
Case Study: Amazon AWS
CSE	40822	–	Cloud	Compu0ng	

Prof.	Douglas	Thain	
University	of	Notre	Dame	

Cau3on to the Reader:

Herein are examples of prices consulted in spring
2016, to give a sense of the magnitude of costs.
Do your own research before spending your own
money!

Several Historical Trends
•  Shared	U0lity	Compu0ng	

•  1960s	–	MULTICS	–	Concept	of	a	Shared	Compu0ng	U0lity	
•  1970s	–	IBM	Mainframes	–	rent	by	the	CPU-hour.		(Fast/slow	switch.)	

•  Data	Center	Co-loca0on	
•  1990s-2000s	–	Rent	machines	for	months/years,	keep	them	close	to	the	network	
access	point	and	pay	a	flat	rate.		Avoid	running	your	own	building	with	u0li0es!	

•  Pay	as	You	Go	
•  Early	2000s	-	Submit	jobs	to	a	remote	service	provider	where	they	run	on	the	raw	
hardware.		Sun	Cloud	($1/CPU-hour,	Solaris	+SGE)		IBM	Deep	Capacity	Compu0ng	on	
Demand	(50	cents/hour)	

•  Virtualiza0on	
•  1960s	–	OS-VM,	VM-360	–	Used	to	split	mainframes	into	logical	par00ons.	
•  1998	–	VMWare	–	First	prac0cal	implementa0on	on	X86,	but	at	significant	
performance	hit.	

•  2003	–	Xen	paravirtualiza0on	provides	much	perf,	but	kernel	must	assist.	
•  Late	2000s	–	Intel	and	AMD	add	hardware	support	for	virtualiza0on.	

Virtual-* Allows for the Scale of Abstrac3on to
Increase Over Time
• Run	one	process	within	certain	resource	limits.	

Op	Sys	has	virtual	memory,	virtual	CPU,		and	virtual	storage	(file	system).	
• Run	mul0ple	processes	within	certain	resource	limits.	

Resource	containers	(Solaris),	virtual	servers	(Linux),	virtual	images	(Docker)	
• Run		an	en0re	opera0ng	system	within	certain	limits.	

Virtual	machine	technology:	VMWare,	Xen,	KVM,	etc.	
• Run	a	set	of	virtual	machines	connected	via	a	private	network.	

Virtual	networks	(SDNs)	provision	bandwidth	between	virtual	machines.	
• Run	a	private	virtual	architecture	for	every	customer.	

Automated	tools	replicate	virtual	infrastructure	as	needed.	

Amazon AWS

•  Grew	out	of	Amazon’s	need	to	rapidly	provision	and	configure	machines	of	
standard	configura0ons	for	its	own	business.	

•  Early	2000s	–	Both	private	and	shared	data	centers	began	using	
virtualiza0on	to	perform	“server	consolida0on”	

•  2003	–	Internal	memo	by	Chris	Pinkham	describing	an	“infrastructure	
service	for	the	world.”	

•  2006	–	S3	first	deployed	in	the	spring,	EC2	in	the	fall	
•  2008	–	Elas0c	Block	Store	available.	
•  2009	–	Rela0onal	Database	Service	
•  2012	–	DynamoDB	
•  Does	it	turn	a	profit?	

Terminology

•  Instance	=	One	running	virtual	machine.	
•  Instance	Type	=	hardware	configura0on:	cores,	memory,	disk.	
•  Instance	Store	Volume	=	Temporary	disk	associated	with	instance.	
•  Image	(AMI)	=	Stored	bits	which	can	be	turned	into	instances.	
• Key	Pair	=	Creden0als	used	to	access	VM	from	command	line.	
• Region	=	Geographic	loca0on,	price,	laws,	network	locality.	
• Availability	Zone	=	Subdivision	of	region	the	is	fault-independent.	

EC2 Pricing Model
• Free	Usage	Tier	
• On-Demand	Instances	

•  Start	and	stop	instances	whenever	you	like,	costs	are	rounded	up	
to	the	nearest	hour.		(Worst	price)	

• Reserved	Instances	
• Pay	up	front	for	one/three	years	in	advance.	(Best	price)	
• Unused	instances	can	be	sold	on	a	secondary	market.	

• Spot	Instances	
•  Specify	the	price	you	are	willing	to	pay,	and	instances	get	started	
and	stopped	without	any	warning	as	the	marked	changes.		(Kind	of	
like	Condor!)		

hnp://aws.amazon.com/ec2/pricing/	

Free Usage Tier

•  750	hours	of	EC2	running	Linux,	RHEL,	or	SLES	t2.micro	instance	
usage	

•  750	hours	of	EC2	running	Microsop	Windows	Server	t2.micro	
instance	usage	

•  750	hours	of	Elas0c	Load	Balancing	plus	15	GB	data	processing	
•  30	GB	of	Amazon	Elas0c	Block	Storage	in	any	combina0on	of	General	
Purpose	(SSD)	or	Magne0c,	plus	2	million	I/Os	(with	Magne0c)	and	1	
GB	of	snapshot	storage	

•  15	GB	of	bandwidth	out	aggregated	across	all	AWS	services	
•  1	GB	of	Regional	Data	Transfer	
	

Reserved Instance Example

Surprisingly, you can’t scale up that large.

Simple Storage Service (S3)

•  A	bucket	is	a	container	for	objects	and	describes	loca0on,	logging,	
accoun0ng,	and	access	control.		A	bucket	can	hold	any	number	of	objects,	
which	are	files	of	up	to	5TB.		A	bucket	has	a	name	that	must	be	globally	
unique.	

•  Fundamental	opera0ons	corresponding	to	HTTP	ac0ons:	
•  hnp://bucket.s3.amazonaws.com/object	
•  POST	a	new	object	or	update	an	exis0ng	object.	
•  GET	an	exis0ng	object	from	a	bucket.	
•  DELETE	an	object	from	the	bucket	
•  LIST	keys	present	in	a	bucket,	with	a	filter.	

•  A	bucket	has	a	flat	directory	structure	(despite	the	appearance	given	by	
the	interac0ve	web	interface.)	

Easily Integrated into Web Applica3ons
<form action="http://examplebucket.s3.amazonaws.com/" method="post" enctype="multipart/form-data">

<input type="input" name="key" value="user/user1/" />

<input type="hidden" name="acl" value="public-read" />
<input type="hidden" name="success_action_redirect"
 value="http://examplebucket.s3.amazonaws.com/successful_upload.html" />
. . .
<input type="text" name="X-Amz-Credential”
 value="AKIAIOSFODNN7EXAMPLE/20130806/us-east-1/s3/aws4_request" />
. . .
<input type="submit" name="submit" value="Upload to Amazon S3" /> </form>

hnp://docs.aws.amazon.com/AmazonS3/latest/API/sigv4-post-example.html	

Bucket Proper3es

• Versioning	–	If	enabled,	POST/DELETE	result	in	the	crea0on	of	new	
versions	without	destroying	the	old.	

•  Lifecycle	–	Delete	or	archive	objects	in	a	bucket	a	certain	0me	aper	
crea0on	or	last	access	or	number	of	versions.	

• Access	Policy	–	Control	when	and	where	objects	can	be	accessed.	
• Access	Control	–	Control	who	may	access	objects	in	this	bucket.	
•  Logging	–	Keep	track	of	how	objects	are	accessed.	
• No0fica0on	–	Be	no0fied	when	failures	occur.	

S3 Weak Consistency Model
Direct	quote	from	the	Amazon	developer	API:	
“Updates	to	a	single	key	are	atomic….”	
“Amazon	S3	achieves	high	availability	by	replica0ng	data	across	mul0ple	servers	
within	Amazon's	data	centers.	If	a	PUT	request	is	successful,	your	data	is	safely	
stored.	However,	informa0on	about	the	changes	must	replicate	across	Amazon	S3,	
which	can	take	some	0me,	and	so	you	might	observe	the	following	behaviors:	

•  A	process	writes	a	new	object	to	Amazon	S3	and	immediately	anempts	to	read	it.	Un0l	the	
change	is	fully	propagated,	Amazon	S3	might	report	"key	does	not	exist."	

•  A	process	writes	a	new	object	to	Amazon	S3	and	immediately	lists	keys	within	its	bucket.	
Un0l	the	change	is	fully	propagated,	the	object	might	not	appear	in	the	list.	

•  A	process	replaces	an	exis0ng	object	and	immediately	anempts	to	read	it.	Un0l	the	change	is	
fully	propagated,	Amazon	S3	might	return	the	prior	data.	

•  A	process	deletes	an	exis0ng	object	and	immediately	anempts	to	read	it.	Un0l	the	dele0on	is	
fully	propagated,	Amazon	S3	might	return	the	deleted	data.”	

	

Always read the fine print….

Elas3c Block Store

• An	EBS	volume	is	a	virtual	disk	of	a	fixed	size	with	a	block	read/write	
interface.		It	can	be	mounted	as	a	filesystem	on	a	running	EC2	
instance	where	it	can	be	updated	incrementally.		Unlike	an	instance	
store,	an	EBS	volume	is	persistent.	

•  (Compare	to	an	S3	object,	which	is	essen0ally	a	file	that	must	be	
accessed	in	its	en0rety.)	

•  Fundamental	opera0ons:	
•  CREATE	a	new	volume	(1GB-1TB)	
•  COPY	a	volume	from	an	exis0ng	EBS	volume	or	S3	object.	
•  MOUNT	on	one	instance	at	a	0me.	
•  SNAPSHOT	current	state	to	an	S3	object.	

EBS is approx. 3x more expensive by volume and
10x more expensive by IOPS than S3.

Use Glacier for Cold Data
• Glacier	is	structured	like	S3:	a	vault	is	a	container	for	an	arbitrary	
number	of	archives.		Policies,	accoun0ng,	and	access	control	are	
associated	with	vaults,	while	an	archive	is	a	single	object.	

• However:		
•  All	opera0ons	are	asynchronous	and	no0fied	via	SNS.	
•  Vault	lis0ngs	are	updated	once	per	day.	
•  Archive	downloads	may	take	up	to	four	hours.	
•  Only	5%	of	total	data	can	be	accessed	in	a	given	month.	

• Pricing:	
•  Storage:	$0.01	per	GB-month	
•  Opera0ons:	$0.05	per	1000	requests	
•  Data	Transfer:	Like	S3,	free	within	AWS.	

•  S3	Policies	can	be	set	up	to	automa0cally	move	data	into	Glacier.	

Durability
•  Amazon	claims	about	S3:	

•  Amazon	S3	is	designed	to	sustain	the	concurrent	loss	of	data	in	two	facili0es,	e.g.	3+	copies	
across	mul0ple	available	domains.		

•  99.999999999%	durability	of	objects	over	a	given	year.	
•  Amazon	claims	about	EBS:	

•  Amazon	EBS	volume	data	is	replicated	across	mul0ple	servers	in	an	Availability	Zone	to	
prevent	the	loss	of	data	from	the	failure	of	any	single	component.	

•  Volumes	<20GB	modified	data	since	last	snapshot	have	an	annual	failure	rate	of	0.1%	-	0.5%,	
resul0ng	in	complete	loss	of	the	volume.	

•  Commodity	hard	disks	have	an	AFR	of	about	4%.	
•  Amazon	claims	about	Glacier	is	the	same	as	S3:	

•  Amazon	S3	is	designed	to	sustain	the	concurrent	loss	of	data	in	two	facili0es,	e.g.	3+	copies	
across	mul0ple	available	domains	PLUS	periodic	internal	integrity	checks.	

•  99.999999999%	durability	of	objects	over	a	given	year.	
	

•  Beware	of	oversimplified	arguments	about	low-probability	events!	

Architecture Center
•  Ideas	for	construc0ng	large	scale	infrastructures	using	AWS:	
hnp://aws.amazon.com/architecture/	

Command Line Setup
• Go	to	your	profile	menu	(your	name)	in	the	upper	right	hand	corner,	
select	“Security	Creden0als”	and	“Con0nue	to	Security	Creden0als”	

•  Select	“Access	Keys”	
•  Select	“New	Access	Key”	and	save	the	generated	keys	somewhere.	
•  Edit	~/.aws/config	and	set	it	up	like	this:	

	
• Now	test	it:						aws	ec2-describe-instances	

	

Note	the	syntax	here	is	different	from	how	
it	was	given	in	the	web	console!	
AWSAccessKey=XXXXXX	
AWSSecretAccessKey=YYYYYYYYY	

[default]	
output	=	json	
region	=	us-west-2	
aws_access_key	=	XXXXXX	
aws_secret_access_key	=	YYYYYYYYYYYY	

S3 Command Line Examples

aws					s3 	mb	 	s3://bucket	
.	.	. 		 	cp		 	localfile			s3://bucket/key	
														 	mv	 	s3://bucket/key				s3://bucket/newname	

	 	ls	 	s3://bucket	
	 	rm	 	s3://bucket/key	
	 	rb	 	s3://bucket	

	
aws 	s3 	help	
aws 	s3 	ls	help	
	
	

EC2 Command Line Examples

aws					ec2 	describe-instances	
	 	run-instances	--image-id	ami-xxxxx	--	count	1	

																																																--instance-type	t1.micro	--key-name	keyfile	
	 	stop-instances	--instance-id	i-xxxxxx	

	
aws 	ec2 	help	
aws 	ec2 	start-instances	help	
	

Warmup: Get Started with Amazon

•  Skim	through	the	AWS	documenta0on.	
•  Sign	up	for	AWS	at	hnp://aws.amazon.com	
•  (Skip	the	IAM	management	for	now)	
• Apply	the	service	credit	you	received	by	email.	
• Create	and	download	a	Key-Pair,	save	it	in	your	home	directory.	
• Create	a	VM	via	the	AWS	Console	
• Connect	to	your	newly-created	VM	like	this:	

•  ssh	-i	my-aws-keypair.pem	ec2-user@ip-address-of-vm	
• Create	a	bucket	in	S3	and	upload/download	some	files.	

Demo Time
h_p://aws.amazon.com

