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Idea

• Concurrently serve “large” files to large number of users 
who request them.

• Every popular service on the internet requires an 
infrastructure that can deal with such loads.

• Provide an easy-to-use API (that also scales) to request these 
files and their metadata.

• Build a system that can easily scale even further during 
periods of high usage.



Problem

• Single servers cannot easily handle an influx of requests 
simultaneously.

• We have a working API to interface with the data.

• How do we scale the API to work at a larger scale (if our 
service becomes popular)?

• Single server averages: 
• 7.3 secs/successful request at 1000 simultaneous requests (100% success rate)

• 25.7 secs/successful request at 10000 simultaneous requests (52.5% success rate)

• This isn’t good enough!



Our project - Tunesheap

• Music streaming service (similar 
to Spotify) 

• RESTful API (Ruby on Rails) for 
clients to interface with songs 
and their metadata (JSON 
objects).

• Amazon (EC2, S3, CloudFront, 
RDS) to scale the simple 
implementation to something 
that can handle an influx of 
requests.

• iOS client as a proof-of-concept 
client.  
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Setup (in detail)

• EC2 load balancer to split up web requests among multiple web 
servers.

• Web servers configured with nginx to communicate with the app 
servers

• Another load balancer for the app servers.

• Ruby on Rails API running on for app servers.

• S3 for song storage

• CloudFront to speed up retrieval of songs.

• Can add more systems as needed.

• Puppet and custom OS images used for deployment of machines.



Example API call

Response:

{

"artists": [

{

"id": 4,

"name": "Jay-Z",

"country": "USA",

"description": "New York native. ",

"dob": "1969-12-04 00:00:00 UTC",

"website": "www.rocafella.com",

"picture_url": "https://tunesheap-content.s3.amazonaws.com/4-

artist-picture"

}

]

}

GET: /api/v1/artists



Testing/Conclusion

• Python script utilizing work_queue and condor to send HTTP 
requests and time the results.  

• Measuring scaled version of the app vs. an implementation using a 
single server

• Each individual request’s results are used to calculate the total 
performance (aggregate time for all requests to finish, including 
overlap)

• We are testing a wide range of the amount of requests and amount 
of workers performing those requests

• Still finalizing the infrastructure of the system, but major 
improvements are expected.



What's next?

• Finalize infrastructure and gather data

• memcached

• Elastic search

• Scale the database.



Questions?


