
Scaling Kamona
Bruno de Jesus Braga, bdejesus@nd.edu

Fernando Beletti, fbeletti@nd.edu

mailto:bdejesus@nd.edu
mailto:fbeletti@nd.edu

❖ Kamona is a discussion website, in which users can discuss about a particular

subject and propose solutions to that problem.

What is Kamona?

What are the options?
❖ Create a new discussion topic

➢ Education

➢ Politics

➢ Economics

➢ Security

❖ Participate on a discussion

❖ Post comments and Images

❖ Be part of good and organized discussions

Overview
❖ The website aims brazilian economics/political issues.

❖ There is a growing brazilian community around the US and Europe.

❖ Kamona is hosted in Brazil, accessing the website from these locations results in

big latency and low performance.

❖ As seen in classes we can use Amazon Web Services to distribute the website and

solve these latency problems.

❖ The database side uses Firebase API, that scales itself automatically.

Challenges
❖ Implement a cache to make queries faster

❖ Memcached: Based on get/set functions

When reading:

1. Check if value is on cache.

2. If it is, use it, if not get from database.

When writing

1. Update value on cache

2. Update value on database

Node.js Memcached
❖ Fully featured memcached for node.js

❖ Easy to implement and to install

❖ Combined with CloudFront, could create an even faster experience for users

But it did not work.

Solutions
❖ Initially all the static data from the website was moved to S3 servers so users could

make faster requests to this files.

❖ In a second moment, all static files were moved to CloudFront, resulting in even

faster access to the website.

❖ Currently the website is hosted using Amazon Web Services

❖ The domain provided by Amazon was:

http://d1inijhv8u5dmq.cloudfront.net/index.html

http://d1inijhv8u5dmq.cloudfront.net/index.html
http://d1inijhv8u5dmq.cloudfront.net/index.html
http://d1inijhv8u5dmq.cloudfront.net/index.html

Structure

Results

ab -k -c 300 -n 18000 $URL

Ireland -> US West

Results

Results

Single User Single User

S3 CloudFront

Visually complete 4,6 s 3,6 s

Time to first byte 807 ms 120 ms

Time to start render 2093 ms 903 ms

Simulated using Chrome connection from Ireland client

Tool used: http://www.webpagetest.org/

Conclusion and Future Work
❖ Using AWS to distribute the website increased the performance for users far from

the original host.

❖ Elastic Load Balancing can be used in the future to scale the website

automatically, creating new instances as the website suffers from traffic increase.

❖ Memcached or other caching technologies can be added to improve users

experience.

