
The Hadoop Stack, Part 3 
Introduction to Spark 

CSE	40822	–	Cloud	Computing	–	Fall	2018	
Prof.	Douglas	Thain	

University	of	Notre	Dame	
	



Three Case Studies 

• Workflow:	Pig	Latin	
• A	dataflow	language	and	execution	system	that	provides	an	SQL-
like	way	of	composing	workflows	of	multiple	Map-Reduce	jobs.	

• Storage:	HBase	
• A	NoSQl	storage	system	that	brings	a	higher	degree	of	structure	to	
the	flat-file	nature	of	HDFS.	

• Execution:	Spark	
• An	in-memory	data	analysis	system	that	can	use	Hadoop	as	a	
persistence	layer,	enabling	algorithms	that	are	not	easily	
expressed	in	Map-Reduce.	



References 

• Matei	Zaharia	et	al,	Spark:	Cluster	Computing	with	Working	Sets,	
USENIX	HotCloud	2010.	
•  http://dl.acm.org/citation.cfm?id=1863103.1863113	

• Holden	Karau	et	al.,		Learning	Spark	:	Lightning-Fast	Big	Data	
Analytics,	O’	Reilly	2014.	
•  http://shop.oreilly.com/product/0636920028512.do	

• Apache	Spark	Documentation	
•  http://spark.apache.org	



Overview 

• The	Map-Reduce	paradigm	is	fundamentally	limited	in	
expressiveness.	
• Hadoop	implementation	of	Map-Reduce	is	designed	
for	out-of-core	data,	not	in-memory	data.	
• Idea:	Layer	an	in-memory	system	on	top	of	Hadoop.	
• Achieve	fault-tolerance	by	re-execution	instead	of	
replication.	



Map-Reduce Limitations 

•  As	a	general	programming	model:	
•  It	is	perfect….	If	your	goal	is	to	make	a	histogram	from	a	large	dataset!	
•  Hard	to	compose	and	nest	multiple	operations.	
•  No	means	of	expressing	iterative	operations.	
•  Not	obvious	how	to	perform	operations	with	different	cardinality.	

•  Example:	Try	implementing	All-Pairs	efficiently.	

•  As	implemented	in	Hadoop	(GFS):	
•  All	datasets	are	read	from	disk,	then	stored	back	on	to	disk.	
•  All	data	is	(usually)	triple-replicated	for	reliability.	
•  Optimized	for	simple	operations	on	a	large	amount	of	data.	
•  Java	is	not	a	high	performance	programming	language.	



A Common Iterative Pattern in Data Mining 

X	=	initial	value	
for(	i=0;	;	i++	)	{	
						set	Si+1	=	apply	F	to	set	Si	
						value	X	=	extract	statistic	from	Si+1	
						if(	X	is	good	enough	)	break;	
	}	
	
	 On	Board:	Implement	in	Map-Reduce	

Can	we	do	better?	



The Working Set Idea 

•  Peter	Denning,	“The	Working	Set	Model	for	Program	Behavior”,	
Communications	of	the	ACM,	May	1968.	
•  http://dl.acm.org/citation.cfm?id=363141	

•  Idea:	conventional	programs	on	one	machine	generally	exhibit	a	high	
degree	of	locality,	returning	to	the	same	data	over	and	over	again.	
•  The	entire	operating	system,	virtual	memory	system,	compiler,	and	micro	
architecture	are	designed	around	this	assumption!	
•  Exploiting	this	observation	makes	programs	run	100X	faster	than	simply	
using	plain	old	main	memory	in	the	obvious	way.	

•  (But	in	Map-Reduce,	access	to	all	data	is	equally	slow.)	



The Working Set Idea in Spark 

•  The	user	should	identify	which	datasets	they	want	to	access.	
•  Load	those	datasets	into	memory,	and	use	them	multiple	times.	
• Keep	newly	created	data	in	memory	until	explicitly	told	to	store	it.	
• Master-Worker	architecture:		Master	(driver)	contains	the	main	
algorithmic	logic,	and	the	workers	simply	keep	data	in	memory	and	
apply	functions	to	the	distributed	data.	
•  The	master	knows	where	data	is	located,	so	it	can	exploit	locality.	
•  The	driver	is	written	in	a	functional	programming	language	(Scala),	so	
let’s	detour	to	see	what	that	means.	



Detour: Pure Functional Programming 
•  Functions	are	first	class	citizens:	

•  The	primary	means	of	structuring	a	program.	
•  A	function	need	not	have	a	name!	
•  A	function	can	be	passed	to	another	program	as	a	value.	
•  A	pure	function	has	no	side	effects.	

•  In	a	pure	functional	programming	language	like	LISP	
•  There	are	no	variables,	only	values.	
•  There	are	no	side	effects,	only	values.	

• Hybrid	languages	that	have	functional	capabilities,	but	do	not	
prohibit	non-functional	idioms:		Scala,	F#,	JavaScript…	



By the way, Map-Reduce is Inspired by LISP: 

map(			(lambda(x)(	*	x	x	))	(1	2	3	4)	)	
	
	
	
reduce(		(lambda(x	y)	(+	x	y))	(1	2	3	4)	)	
	



Functions in Scala: 

Define	a	function	in	the	ordinary	way:	
	def	name	(arguments)	{	code	}	

	
Construct	an	anonymous	func	as	a	value:	

	(	arguments	)	=>	code	
	
Accept	an	anonymous	func	as	a	parameter:	

	name:	(	arguments	)	=>	code	

A	Scala	Tutorial	for	Java	Programmers:	http://www.scala-lang.org/docu/files/ScalaTutorial.pdf	

Example	code:	
	
def	oncePerSecond(callback:	()	=>	Unit)	{	

	while(	true	)	{	callback();	Thread	sleep	1000	}	
}	
	
def	main(args:	Array[String])	{	

	oncePerSecond(	
	 	()	=>println("time	flies	like	an	arrow...")	
	)	

}	
	



Parallel Operations in Scala 

val	n	=	10;	
for(	i	<-	1	to	n	)	{	
						//	run	code	each	value	of	i	in	parallel	
}	
var	items	=	List(1,2,3);	
for	(	i	<-	items	)	{	
						//	run	code	for	each	value	of	i	in	parallel	
}	
	



Back to Spark, Using Scala 
• A	program	to	count	all	the	error	lines	in	a	large	text	file:	

val	file	=	spark.textFile(“hdfs://path/to/file”);	
val	errs	=	file.filter(_.contains(“ERROR”));	
val	ones	=	errs.map(	_	=>	1	);	
val	count	=	ones.reduce(	_+_	);	

val	file	=	spark.textFile(“hdfs://path/to/file”);	
val	errs	=	file.filter(	(x)	=>	x.contains(“ERROR”));	
val	ones	=	errs.map(	(x)	=>	1	);	
val	count	=	ones.reduce(	(x,y)	=>	x+y	);	

_	means	“the	default	thing	
that	should	go	here.”	

On	Board:	Implement	in	Spark	



Logistic Regression in Spark 
val	points	=	spark.textFile(	…	).map(parsePoint).cache()	
	
var	w	=	Vector.random(D)	
	
for(	i	<-	1	to	ITERATIONS	)	{	

	val	grad	=	spark.acculmulator(	new	Vector(D)	)	
	

	for(	p	<-	points	)	{	
	 	val	s	=	(1/(1+exp(-p.y*(w	dot	p.x)))-1)*p.y	
	 	grad	+=	s	*	p.x	
	}	
	w	-=	grad.value	

}	



Fault Tolerance via Recomputation 

(Work	out	on	the	board.)	



Result: Spark is 10-100X faster than Hadoop on 
equivalent iterative problems. 

 
(It does everything in memory instead of disk.) 


