	for	months/years,	keep	them	close	to	the	network	
access	point	and	pay	a	flat	rate.		Avoid	running	your	own	building	with	utilities!	

•  Pay	as	You	Go	
•  Early	2000s	-	Submit	jobs	to	a	remote	service	provider	where	they	run	on	the	raw	
hardware.		Sun	Cloud	($1/CPU-hour,	Solaris	+SGE)		IBM	Deep	Capacity	Computing	on	
Demand	(50	cents/hour)	

•  Virtualization	
•  1960s	–	OS-VM,	VM-360	–	Used	to	split	mainframes	into	logical	partitions.	
•  1998	–	VMWare	–	First	practical	implementation	on	X86,	but	at	significant	
performance	hit.	

•  2003	–	Xen	paravirtualization	provides	much	perf,	but	kernel	must	assist.	
•  Late	2000s	–	Intel	and	AMD	add	hardware	support	for	virtualization.	

Virtual-* Allows for the Scale of Abstraction to
Increase Over Time
• Run	one	process	within	certain	resource	limits.	

Op	Sys	has	virtual	memory,	virtual	CPU,		and	virtual	storage	(file	system).	
• Run	multiple	processes	within	certain	resource	limits.	

Resource	containers	(Solaris),	virtual	servers	(Linux),	virtual	images	(Docker)	
• Run		an	entire	operating	system	within	certain	limits.	

Virtual	machine	technology:	VMWare,	Xen,	KVM,	etc.	
• Run	a	set	of	virtual	machines	connected	via	a	private	network.	

Virtual	networks	(SDNs)	provision	bandwidth	between	virtual	machines.	
• Run	a	private	virtual	architecture	for	every	customer.	

Automated	tools	replicate	virtual	infrastructure	as	needed.	

Amazon AWS

•  Grew	out	of	Amazon’s	need	to	rapidly	provision	and	configure	machines	of	standard	
configurations	for	its	own	business.	

•  Early	2000s	–	Both	private	and	shared	data	centers	began	using	virtualization	to	perform	
“server	consolidation”	

•  2003	–	Internal	memo	by	Chris	Pinkham	describing	an	“infrastructure	service	for	the	
world.”	

•  2006	–	S3	first	deployed	in	the	spring,	EC2	in	the	fall	
•  2008	–	Elastic	Block	Store	available.	
•  2009	–	Relational	Database	Service	
•  2012	–	DynamoDB	
•  2014	–	Lambda	("Serverless")	
•  2016	(?)	–	Elastic	Container	Service	
•  Does	it	turn	a	profit?	

Terminology

•  Instance	=	One	running	virtual	machine.	
•  Instance	Type	=	hardware	configuration:	cores,	memory,	disk.	
•  Instance	Store	Volume	=	Temporary	disk	associated	with	instance.	
•  Image	(AMI)	=	Stored	bits	which	can	be	turned	into	instances.	
• Key	Pair	=	Credentials	used	to	access	VM	from	command	line.	
• Region	=	Geographic	location,	price,	laws,	network	locality.	
• Availability	Zone	=	Subdivision	of	region	that	is	fault-independent.	

EC2 Pricing Model
• Free	Usage	Tier	
• On-Demand	Instances	

•  Start	and	stop	instances	whenever	you	like,	costs	are	rounded	up	
to	the	nearest	hour.		(Worst	price)	

• Reserved	Instances	
• Pay	up	front	for	one/three	years	in	advance.	(Best	price)	
• Unused	instances	can	be	sold	on	a	secondary	market.	

• Spot	Instances	
•  Specify	the	price	you	are	willing	to	pay,	and	instances	get	started	
and	stopped	without	any	warning	as	the	marked	changes.		(Kind	of	
like	Condor!)		

http://aws.amazon.com/ec2/pricing/	

Free Usage Tier

•  750	hours	of	EC2	running	Linux,	RHEL,	or	SLES	t2.micro	instance	
usage	

•  750	hours	of	EC2	running	Microsoft	Windows	Server	t2.micro	
instance	usage	

•  750	hours	of	Elastic	Load	Balancing	plus	15	GB	data	processing	
•  30	GB	of	Amazon	Elastic	Block	Storage	in	any	combination	of	General	
Purpose	(SSD)	or	Magnetic,	plus	2	million	I/Os	(with	Magnetic)	and	1	
GB	of	snapshot	storage	

•  15	GB	of	bandwidth	out	aggregated	across	all	AWS	services	
•  1	GB	of	Regional	Data	Transfer	
	

O
n-
De

m
an

d	
In
st
an

ce
s	

Re
se
rv
ed

	In
st
an

ce
s	

Sp
ot
	In

st
an

ce
s	

Surprisingly, you can’t scale up that large.

Simple Storage Service (S3)

•  A	bucket	is	a	container	for	objects	and	describes	location,	logging,	
accounting,	and	access	control.		A	bucket	can	hold	any	number	of	objects,	
which	are	files	of	up	to	5TB.		A	bucket	has	a	name	that	must	be	globally	
unique.	

•  Fundamental	operations	corresponding	to	HTTP	actions:	
•  http://bucket.s3.amazonaws.com/object	
•  POST	a	new	object	or	update	an	existing	object.	
•  GET	an	existing	object	from	a	bucket.	
•  DELETE	an	object	from	the	bucket	
•  LIST	keys	present	in	a	bucket,	with	a	filter.	

•  A	bucket	has	a	flat	directory	structure	(despite	the	appearance	given	by	
the	interactive	web	interface.)	

Easily Integrated into Web Applications
<form action="http://examplebucket.s3.amazonaws.com/" method="post" enctype="multipart/form-data">

<input type="input" name="key" value="user/user1/" />

<input type="hidden" name="acl" value="public-read" />
<input type="hidden" name="success_action_redirect"
 value="http://examplebucket.s3.amazonaws.com/successful_upload.html" />
. . .
<input type="text" name="X-Amz-Credential”
 value="AKIAIOSFODNN7EXAMPLE/20130806/us-east-1/s3/aws4_request" />
. . .
<input type="submit" name="submit" value="Upload to Amazon S3" /> </form>

http://docs.aws.amazon.com/AmazonS3/latest/API/sigv4-post-example.html	

Bucket Properties

• Versioning	–	If	enabled,	POST/DELETE	result	in	the	creation	of	new	
versions	without	destroying	the	old.	

•  Lifecycle	–	Delete	or	archive	objects	in	a	bucket	a	certain	time	after	
creation	or	last	access	or	number	of	versions.	

• Access	Policy	–	Control	when	and	where	objects	can	be	accessed.	
• Access	Control	–	Control	who	may	access	objects	in	this	bucket.	
•  Logging	–	Keep	track	of	how	objects	are	accessed.	
• Notification	–	Be	notified	when	failures	occur.	

S3 Weak Consistency Model
Direct	quote	from	the	Amazon	developer	API:	
“Updates	to	a	single	key	are	atomic….”	
“Amazon	S3	achieves	high	availability	by	replicating	data	across	multiple	servers	
within	Amazon's	data	centers.	If	a	PUT	request	is	successful,	your	data	is	safely	
stored.	However,	information	about	the	changes	must	replicate	across	Amazon	S3,	
which	can	take	some	time,	and	so	you	might	observe	the	following	behaviors:	

•  A	process	writes	a	new	object	to	Amazon	S3	and	immediately	attempts	to	read	it.	Until	the	
change	is	fully	propagated,	Amazon	S3	might	report	"key	does	not	exist."	

•  A	process	writes	a	new	object	to	Amazon	S3	and	immediately	lists	keys	within	its	bucket.	
Until	the	change	is	fully	propagated,	the	object	might	not	appear	in	the	list.	

•  A	process	replaces	an	existing	object	and	immediately	attempts	to	read	it.	Until	the	change	is	
fully	propagated,	Amazon	S3	might	return	the	prior	data.	

•  A	process	deletes	an	existing	object	and	immediately	attempts	to	read	it.	Until	the	deletion	is	
fully	propagated,	Amazon	S3	might	return	the	deleted	data.”	

	

Elastic Block Store

• An	EBS	volume	is	a	virtual	disk	of	a	fixed	size	with	a	block	read/write	
interface.		It	can	be	mounted	as	a	filesystem	on	a	running	EC2	
instance	where	it	can	be	updated	incrementally.		Unlike	an	instance	
store,	an	EBS	volume	is	persistent.	

•  (Compare	to	an	S3	object,	which	is	essentially	a	file	that	must	be	
accessed	in	its	entirety.)	

•  Fundamental	operations:	
•  CREATE	a	new	volume	(1GB-1TB)	
•  COPY	a	volume	from	an	existing	EBS	volume	or	S3	object.	
•  MOUNT	on	one	instance	at	a	time.	
•  SNAPSHOT	current	state	to	an	S3	object.	

EBS is approx. 3x more expensive by volume and
10x more expensive by IOPS than S3.

Use Glacier for Cold Data
• Glacier	is	structured	like	S3:	a	vault	is	a	container	for	an	arbitrary	
number	of	archives.		Policies,	accounting,	and	access	control	are	
associated	with	vaults,	while	an	archive	is	a	single	object.	

• However:		
•  All	operations	are	asynchronous	and	notified	via	SNS.	
•  Vault	listings	are	updated	once	per	day.	
•  Archive	downloads	may	take	up	to	four	hours.	
•  Only	5%	of	total	data	can	be	accessed	in	a	given	month.	

• Pricing:	
•  Storage:	$0.01	per	GB-month	
•  Operations:	$0.05	per	1000	requests	
•  Data	Transfer:	Like	S3,	free	within	AWS.	

•  S3	Policies	can	be	set	up	to	automatically	move	data	into	Glacier.	

Durability
•  Amazon	claims	about	S3:	

•  Amazon	S3	is	designed	to	sustain	the	concurrent	loss	of	data	in	two	facilities,	e.g.	3+	copies	
across	multiple	available	domains.		

•  99.999999999%	durability	of	objects	over	a	given	year.	
•  Amazon	claims	about	EBS:	

•  Amazon	EBS	volume	data	is	replicated	across	multiple	servers	in	an	Availability	Zone	to	
prevent	the	loss	of	data	from	the	failure	of	any	single	component.	

•  Volumes	<20GB	modified	data	since	last	snapshot	have	an	annual	failure	rate	of	0.1%	-	0.5%,	
resulting	in	complete	loss	of	the	volume.	

•  Commodity	hard	disks	have	an	AFR	of	about	4%.	
•  Amazon	claims	about	Glacier	is	the	same	as	S3:	

•  Amazon	S3	is	designed	to	sustain	the	concurrent	loss	of	data	in	two	facilities,	e.g.	3+	copies	
across	multiple	available	domains	PLUS	periodic	internal	integrity	checks.	

•  99.999999999%	durability	of	objects	over	a	given	year.	
	

•  Beware	of	oversimplified	arguments	about	low-probability	events!	

Amazon Elastic File Services (EFS)

•  EFS	is	a	standalone	file	service	designed	to	shared	among	VMs.	
•  File	System	Instance	–	Files,	directories,	storage	allocation,	multiple	AZs	
•  Mount	Target	–	DNS	name,	IP	address,	NFS	target,	single	AZ:	
	
file-system.id.efs.aws-region.amazonaws.com

•  Inside	of	VM,	use	normal	NFS	connection	to	the	mount	target:	
	

mount –t nfs –o rsize=1M,wsize=1M,…  
 file-system-dns-name /mnt/data

https://docs.aws.amazon.com/efs	

Amazon ElasticFile Services (EFS)

• Data	Consistency	Model	
• "close	to	open"	consistency	semantics.	
• In	(normal)	asynchronous,	sequential	I/O	mode:	

• Data	is	durable	after	an	fsync	or	a	close.	
• Data	is	visible	to	other	processes	that	open	after	you	close.	
•  Indeterminate	case:	Process	B	opens	before	Process	A	closes.	

• In	(explicit)	synchronous	I/O	mode	(O_DIRECT)	
• Non-appending	writes	are	immediately	visible.	
•  (This	implies	that	appending	writes	are	not.		Why?)	
• Hint:	Size	of	file	is	a	property	of	metadata.	

Everything in AWS is Carefully Limited!

•  50KB/s	per	GB	of	data	in	free	throughput	
•  250MB/s	Max	EFS	throughput	per	EC2	Instance	
•  128	user	IDs	can	have	open	files	
•  32K	open	files	on	a	single	instance	
•  4080B	max	symbolic	link	length	
•  1000	maximum	directory	depth	
•  47.9TiB	max	bytes	per	file	
•  87	max	locks	per	file	(?)	
•  7000	file	operations	per	second	

https://docs.aws.amazon.com/efs/latest/ug/limits.html	

Amazon EFS Pricing

EBS	 EFS	
Latency	 "lowest"	

(local	hardware)	
"low"	
(network)	

Max	Throughput	 2	GB/s	 10	GB/s	

Clients	(VMs)	 Single	 O(1000)	

Storage	Cost	
Per	Month	

$0.05	/	GB	
(Magnetic	Disk)	

$0.30	/	GB	

Access	Cost	
Per	Month	

$0.05	/	1M	IOPS	
(Magnetic	Disk	

$6.00	/	MB/s	Xput	

Serverless Computing
• Aside:	Worst.	Name.	Ever.		(Except	for	deviceless	computing.)	
•  "Serverless	takes	it	a	step	further,	where	you	don't	even	think	about	
the	infrastructure.		You	think	of	functions	that	your	code	needs	to	
perform."	–	Prof.	Paul	Brenner,	Notre	Dame	CRC	*	

• Key	Idea:	
•  Define	a	fixed	function	(and	associated	state)	once.	
•  Invoke	that	function	on	small	amounts	of	data	many	times.	
•  Tear	down	the	function	(and	state).	

• Cloud	provider	takes	the	responsibility	of	scaling	the	system	up	and	
down	in	order	to	meet	the	offered	load.	

*	https://cacm.acm.org/magazines/2018/2/224625-going-serverless/fulltext	

Amazon Lambda

• With	AWS	Lambda,	you	can	run	code	without	provisioning	or	
managing	servers.	You	pay	only	for	the	compute	time	that	you	
consume—there’s	no	charge	when	your	code	isn’t	running.	You	can	
run	code	for	virtually	any	type	of	application	or	backend	service—all	
with	zero	administration.	Just	upload	your	code	and	Lambda	takes	
care	of	everything	required	to	run	and	scale	your	code	with	high	
availability.	You	can	set	up	your	code	to	automatically	trigger	from	
other	AWS	services	or	call	it	directly	from	any	web	or	mobile	app.	

https://docs.aws.amazon.com/lambda/index.html#lang/en_us	

Amazon Lambda

•  Supported	Environments:	
•  Node.js,	Python,	C#,	Go,	Java,	PowerShell	

•  Encouraged	mode	of	use:	
•  Define	a	self-contained	work	function	in	the	native	language.	
• Write	a	handler	function	that	packs/unpacks	JSON	and	invokes	the	work	func.	

• Possible,	but	less	encouraged	and	can	cause	trouble:	
•  Handler	function	uses	system/exec/shell	to	invoke	external	processes	in	
order	to	compute	result.	

•  The	lambda	runtime	is	defined	relative	to	a	language	runtime	(e.g.	
Python2.7,	Python3.0)	and	not	specific	about	the	OS	environment.	

Requirements

•  Function	must	be	stateless.	
• No	affinity	with	the	underlying	compute	infrastructure.	
•  Local	file	system	access,	child	processes,	and	similar	artifacts	to	be	
limited	to	the	lifetime	of	the	request.	

• Persistent	state	should	be	stored	in	Amazon	S3,	DynamoDB,	etc..	

• P.S.	Easy	to	say,	but	requires	discipline	to	stick	to	this.	
• P.P.S.	Does	this	sound	similar	to	another	system	we	have	discussed?	

Defining a Function

• Unique	name.	
• Provide	the	code	(obviously)	
• Use	a	deployment	package	if	addl	dependencies	needed.	
•  State	memory	required	by	function.		(CPU	is	proportional)	
•  State	the	timeout	for	the	function.	(Default	is	3	seconds!)	
• Give	permissions	to	access	other	AWS	services.	

How does it work?

•  (Sketch	on	the	board)	

Lambda Pricing in Oct 2018

• At	first:	
•  First	1M	invocations	are	free.	
•  400,000	GB-s	of	memory	x	execution	time	are	free.	

•  Then:	
•  $0.20	per	1M	invocations.	
•  $0.00001667	per	GB-s	of	memory	x	execution	time.	

• Careful:	Functions	can	incur	addlcosts	by	invoking	other	services.	

Pe
rf

or
m

an
ce

 L
im

its

Principle: Hierarchy of Invocation Costs

•  Steps	to	getting	remote	work	done:	
•  Provision	physical	hardware.	
•  Activate	virtual	machine	on	hardware.	
•  Deploy	container	on	virtual	machine.	
•  Start	process	and	"warm	up"	the	program.	
•  Load	necessary	data	for	task.	
•  Invoke	the	function	that	constitutes	your	work.	

•  Should	we	setup/teardown	everything	for	every	invocation?	
• What	are	the	pros/cons	of	staying	at	the	last	level?	
•  (Hint:	Think	about	what	other	concurrent	users	may	do.)	

Architecture Center
•  Ideas	for	constructing	large	scale	infrastructures	using	AWS:	
http://aws.amazon.com/architecture/	

Command Line Setup
• Go	to	your	profile	menu	(your	name)	in	the	upper	right	hand	corner,	
select	“Security	Credentials”	and	“Continue	to	Security	Credentials”	

•  Select	“Access	Keys”	
•  Select	“New	Access	Key”	and	save	the	generated	keys	somewhere.	
•  Edit	~/.aws/config	and	set	it	up	like	this:	

	
• Now	test	it:						aws	ec2-describe-instances	

	

Note	the	syntax	here	is	different	from	how	
it	was	given	in	the	web	console!	
AWSAccessKey=XXXXXX	
AWSSecretAccessKey=YYYYYYYYY	

[default]	
output	=	json	
region	=	us-west-2	
aws_access_key	=	XXXXXX	
aws_secret_access_key	=	YYYYYYYYYYYY	

S3 Command Line Examples

aws					s3 	mb	 	s3://bucket	
.	.	. 		 	cp		 	localfile			s3://bucket/key	
														 	mv	 	s3://bucket/key				s3://bucket/newname	

	 	ls	 	s3://bucket	
	 	rm	 	s3://bucket/key	
	 	rb	 	s3://bucket	

	
aws 	s3 	help	
aws 	s3 	ls	help	
	
	

EC2 Command Line Examples

aws					ec2 	describe-instances	
	 	run-instances	--image-id	ami-xxxxx	--	count	1	

																																																--instance-type	t1.micro	--key-name	keyfile	
	 	stop-instances	--instance-id	i-xxxxxx	

	
aws 	ec2 	help	
aws 	ec2 	start-instances	help	
	

Warmup: Get Started with Amazon

•  Skim	through	the	AWS	documentation.	
•  Sign	up	for	AWS	at	http://aws.amazon.com	
•  (Skip	the	IAM	management	for	now)	
• Apply	the	service	credit	you	received	by	email.	
• Create	and	download	a	Key-Pair,	save	it	in	your	home	directory.	
• Create	a	VM	via	the	AWS	Console	
• Connect	to	your	newly-created	VM	like	this:	

•  ssh	-i	my-aws-keypair.pem	ec2-user@ip-address-of-vm	
• Create	a	bucket	in	S3	and	upload/download	some	files.	

Demo Time
http://aws.amazon.com

