
Cloud	Computing	-	Notes	on	the	CAP	Theorem	
Prof.	Douglas	Thain,	March	2016	
	
Caution:	These	are	high	level	notes	that	I	use	to	organize	my	lectures.		You	main	find	
them	useful	for	reviewing	main	concepts,	but	they	aren’t	a	substitute	for	participating	
in	class.	
	
References	

1. Eric	Brewer,	Towards	robust	distributed	systems.	In	Proceedings	of	the	19th	
Annual	ACM	Symposium	on	Principles	of	Distributed	Computing	(July	16-19,	
Portland,	Oregon):	7	

2. Werner	Vogels,	Eventually	Consistent,	Communications	of	 the	ACM,	Volume	
52,	Number	1,	January	2009.	

3. Eric	Brewer,	CAP	Twelve	Years	Later:	How	the	“Rules”	Have	Changed,	 IEEE	
Explore,	Volume	45,	Issue	2,	2012.	

4. Chapter	 7	 of	 Tanenbaum	 and	 Steen,	 “Distributed	 Systems:	 Principles	 and	
Paradigms”,		Pearson,	2007.	

	
	
The	CAP	Theorem	
	
The	 CAP	 theorem1	is	 an	 observation	 about	 the	 tradeoffs	 inherent	 in	 designing	 a	
distributed	system	for	storing	data.		Simply	put,	the	CAP	theorem	states	that	a	given	
system	design	involves	a	tradeoff	between	the	desirable	properties	of	Consistency,	
Availability,	and	Partitionability.		A	given	system	cannot	maximize	all	three	of	these	
properties	simultaneously.		The	concept	is	generally	attributed	to	Eric	Brewer,	who	
posed	 it	 as	 a	 conjecture	 at	 the	 PODC	 conference	 in	 2000,	 building	 on	 ideas	 of	
consistency	and	performance	that	had	been	explored	by	systems	and	databases	for	
some	time.	
	
The	three	properties	may	be	loosely	defined	as	follows:	
	
Consistency	–	All	clients	of	the	system	see	the	same	data.	
Availability	–	Clients	are	able	to	access	and	update	data	rapidly.	
Partitionability	–	The	system	is	able	to	operate	even	when	the	network	fails.	
	
You	may	sometimes	hear	this	explained	as	“pick	two	of	 three”	but	 that	 is	an	over-
simplification.		Each	of	these	properties	exists	upon	a	continuum,	and	attempting	to	
increase	one	of	them	requires	decreasing	another	to	a	certain	degree.	
	
This	 is	 all	 very	 abstract,	 and	 best	 explained	 with	 some	 examples.	 	 To	 get	 the	
examples	right,	we	will	have	to	discuss	them	in	some	detail,	and	then	come	back	to	
discuss	the	CAP	theorem	more	generally.	
																																																								
1	The	CAP	“theorem”	isn’t	really	a	proper	theorem,	since	it	uses	some	rather	fuzzy	
	



	
Example	System	1	–	Direct	Access	
	
Let’s	 start	 off	with	 a	model	 of	 a	 distributed	 file	 system.	 	 Suppose	 that	we	 have	 a	
server	S	 that	contains	some	files	named	X,	Y,	and	Z.	 	The	server	 is	accessible	via	a	
network	to	clients	A,	B,	and	C.		The	clients	occasionally	wish	to	modify	those	files,	so	
they	can	send	messages	like	“read	X”	or	“write	Y”	to	change	those	files.		As	the	server	
receives	these	requests,	 it	sends	as	response	message	back	to	the	client,	 indicating	
that	the	change	is	complete.		The	client	waits	for	the	response	to	come	back	before	
attempting	another	request.	
	
(Sketch	the	system	and	some	example	interactions	here.)	
	
	
	
	
	
Now,	keep	in	mind	that	these	messages	flow	over	a	network.		This	has	two	effects	on	
the	users	of	the	system:	
	

• First,	 the	 network	 imposes	 some	minimum	 latency	 (let’s	 say	 1ms)	 on	 each	
message.	 	As	a	result,	 reading	and	writing	a	 large	amount	of	data	 from	this	
file	server	is	going	to	be	very	slow	–	much	slower	than	accessing	a	local	disk.	

	
• Second,	the	network	makes	message	delivery	unreliable.		Either	a	request	or	

a	response	could	be	delayed	arbitrarily,	or	completely	dropped.	 	In	the	case	
of	 a	 backhoe	 cutting	 through	 a	 network	 cable,	 there	 may	 be	 no	
communication	 at	 all	 along	 a	 particularly	 link.	 	 If	 a	 client	 doesn’t	 receive	 a	
response	to	a	message,	then	it	has	no	choice	but	to	wait	and	try	the	request	
again.		It	could	wait	a	very	long	time!	

	
Let’s	evaluate	this	system	according	to	the	CAP	criteria:	
	

• Consistency	–	HIGH	–	Example	1	is	highly	consistent	because	every	operation	
is	 applied	 in	 a	 known	 order,	 and	 all	 clients	 have	 an	 unfiltered	 view	 of	 the	
central	server.	

• Availability	–	LOW	–	Every	single	read	or	write	requires	a	network	operation,	
making	this	system	much	slower	than	accessing	a	local	file	system.	

• Partitionability	 –	 MEDIUM	 –	 If	 a	 single	 client	 is	 partitioned	 from	 the	 file	
server,	 it	 cannot	 perform	 any	 operations.	 	 However,	 all	 other	 connected	
clients	are	able	to	continue.	

	
(The	careful	reader	will	note	that	we	have	not	yet	defined	precisely	what	constitutes	
higher	or	lower	for	each	of	these	three	properties.		Bear	with	me	and	let	that	be	vague	
for	a	while,	and	we	will	formalize	it	more	below.)	



Example	System	2	–	Write-Through	Cache	
	
Take	the	system	from	example	1,	and	modify	it	by	adding	a	cache	of	finite	capacity	
to	 each	 client	 node.	 	 Let’s	 give	 each	 client	 some	 simple	 logic	 for	managing	 these	
caches:	
	

• Read	–	When	a	client	attempts	to	read	a	file,	it	first	looks	in	its	cache	to	see	if	
that	file’s	data	is	already	present.		If	so,	the	read	is	satisfied	from	that	data.		If	
not,	then	the	client	issues	a	read	request	to	the	server,	waits	for	the	response,	
and	replaces	the	least	recently	used	(LRU)	item	in	the	cache.	

	
• Write	–	When	a	client	attempts	to	write	a	file,	it	first	issues	a	write	command	

to	the	server,	and	waits	for	a	response.		If	an	older	version	of	the	file	exists	in	
the	cache,	it	is	updated	to	the	new	value.		If	not,	then	the	client	replaces	the	
LRU	item	in	the	cache	with	the	newly	written	value.	

	
(Sketch	the	system	and	some	example	operations	here.)	
	
	
	
	
	
	
	
	
	

• Consistency	–	MEDIUM	–	System	2	(Write	Through	Cache)	is	less	consistent	
than	System	1	(Direct	Access)	because	a	client	may	fail	to	see	writes	made	by	
other	clients,	when	a	value	is	available	within	its	own	cache.	

	
• Availability	 –	MEDIUM	 –	 System	 2	will	 see	much	 better	 read	 performance	

than	 System	 1,	 because	 reads	 can	 be	 satisfied	 directly	 from	 cache	without	
consulting	 the	 central	 server.	 	 However,	 writes	 are	 no	 faster	 because	 they	
always	result	in	a	network	operation.	

	
• Partitionability	 –	 MEDIUM	 –	 A	 client	 might	 be	 able	 to	 continue	 operating	

even	when	the	network	is	down,	if	it	is	only	performing	reads	on	cached	data.		
However,	any	write	operation	must	block	until	the	network	results.	

	
Thought	Experiment:	Consider	a	modification	of	System	2	in	which	clients	write	data	
only	to	their	local	caches,	and	send	data	back	to	the	server	only	when	evicted	from	the	
cache.		How	would	this	affect	the	CAP	properties?	
	
	 	



Example	System	3	–	Consistent	Caches	
	
The	 previous	 system	 had	 a	 very	 simple	method	 of	 dealing	with	 cached	 data	 that	
(obviously)	resulted	in	some	serious	inconsistencies.		Let’s	try	to	solve	the	problem	
in	a	different	way,	by	making	the	system	avoid	inconsistencies	in	cached	data.	
	
Take	 the	 design	 from	 System	 2,	 where	 each	 client	 has	 a	 cache	 of	 finite	 capacity.		
Now,	 when	 each	 client	 tries	 to	 read	 or	 write	 a	 file,	 do	 this:	
	

• Read	–	(Same	as	System	2)	
	

• Write	–	When	a	 client	 attempts	 to	modify	a	 file,	 it	 first	 sends	a	message	 to	
every	 other	 client,	 instructing	 it	 to	 invalidate	 its	 cached	 copy	 of	 that	 file.		
Once	those	caches	acknowledge	that	they	have	purged	their	copies	of	the	file,	
the	client	sends	the	write	request	to	the	server,	and	updates	its	own	cache.		

	
(Sketch	the	system	and	some	example	operations	here.)	
	
	
	
	
	
	
Ok,	now	you	evaluate	this	system	according	to	the	CAP	criteria:	
	
	

• Consistency?	
	
	

• Availability?	
	
	

• Partitionability?	
	
	
	
Thought	Experiment:	Now	you	design	a	system	that	has	a	combination	of	CAP	that	we	
haven’t	seen	so	far.	
	
	 	



How	do	we	quantify	CAP?	
	
Now	that	we	have	considered	several	model	systems,	it	should	be	clear	that	there	is	
a	real	tradeoff	between	Consistency,	Availability,	and	Partitionability.		Dealing	with	
the	P	is	central	to	distributed	computing:	when	we	cannot	communicate,	should	we	
optimistically	try	to	make	progress,	or	pessimistically	wait,	in	order	to	achieve	
consistency?		There	is	no	single	answer	to	this	problem:	different	applications	will	
require	different	solutions.	
	
In	the	analysis	above,	we	were	a	bit	sloppy	about	stating	exactly	what	is	meant	by	
“more”	or	“less”	of	each	of	the	three	properties.	
	
Availability	is	probably	the	easiest	to	quantify.		For	a	given	system,	one	could	
measure	every	attempt	to	read	or	write	a	value,	and	then	compute	a	statistic	like	the	
mean,	median,	or	99th	percentile	of	latency	for	various	operations.		A	system	that	
provides	a	lower	mean	is	providing	“more”	availability.	
	
Partition	tolerance	might	be	measured	by	evaluating	what	set	of	clients	and	
operations	can	continue	in	the	presence	of	network	outages.		A	system	that	allows	
all	clients	to	perform	reads	during	a	network	outage	is	providing	“more”	partition	
tolerance	than	a	system	that	allows	no	clients	to	perform	reads.	
	
Consistency	is	the	most	complex	property	to	describe.		There	exist	a	variety	of	
consistency	models	that	can	be	implemented	by	adjusting	just	how	and	when	caches	
are	updated,	and	whether	clients	can	continue	to	operate	during	a	partition.	
	
Strong	Consistency:	
	 Once	an	update	is	complete,	all	clients	will	see	that	new	value.	
	
Causal	Consistency:	
	 If	process	A	tells	B	that	it	has	updated	X,	then	B	will	see	the	latest	value	of	X.	
	
Read-Your-Writes:	
	 If	process	A	updates	X,	then	A	will	never	see	an	older	value	of	X.	
	
Monotonic	Reads:	
	 If	process	A	reads	a	value	from	X,	then	it	will	never	read	back	an	older	value.	
	
Monotonic	Writes:	
	 All	writes	by	process	A	are	applied	in	the	order	they	are	given.	
	
Eventual	Consistency:	
	 All	updates	will	become	visible	to	everyone,	if	you	wait	long	enough.	
	
Chaos:	
	 No	guarantees!	



Storage	Replication	
	
Many	distributed	systems	replicate	data	across	a	large	number	of	storage	devices.		
This	is	done	to	provide	insurance	against	storage	failures,	but	also	to	provide	a	high	
degree	of	availability	for	commonly	used	data.	
	
But	multiple	copies	results	in	a	new	kind	of	consistency	problem.		If	I	update	2	out	of	
5	copies,	is	the	write	“complete”	or	not?		Systems	answer	this	question	in	various	
ways,	which	are	known	as	quorum	protocols.	
	
Vogels	[2]	gives	a	framework	for	thinking	about	this:	
	
Suppose	you	have	a	system	with	N	replicated	storage	units.		To	update	an	item,	a	
client	must	write	W	of	the	replicas	upfront.		(The	remainder	will	get	updated	
eventually	in	the	background.)		To	read	an	item,	a	client	must	read	R	of	the	replicas,	
in	order	to	decide	whether	the	most	recent	value	has	been	read.		(If	the	values	differ,	
assume	you	can	tell	which	one	is	the	newest.)	
	
For	example:	
	

N=2,	W=2,	R=1	is	a	strongly	consistent	system:	a	writer	must	update	both	
replicas,	and	a	reader	can	read	either	one	of	them.	(RAID	1)	
	
N=2,	W=1,	R=2	is	also	a	strongly	consistent	system:	a	writer	can	update	
either	replica,	and	a	reader	must	read	both	to	obtain	the	latest.	
	
N=2,	W=1,	R=1	is	an	eventually	consistent	system:	the	writer	can	update	
either	replica,	and	the	reader	can	read	either	replica,	so	you	may	not	see	
consistent	results.		

	
And	now	some	general	observations:	
	

(W	+	R)	>	N	is	strongly	consistent	,while	(W+R)	<=	N	is	weakly	consistent.	
	
W	<	(N+1)/2	means	write	conflicts	can	occur.	

	
Monotonic	read	(and	write)	consistency	is	achieved	by	making	clients	
“sticky”	with	respect	to	the	replicas	that	they	use.	

		
	
Strong	consistency	models	can	only	be	achieved	by	delaying	either	reads	or	writes	
during	partitions.		In	a	large	enough	distributed	system,	partitions	are	omnipresent.		
Ergo,	very	large	distributed	systems	almost	always	rely	on	weak	or	eventual	
consistency	in	order	to	achieve	acceptable	availability.	
	


