
Cloud Distribution Network -
Tunesheap

Victor Hawley

Robert Lis

Idea

• Concurrently serve “large” files to large number of users
who request them.

• Every popular service on the internet requires an
infrastructure that can deal with such loads.

• Provide an easy-to-use API (that also scales) to request these
files and their metadata.

• Build a system that can easily scale even further during
periods of high usage.

Problem

• Single servers cannot easily handle an influx of requests
simultaneously.

• We have a working API to interface with the data.

• How do we scale the API to work at a larger scale (if our
service becomes popular)?

• Single server averages:
• 7.3 secs/successful request at 1000 simultaneous requests (100% success rate)

• 25.7 secs/successful request at 10000 simultaneous requests (52.5% success rate)

• This isn’t good enough!

Our project - Tunesheap

• Music streaming service (similar
to Spotify)

• RESTful API (Ruby on Rails) for
clients to interface with songs
and their metadata (JSON
objects).

• Amazon (EC2, S3, CloudFront,
RDS) to scale the simple
implementation to something
that can handle an influx of
requests.

• iOS client as a proof-of-concept
client.

Setup

Web
server

Web
server

Web
server

Web
server

Web
server

Web Load
Balancer

App Load
Balancer

App
server

App
server

App
server

App
server

App
server

DB

client

S3

CloudFront

Setup (in detail)

• EC2 load balancer to split up web requests among multiple web
servers.

• Web servers configured with nginx to communicate with the app
servers

• Another load balancer for the app servers.

• Ruby on Rails API running on for app servers.

• S3 for song storage

• CloudFront to speed up retrieval of songs.

• Can add more systems as needed.

• Puppet and custom OS images used for deployment of machines.

Example API call

Response:

{

"artists": [

{

"id": 4,

"name": "Jay-Z",

"country": "USA",

"description": "New York native. ",

"dob": "1969-12-04 00:00:00 UTC",

"website": "www.rocafella.com",

"picture_url": "https://tunesheap-content.s3.amazonaws.com/4-

artist-picture"

}

]

}

GET: /api/v1/artists

Testing/Conclusion

• Python script utilizing work_queue and condor to send HTTP
requests and time the results.

• Measuring scaled version of the app vs. an implementation using a
single server

• Each individual request’s results are used to calculate the total
performance (aggregate time for all requests to finish, including
overlap)

• We are testing a wide range of the amount of requests and amount
of workers performing those requests

• Still finalizing the infrastructure of the system, but major
improvements are expected.

What's next?

• Finalize infrastructure and gather data

• memcached

• Elastic search

• Scale the database.

Questions?

