Cloud Distribution Network -
unesheap

Victor Hawley
Robert Lis

ldea

* Concurrently serve “large” files to large number of users
who request them.

* Every popular service on the internet requires an
infrastructure that can deal with such loads.

* Provide an easy-to-use API (that also scales) to request these
files and their metadata.

* Build a system that can easily scale even further during
periods of high usage.

Problem

* Single servers cannot easily handle an influx of requests
simultaneously.

* We have a working API to interface with the data.

 How do we scale the API to work at a larger scale (if our
service becomes popular)?

¢ Single server averages:
» 7.3 secs/successful request at 1000 simultaneous requests (100% success rate)
* 25.7 secs/successful request at 10000 simultaneous requests (52.5% success rate)

* This isn’t good enough!

Our project - Tunesheap

* Music streaming service (similar
to Spotify)

e RESTful APl (Ruby on Rails) for
clients to interface with songs
and their metadata (JSON
objects).

 Amazon (EC2, S3, CloudFront,
RDS) to scale the simple
implementation to something Blueprint 2.
that can handle an influx of
requests.

Excuse Me Miss

* iOS client as a proof-of-concept

client.
.—

Setup

I Web Load
Balancer

Web Web Web Web Web
server server server server server
CloudFront
App Load
Balancer

App App App App App
server server server server server

v/}"\

S3 DB

Setup (in detail)

* EC2 load balancer to split up web requests among multiple web
servers.

* Web servers configured with nginx to communicate with the app
servers

* Another load balancer for the app servers.

* Ruby on Rails APl running on for app servers.
» S3 for song storage

* CloudFront to speed up retrieval of songs.

e Can add more systems as needed.

* Puppet and custom OS images used for deployment of machines.

e0e < [em] 0000 U]
student Timetable ~ Scopes (Part .. ng-newsletter MPEG compres..ntechnigue » i0S Program..rd) - YouTube CloudKit Dashboard ~ CAPPTIVATE.c..Ul Animations Move it to a different place.
L] Type Refere rbenv: rails: c.. osx - Rails 3 -... RDS - AWS Co.. RDS - AWS Co... Rails 3 datab... Rails Applica... on rails - Pos... linwx - shi: Q... APl documen..
Example APl call "=
p Albums
Albums stored in the database
Resource Description

GET /apifvi/albums

GET /apifvi/albums/:id

GET: /api/vl/artists

POST /apifvi/albums
PUT /apifvi/albums/:id

DELETE /api/vi/albumst:id

Albums-songs
.
Re Sponse . Albom - songs relationship
Resource
GET /apifvi/albumst:album_id/songs
{ GET /apifvi/albumst:album_id/songsid
POST /apifvi/albums/:album_id/songs

"artists": |

{ DELETE /api/vi/albums/:album_id/songs/id

w o "w.
l d . 4 14 Artists stored in the database

PUT /apifvi/albums/:album_id/songs/:id

Artists

List all albums

‘Get album with the specified identifier

Create new album

Update existing album with the specified identifier

Delete existing album with the pecified identifier

Description

List all songs from the album with the specified identifier

‘Get song with the specified identifier, from the album with the specified identifier

Create new song or attach already exising one to the album with the specified identifier
Update exising song with the specified identifier from the album with the specified identifier

Remove existing song with the specified identifier (removes relationship not the song object itself)

=)

>

"name": "Jay-2", -

"country": "USA",
"description":
"dob":
"website":
"picture url":
artist-picture"

}

"www.rocafella.com",

"New York native. ",
"1969-12-04 00:00:00 UTC",

"https://tunesheap-content.s3.amazonaws.com/4-

Testing/Conclusion

* Python script utilizing work_queue and condor to send HTTP
requests and time the results.

* Measuring scaled version of the app vs. an implementation using a
single server

e Each individual request’s results are used to calculate the total
performance (aggregate time for all requests to finish, including
overlap)

* We are testing a wide range of the amount of requests and amount
of workers performing those requests

e Still finalizing the infrastructure of the system, but major
improvements are expected.

What's next?

* Finalize infrastructure and gather data
* memcached

* Elastic search

* Scale the database.

Questions?

