
Grid Deployment of Legacy Bioinformatics
Applications with Transparent Data Access

Christophe Blanchet#1, Rémi Mollon#2, Douglas Thain*3, Gilbert Deléage#4
Institut de Biologie et Chimie des Protéines

IBCP UMR 5086;CNRS; Univ. Lyon1;IFR128 BioSciences Lyon-Gerland;7, passage du Vercors, 69367 Lyon cedex 07, France
1Christophe Blanchet@ibcp.fr

3Remi.Mollon@ibcp.fr
4Gilbert.Deleage@ibcp.fr

* Department of Computer Science and Engineering, University of Notre Dame,
 384 Fitzpatrick Hall, Notre Dame, Indiana, United States

2dthain@cse.nd.edu

Abstract— Although grid computing offers great potential for
executing large-scale bioinformatics applications, practical
deployment is constrained by legacy interfaces. Most widely
deployed bioinformatics were designed long before grid
computing arose, and thus are created, tested, and validated in
the familiar environment of a workstation. Most perform simple
local I/O and have no facility for interfacing with a distributed
system. Because of these limitations, users of bioinformatics
applications are generally constrained to creating large local
clustered systems in order to perform data analysis. In order to
deploy these applications in wide-area grid systems, users
require a transparent mechanism of attaching legacy interfaces
to grid I/O systems. We have explored this problem by deploying
several bioinformatics databases and programs for protein
sequence analysis on the European EGEE grid. Using tools for
transparent adaptation, we have connected legacy applications to
the logical namespace provided by a replica manager, and
compared the performance of remote access versus file staging.
For common bioinformatics applications, we find that remote
access has performance equal or better than simple file staging,
with the added advantage that users are freed from stating the
data needs of applications in advance.

I. INTRODUCTION

Managing the deluge of biological data produced by large-
scale experiments such as genome projects is one of the major
global challenges of bioinformatics. Biological datasets
present challenges from many different directions. There are
many laboratories that produce data that must be archived,
distributed, and indexed. There are many consumers of data
that must identify, search, and manipulate data sets. There are
many different resource stakeholders that place constraints on
how networks, storage, and processors may be used, and who
may use them. Most importantly, the scale of data to be
processed requires access to large collections of widely
distributed resources such as found in computational grids.

The analysis of this deluge of data will need to be farmed
out to large computing resources with large and efficient
storage devices. Indeed, bioinformaticians need for their daily
analyses of genomes efficient access to these biological data
and bioinformatics programs. However, these datasets are not
static: as discoveries are made, new entries are added to the

database and existing ones are updated. For example, the
Swiss-Prot database is updated biweekly as a new complete
database file containing all the entries in their last release, but
can be updated every day as a file containing only the updated
entries. As these updates occur, they must be propagated to
the various copies spread around the grid, and perhaps re-
executing programs after the updates take place.

Complicating the problem of data management is the fact
that most bioinformatics applications are not designed with
grid computing in mind. Indeed, many valuable applications
were designed, tested, and validated long before grid
computing arose. As a result, such applications are designed
to perform simple local I/O and have no facility for attaching
to grid data systems. Regardless, these applications need both
high-throughput computing and huge data storage [6][14].

Why not simply re-write such applications to take
advantage of the grid? Although this might be possible for a
small number of applications, re-writing would be an
enormous amount of work to address all bioinformatics codes
in use today. Many are commercial codes for which source is
not available. In some cases, the construction and validation
of codes is tightly integrated into an audited scientific process;
changing the code for grid deployment would invalidate the
application, or at least require a re-certification. To make grid
computing easy, we must find a way to access data through
familiar interfaces without changing applications.

 In this paper we present how grid computing could be a
viable solution to distribute and integrate large bioinformatics
databases, and to make these distributed databases usable by
legacy bioinformatics programs. We employ the European
EGEE data management system for managing, replicating,
and locating large database files. We use Parrot [22] to
connect legacy applications to the EGEE data management
system. We modify Parrot to support a logical name space,
thus freeing users from managing (or even seeing) physical
file locations. Finally, we evaluate these tools on a set of
representative biological databases and bioinformatics
programs for protein sequences analysis. We find that the
combined system provides performance equal or better than

simple file staging, with the added advantage that users are
freed from stating the data needs of applications in advance.

II. BIOINFORMATICS AND PROTEIN SEQUENCES
ANALYSIS

A. Biological Data

Biological data are available from many different locations
around the world. They are very large datasets of different
natures, from different sources, structured according to
heterogeneous models (See Table I). Genome projects
produce large sets of raw sequence data needing to be
analyzed and annotated in order to be useful to the scientific
community [16]. Biological data are also produced by other
experimental techniques (biophysics, molecular biology,
biochemistry.), and stored together in as many databases of
different nature: protein three-dimensional structures,
functional signatures, expression arrays, etc. Storing and
analyzing these data require translation into different
representation of data such as (i) alphabetical for genes and
proteins, (ii) numerical, for structural data from X-ray
crystallography or NMR, or (iii) image for 2D-gel. There are
currently more than 700 public biomolecular databases [11]
(see some examples in Table I). All these data are distributed,
analyzed, crosschecked to other databases, used to predict new
data, and published into scientific journals. The ratio between
high-level and raw biological data is generally estimate to be a
factor of 1,000. Thus, the scale that can be estimated for
biological data is around petabytes.

TABLE I
SIZE OF SOME BIOLOGICAL DATABASES

Name Nature Rev. Entries
Size
(MB)

GenBank Gene
Sequence

153 56,620,500 224,000

EMBL Gene
Sequence

86 69,783,593 ~100,000

Swiss-
Prot

Protein
Sequence

49.5 216,380 824

TrEMBL Protein
Sequence

32.5 2,807,081 6,347

PROSITE Protein
Signature

19.25 1,411 14

pFAM-A Protein
Signature

19.0 8,183 2,104

PDB Protein
Structure

Apr.
2006

36,121 23,316

Most of these databases record their data with their own

specific format into flat text files. The data are generally split
into textual entries composed of key-value pairs, which are
centered on a datum to which are associated metadata. In a
protein sequence dataset, the datum is the sequence, and
metadata are items such as the identifier of the protein, the
bibliographic references of works on the protein, and the
references to structures published into the Protein Data Bank.
These data can be scanned in a goal of biological data mining

or analysis through suitable Web form on their own portal.
These worldwide databases are available on Internet through
for example HTTP or FTP transfers for a desktop or site usage
[4][7][16]. In this case biologist has to get one of several files
of different sizes containing full release or release updates
(see Table II).

Moreover, biological databases are not static. Every day,
new data are published and existing ones may be updated.
Thus, biological databases need to be periodically updated.
Maintaining several instances of these databases becomes
rapidly a nightmare for end-user as biologist. Not only must
they have a mechanism for obtaining and updating local
copies, they must also maintain a mapping from the logical
identity of the data to one or more local copies. On top of,
most worldwide databanks like Swiss-Prot [4], TrEMBL [4],
GenBank [5] or EMBL [20] have doubled their volume each
year. Soon, it will not be practical for every biologist to store
a local copy.

TABLE II
EXAMPLE OF BIOINFORMATICS PROGRAMS

Name Algorithm Input data

BLAST Similarity Gene/Protein Sequence
FASTA Similarity Gene/Protein Sequence
SSearch Similarity Gene/Protein Sequence
ClustalW MSA Protein Sequence
Multalin MSA Protein Sequence
PattInProt Pattern/Profile Sequence, Pattern,

profile
GOR4 PSSP Protein Sequence
SIMPA96 PSSP Protein Sequence
SOPMA PSSP Protein Sequence

PSSP: Protein secondary structure prediction; MSA: Multiple Sequence
Alignment

B. Bioinformatics applications and I/O requirements

In Bioinformatics as in other disciplines, scientists are
using and producing very different and numerous methods to
analyze their data. For each scientific domain of
Bioinformatics, they are very often several different high-
quality programs available for computing the same dataset in
as many ways. For instance, the BioCatalog [29] was
referencing at the end of 1990s all the bioinformatics
programs available to the community: more than 600 had been
registered into this database, and most probably as many being
not. Another example is the EMBOSS software suite [17],
comprising more than 200 programs devoted to molecular
bioinformatics. Each of these programs answer to as many
different biological queries, from very simple as converting
data format to more complex ones such as querying for
sequence similarity between one sequence and a whole
database.

The subject of protein sequence analysis concerns the
analysis of newly discovered against known sequences: new
ones are obtain for example by sequencing project and known

ones are registered within protein databases such as Swiss-
Prot, TrEMBL, PIR [26] or “non-redundant” from NCBI.
Protein sequence algorithms are also computing different kind
of input data than sequences: for instance functional sites and
signatures (represented as patterns or HMM profiles [13]), or
protein 3D structures. These algorithms can be classified into
different domains, according to the data they are analyzing
and the results they are producing: similarity search, sequence
multiple alignment or pattern/profile scans, etc. (see Table II).
Several programs are very well known and largely used by the
bioinformatics community, for instance, BLAST [1], SSearch
[15], FastA [19], or ClustalW [24].

Fig. 1. I/O Model of legacy protein sequence analysis programs. Most of
these programs are only able to access to local data.

Most of these bioinformatics programs are not adapted to

distributed platform. Indeed, they have been developed in
most case in a time where only local computing was the usual
way to compute, at least in the bioinformatics community.
One main issue is certainly that they are only able to access
and store data through local I/O. In Figure 1, a simple model,
centered on the program, describe the I/O of these legacy
bioinformatics programs. Data processed during the
computation could be provided by the user or extracted from
databanks such as these described in Table II. The input data
can be (i) one or more parameters, (ii) user data, and (iii)
databases. They are submitted to the program through the
standard command line interface or through other interface,
user-friendlier, such as Web pages. The main differences
between user data and databases are their size and their
location on the given distributed platform, coupled to the fact
that the database is not modifiable by the user, but only by the
responsible scientific publisher. This difference implies that (i)
user data can been transferred at job submission from the user

interface to the remote computing node; (ii) databases must be
registered and replicated in the storage area of the distributed
platform, identified with logical name within a defined
namespace, and then transferred from the storage area to the
computing nodes.

C. Bioinformatics representative resources

Among the numerous bioinformatics programs we have
chosen several representatives. We have taken them as models
along this works, because of their special requirements for
input or output of data. The selected programs have been
BLAST, FastA, SSearch, and the associated databases Swiss-
Prot [4] or TrEMBL [4].

BLAST, FastA and SSearch are representative of
bioinformatics applications having requirement that must
access large biological databases (as described before) as
reference sets to compute their analyses, for instance protein
sequences or pattern databases. They also produce large
outputs that can be a subset of the input database. This
database may then be pipelined to another bioinformatics
program.

BLAST will be used as a model for the class of
bioinformatics programs that have requirement of implicit
parameters files in input. When an analysis is launched with
BLAST, user has to put on the command line, the pathway of
the database of protein sequences that will be compared to the
unknown sequence. These index files have the same filename
and pathway than the database file except for the extension.
Thus the extension of the sequence file are most time “.seq” or
“.fasta”, and their index files are suffixed with the following
three extension “.phr”, “.pin” and “.psq”, according to the
three kind of indexes needed by BLAST. But these index
filename are never put on the command line, they are
implicitly expected by the program BLAST

III. DISTRIBUTED STORAGE AND COMPUTING: THE
GRID

A. An example of Grid: the European EGEE grid

Grid computing concept defines a set of information
resources (computers, databases, networks, instruments, etc.)
that are integrated to provide users with tools and applications
that treat those resources as components within a « virtual »
system [10][23][25]. Grid middleware provides the underlying
mechanisms necessary to create such systems, including
authentication and authorization, resource discovery, network
connections, and other kind of components.

The Enabling Grids for E-sciencE project (EGEE [32]),
funded by the European Commission, aims to build on recent
advances in grid technology and to develop a service grid
infrastructure. The EGEE consortium involves 70 leading
institutions in 27 countries, federated in regional Grids, with
currently a combined capacity of 20,000 CPUs and 5
petabytes of storage. The platform is built on the LCG-2
middleware, inherited from the EDG middleware developed
by the European DataGrid Project [34] (EDG, FP5 2001-
2003). The middleware LCG-2 is based upon the Globus
toolkit release 2 (GT2) [35] and the Condor middleware [23].

The new middleware gLite [32], that is being developed, have
the goals to improve the performances and the services
provided by the future EGEE platform.

There are several important components into the EGEE
grid: first on the user point of view is the user interface (UI)
where the user log in and submit their jobs. These jobs need to
be described by JDL files (Job Description Language) with
the Condor “ClassAd” formalism. The “workload
management system” (WMS) is responsible of the job
scheduling on the platform. The scheduler (or “resource
broker”, RB) analyzes the JDL file and determines where and
when to compute a job: (i) using one “computing element”
(CE) near one “storage element” (SE) containing the data in
case of simple jobs, or (ii) several CEs and SEs in case of
larger jobs. A computing element is a gatekeeper to a cluster
of several CPUs, the worker nodes (WN) managed by a batch
scheduler system. The “information system” that centralize all
parameters raised by the grid components (CPUs, storage,
network, …).

In this paper, we are most concerned with the EGEE data
management system (DMS), which is responsible for
replicating locating files across the grid.

B. Distributed storage on the EGEE grid

The “data management system” (DMS) on the EGEE is
composed of several components. The real element doing the
storage is the “storage element” (SE), which stores the file on
different kind of medium: disk or tape. A SE is most of time
attached to a given computing element. We then call this SE
the “near-SE” of this given CE. Other components
participating to the replica manager system are the replica
catalog and a set of commands available from both the end-
user interface as well as individual worker nodes. Users can
explicitly manage data with different commands: for instance
files may be registered into the system, replicated to other
sites, or deleted from the system entirely.

Within the DMS, files are available through two
namespaces: one logical and one physical. Logical File
Names (LFNs) are globally unique and describe a file by its
issuing authority and abstract properties. Storage File Names
(SFNs) describe the current physical location of a file. A vital
job of the DMS is to mapping an LFN to one or more SFNs.

For example, the LFN for a file issued by the author’s
institution might be:

lfn://ibcp.fr/2006/proteins.data
To find a copy of this file, a user must contact the DMS in

order to obtain a list of SFNs. Each SFN may indicate an FTP
server where the file may be found, perhaps under an entirely
different name: Possible SFNs for this file might be:

gridftp://ftp.ibcp.fr/data/p2006.data
gridftp://ftp.nd.edu/ibcp/proteins.data

Despite these tools to get the SFN from LFN, there are no
automatic substitution mechanisms for applications to employ.
A legacy bioinformatics application launched on the EGEE
grid won’t be able to access the remote data stored on SEs,
unless the user first resolves the LFN to an SFN, and the
copies the file from the storage element to the given worker
node before executing the program. The DMS on the EGEE

grid is a key service for our bioinformatics applications.
Having efficient usage of it will be synonymous of good
distribution of our protein sequence analysis applications.

C. Parrot: Custom I/O Services for Legacy Applications

In conventional systems, new I/O services have been
attached to applications by either modifying the operating
system or by modifying the application itself. For example,
traditional distributed file systems are implemented in
privileged file system drivers, while new grid file access
modes are provided by entirely new interfaces. Neither of
these modes is acceptable for bioinformatics applications on
EGEE: the kernel cannot be modified on execution nodes, nor
can we expect end users to modify applications.

Parrot [22] addresses this problem by allowing novel I/O
services to be transparently connected to unmodified
applications without requiring kernel changes or any
privileged activity. Parrot operates by running an application
as a child and trapping all attempted system calls using the
debugging interface. Modules within Parrot give the
application access to a variety of external I/O protocols. Any
I/O service implemented as a C library can be connected to
Parrot by writing an appropriate module. Each I/O protocol is
presented as a directory in the file system namespace. For
example, a GridFTP server named ftp.ibcp.fr may be accessed
under the path /gridftp/ftp.ibcp.fr.

As discussed above, most applications do not wish to
address data based on the physical name. Rather, they wish to
access a logical address that is then applied to an underlying
name. Parrot provides two mechanisms for making this
mapping at runtime: a static mount table, and a dynamic name
resolution hook.

The static mount table resembles the file system mount
table in a conventional operating system. It consists of a series
of entries mapping a logical file name to a storage element.
For example, suppose a BLAST application expects to find its
data in the /db directory and configuration files in the
/home/blast directory. These logical names can be directed to
two different GridFTP servers with the following mount table:

 /db /gridftp/ftp.ibcp.fr/data
 /home/blast /gridftp/ftp.nd.edu/home

This mechanism can be applied when the set of files needed

is known in advance and those in the same logical directory
are stored in the same physical location. However, for more
complex configurations, a dynamic mechanism is needed.

The dynamic name resolution hook is an internal routine
of Parrot called every time a file is accessed by name. This
gives the opportunity for a module to redirect file requests for
any single file at runtime. In particular, this mechanism can
be used to resolve logical file names to physical locations
using the EGEE file location service. This allows the decision
of what file replica to access to be deferred until the moment
of access.

IV. RELATED WORK

They have been numerous groups or projects working on
grid computing applied to Bioinformatics: Biogrid project [27]
in Japan, BRIDGES [30] and eScience [18], EuroGRID [33]
in Europe; in US, there are also the Biomedical Informatics
Research Network (BIRN) [28] and the North Carolina
Bioinformatics Grid [37]. Most of them are deploying their
application on experimental grid (Biogrid, myGrid and
EuroGRID), or on local cluster (North Carolina). Also large-
scale grids are devoting part of their multiple application
resources to the bioinformatics applications, like TeraGrid [39]
in US, DEISA [31] and EGEE [32] in Europe.

Data are stored and managed in different ways within these
platforms. Most of them are managing files, replicating them
and providing remote access with new I/O API: LCG
middleware with GFAL library in EGEE production platform,
gLite with gLiteIO in pre-production platform. Others
examples are about the Internet Backplane Protocol (IBP) [3]
and the Logistical Runtime System (LoRS) [36]. They supply
a C API that simplify and automate the management of
exNode (split of file) on the Logistical Bone (LBone),
providing users with a networked RAID storage area. Others
distributed storage environments are dealing with both files
and object stored into DBMS, like the Storage Resource
Broker (SRB) [2], OGSA-DAI [38] mediator components, or
DiscoveryLink [12]. Some of them are providing application
users with mediation interfaces using SQL or XML query
interfaces, others through Web services.

TABLE III
SOME BIOINFORMATICS RESOURCES DEPLOYED ON THE EGEE GRID

Resource Grid Descriptor

Swiss-Prot lfn://genomics_gpsa/db/swissprot/swissprot.
fasta

And its
indexes
in the
BLAST
format

lfn://genomics_gpsa/db/swissprot/swissprot.
fasta.phr
lfn://genomics_gpsa/db/swissprot/swissprot.
fasta.pin
lfn://genomics_gpsa/db/swissprot/swissprot.
fasta.psq

TrEMBL lfn://genomics_gpsa/db/trembl/trembl.fasta
PROSITE lfn://genomics_gpsa/db/prosite/prosite.dat

lfn://genomics_gpsa/db/prosite/prosite.doc
ClustalW ESM tag “genomics_gpsa_clustalw”
SSearch ESM tag “genomics_gpsa_ssearch”

Database files have been registered with logical filenames (LFN) within the
Data Management System (DMS), and programs have been deployed on sites,
registered also with logical names within the experiment software manager
(ESM tag).

The HandleSystem [40] is also providing unique persistent

identifiers for Internet Resources, but these services are linked
to license fees that could be a limitation. Moreover the
combinaison of prefix and suffix is making a handle
composed of numeric string that is not human-friendly, for
example, "4263537/4000" is a handle for the Handle System
web site home page. A easy-to-understand naming space is

needed as the DNS is providing us with IP addresses
resolution. The GLARE [41] system is a Grid-level
application that provides users with component registration,
deployment and provisioning framework. This service is
focusing on grid applications (activities) deployment, but is
not dealing with remote access to databases by legacy
applications that are only able to do local file access calls.

All of these related works are assuming that users either
modify the bioinformatics application codes, or that they
replicate the data on the given nodes before the planned
computations. Modifying the whole bioinformatics programs
implies to include the appropriate library calls (in C, Java or
others) in them, in order to enable them to do remote access
calls to the remotely-stored biological databases.

V. DEPLOYING BIOINFORMATICS RESOURCES
WITHIN EGEE

A. Virtualization of Bioinformatics Resources

1) Defining a Bioinformatics Namespace

Despite the replica and the software management system
have no file tree hierarchy, we have decided to create our
specific namespace with chosen logical filenames and
program tags. We have then deployed on the EGEE grid the
representative biological databases and bioinformatics
programs selected above (see Table III). The data files have
been registered in the EGEE replica management service
(RMS) with the appropriate LFNs; and bioinformatics
programs have been registered tags in the experiment software
management service (ESM) on several computing elements:

• databases: lfn://genomics_gpsa/db/dbname/dbfiles
• programs: genomics_gpsa_program

Both the deployed LFNs and ESM tags play a key-role into

the scheduling of our future jobs. Indeed, jobs submitted with
LFN and/or ESM tags within the user’s submission file, will
be sent according to matchmaking between these logical
names and the free nodes hosting one physical replica of them.
We assume that the files have already been replicated to
several storage elements on the grid according to external
constraints.

2) Virtualizing remote I/O on EGEE

We have adapted Parrot tool for our application usage on
the EGEE middleware, we called this modified version
“Perroquet”. The main change is about the file namespace
understood by Parrot. We have added the code for the
recognition of true URL as the LFN is:

• <protocol>://<hostname>/path/to/resource
• lfn://genomics_gpsa/db/swissprot/swissprot.fasta

When have also added in Parrot the mechanism for

resolving these LFNs by querying the EGEE file catalog that
is in charge of making the name resolution between logical
namespace and real filenames (SFNs) on the distributed
storage elements.

Perroquet is then able to identify LFNs among the program
command line arguments, to resolve names to locations (SFNs)
and to get the corresponding SFN from a SE (see Figure 2).
Thanks to Parrot source code, several transfer protocols are
available such as for instance FTP, HTTP, or GSI-FTP. We
use this last one because it is authenticated, encrypted and
available from the EGEE storage elements.

The remote I/O are done with local disk cache or without
for security purpose. In local disk cache mode, Perroquet puts
the relevant access rights on the cache file and directory and
remove them after the run. In “on-the-fly” access mode,
Perroquet is caching remote I/O in a 64KB memory buffer.

B. Legacy application without remote I/O

As legacy bioinformatics applications have no remote I/O
to access remote databases, we need to encapsulate them into
an execution space that forward their local I/O to remote
locations. We have tested two ways of providing them with
remote access to biological database: file replication on the
local computer or remote I/O. They both mean that the
prerequisite databases have to been downloaded from the
remote grid and pushed to the input stream of the program. As
we cannot modify the application, this remote access has to be
done by an agent separate from the bioinformatics program..

Fig. 2. Parrot integration into the EGEE platform. Architecture of the data
management system with Perroquet, and its integration into the EGEE grid
platform and middleware (UI: user interface, CE: computing element, SE:
storage element, WN: worker node, DB: database, LFN: logical file name).
Perroquet is catching the local I/O and forwarding them through network to
remote storage element. Several transfer protocols are available such as FTP,
HTTP, and especially GSI-FTP that is authenticated, encrypted and fully
compatible with the EGEE grid middleware, component and services.
Perroquet, is our adaptation of Parrot to the EGEE grid middleware. It
recognizes canonical URL and EGEE LFNs , like
lfn://genomics_gpsa/db/Swissprot.fasta, and is also capable of data encryption
and decryption “on the fly”

This agent must be able (i) to resolve grid filename(s) to
locations - from LFN(s) to SFNs - , (ii) to get the data from
the best location - with the best protocol - and (iii) to launch
the execution of the program against these downloaded data.
We use the Perroquet tool as this launcher

C. File replication vs. remote I/O

1) Deployed study sets of biological data

We have split two protein sequences databases, Swiss-Prot
and TrEMBL (184,034 entries for Swiss-Prot release 47.2 and
1,779,481 for TrEMBL release 30.2) into several subsets of
different protein sequence number The size in bytes of a
subset file is correlated to the number of sequences stored in
this subset file, by a linear model, thus we use the number of
sequence as reference value for our studies. We have deployed
all the subsets onto the EGEE grid platform using the data
managing system (DMS). We had labeled them with
appropriate logical filenames (LFNs, see Table III) into the
replica manager system (RMS), and randomly replicated these
LFNs on the storage elements of several grid nodes without
applying any particular model of replication.

A local execution model of the selected bioinformatics
applications has helped us to calibrate these three programs,
and to decide which of them and which datasets to test on the
grid: from 200,000-seq subset to 1,000,000-seq for FastA and
BLAST which are more data intensive, from 50,000-seq to
200,000-seq for SSearch which is more computing intensive.

2) Free storage space on the WN

In case of file replication to the local storage, the agent
must make sure that there is enough free space on the local
storage area of the computing node. Indeed, biological
database may be several hundred megabytes (see Table I).
Thus this WN must be able to store this much data on its local
disk because bioinformatics programs need to access the
whole database in once run. This constraint of free space will
be also enhanced in case of a job accessing to several
databases, or in case of a WN with multiple CPU, then
accepting multiple in the same time, but sharing the same
storage space.

In case of remote I/O with Parrot, the data are put directly
on the standard input stream of the program, without caching
them on the local disk. In some cases of special access
(seek, …), a cache can be needed if the protocol is not
supporting such special I/O primitives.

For large files, the remote I/O mode has the advantage,
because (i) in most times it doesn’t have to worry about the
free local space and (ii) this is too late to do this checking of
the free space when the job is on the worker node. Indeed, it
should be done before, at least at the job scheduling time.
Thus the file copy mode implies to modify both the
information system (to record the free space on WNs) and the
scheduling mechanism (to include this “free space” element
when the matching is done between the job requirements and
the available WNs) whereas the remote I/O mode works with
the current information system and matching workload.

3) Concomitance of data download and job computation

The file copy mode implies that the agent downloaded the
database file before the execution of the programs. In the
remote I/O mode, Parrot is providing the program with the file
blocks progressively. With computing intensive programs,
this should have little impact as with the SSearch program.
But in case of program that are more data intensive as BLAST
and FastA, the impact should not be negligible.

4) Non-declared input and output files

As explained above, some bioinformatics programs have
special behavior regarding the file they needed as input, or the
files they create as result files. For instance, BLAST program
expects at each run to find, in the same location of the
database file, also three others index files; or ClustalW
produces always a second output file in the same location than
the declared output file (sequence alignment file). But these
non-declared files are not present within the command line
argument of the given program.

When these files are virtualized with LFNs such as we do it
with protein sequence databases (see Table III), the program
will try to attend on the same way to prerequisite non-declared
LFNs. In case of BLAST, that implies to also gridify the index
files with the expected LFNs. This could be done easily.

In file copy mode, the agent has to copy these indexes too.
The agent has to identify which bioinformatics program will
be launched, and to get the non-declared file. That means to
bring knowledge about the program within the agent, with, for
example, method-specific configuration files. For instance, in
case of BLAST execution, the agent has to download also the
indexes of the sequence database. In this way it also increases
the constraint about free space required on the WN, as seen
before.

Fig. 3. Download time of a biological database containing 500,000-protein
sequence (205 Mbytes). We have compared the access to the database file
through the file copy with “lcg-cp” and through remote I/O with the
“Perroquet” program. The file is downloaded from any storage element and
from the near-SE of the computing element (CE).

The remote I/O mode does not care about such issues.

Parrot catches the I/O requests when they are done. When a
request is made to open a file the LFN-SFN name resolution is
done and the transfer begin from the best location
transparently to the user. The same mechanism is played when
the program attempts to create a non-declared output file.

5) Performances

In Figure 3 we compare the performances of the two
transfer mode, local copy and remote I/O, for accessing to a
remote database or 500,000 protein sequences (205 MB),
stored on a remote storage element. The database are
downloaded from any storage element of the EGEE grid and
from the near-SE of the given worker node. These
benchmarks show that Parrot has the same efficiency than lcg-
cp (~60 sec), both with local cache mode activated or not.
This figure also raised the importance of downloading the data
from the near-SE of the used WN, and not from any SE of the
grid. Indeed, the performances are four times faster in case of
access to a SFN on the near-SE. As the biological databases
are numerous and have large sizes, we certainly won’t be able
to replicate all of them on all sites (CE & SE), but we will
need to distribute them according to an efficient model of
replication

Fig. 4. Comparison of bioinformatics program performances with two
different file access modes on EGEE grid. We have been using remote I/O
with Perroquet (“Parrot”, plain curves) or file copy on the worker node
(“copy”, dashed curves).

In Figure 4, curves show that bioinformatics program used

with Parrot has equal or better execution time than the
program computing on copied data. The experiments with lcg-
cp show the overhead due to the download of the file before
computation. Comparing SSearch curves to BLAST and
FastA ones, we see that the overhead is function of the size of
the transferred database, and of the used bioinformatics
algorithm that can be more or less data intensive, respectively
BLAST- FastA and SSearch in our work. As lot of biological
database have size larger than 205 MB, the overhead will be
in most of cases not negligible for data intensive
bioinformatics methods.

VI. CONCLUSIONS

We have studied several representative biological databases
and legacy bioinformatics programs for protein sequences

analysis onto the European EGEE grid. These resources have
been virtualized within a devoted namespace, open and
available to biologist and bioinformaticians users registered in
to the “biomed” virtual organization. Important issues of
local-only I/O access have been studied (i) with a local copy
of these databases before the computation and (ii) with the
remote access provide by the Parrot tool. We observe that
Parrot has performance equal or better than file copying, with
the added advantage that the user need not declare all files
when submitting the job. This grid deployment model of
legacy bioinformatics applications have been applied to our
bioinformatics workbenches such as the GPSA bioinformatics
Web portal, providing biologists with Web transparent access
to the EGEE grid.

Future works will be done on the management of access
rights and authorizations with Access Control Lists (ACLs) on
these encrypted data, because bioinformatics programs are
largely used in projects or institutions (like hospitals) that
require confidentiality, integrity and authorized access to these
distributed biological data.

ACKNOWLEDGMENT

This work was supported in part by the French Centre
National de la Recherche Scientifique and by the European
Union with the EGEE project (contract number INFSO-
508833).

We thank the anonymous reviewers for pointing us to
additional related work, and to make this paper clearer .

REFERENCES
[1] Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., Basic

local alignment search tool. J. Mol. Biol. 215 (1990) 403–410.
[2] Baru, C., Moore; R., Rajasekar, A., Wan, M.: The SDSC Storage

Resource Broker. Proc. CASCON'98 Conference , Nov.30-Dec.3,
1998, Toronto, Canada.

[3] Bassi, A., Beck, M., Moore, T., Plank, J.S., Swany, M., Wolski, R.,
Fagg, G. The Internet Backplane Protocol: A Study in Resource
Sharing, Future Generation Computing Systems, (19)4, May, pp.551-
561. Elsevier.

[4] Bairoch, A, Apweiler, R : The SWISS–PROT protein sequence data
bank and its supplement TrEMBL in 1999. Nucleic Acids Res. 27
(1999) 49-54

[5] Benson D.A., Karsch-Mizrachi I, Lipman D.J., Ostell J., Wheeler D.L. ;
GenBank: update. Nucleic Acids Res. 32, (2004) 23-26.

[6] Breton, V., Blanchet, C., Legré, Y., Maigne, L. and Montagnat, J. :
Grid Technology for Biomedical Applications. M. Daydé et al. (Eds.):
VECPAR 2004, Lecture Notes in Computer Science 3402, pp. 204–
218, 2005.

[7] Combet, C., Blanchet, C., Geourjon, C. et Deléage, G. : NPS@:
Network Protein Sequence Analysis. Tibs, 25 (2000) 147-150.

[8] Desprez, F., Vernois, A., Blanchet, C.: Simultaneous Scheduling of
Replication and Computation for Bioinformatic Applications on the
Grid. ISBMDA 2005, Lecture Notes in Computer Science 3745: 262-
273

[9] Discala, C., Benigni, X., Barillot, E., Vaysseix, G.: DBCAT: a catalog
of 500 biological databases. Nucleic Acids Research 28 (2000) 8–9

[10] Foster, I. And Kesselman, C. (eds.) : The Grid 2 : Blueprint for a New
Computing Infrastructure, (2004).

[11] Galperin, M.Y.: The Molecular Biology Database Collection: 2005
update. Nucleic Acids Research 33 (2005) National Center for
Biotechnology Information and National Library of Medicine and
National Institutes of Health.

[12] Goble, C.A., Stevens, R., Ng, G., Bechhofer, S., Paton, N.W., Baker,
P.G., Peim, M., Brass, A.: Transparent Access to Multiple
Bioinformatics Information Sources. IBM Systems Journal 40 (2001)
532–551

[13] Hulo N., Sigrist C.J.A., Le Saux V., Langendijk-Genevaux P.S.,
Bordoli L., Gattiker A., De Castro E., Bucher P., Bairoch A. : Recent
improvements to the PROSITE database. Nucl. Acids. Res. 32:D134-
D137(2004)

[14] Jacq, N., Blanchet, C., Combet, C., Cornillot, E., Duret, L., Kurata, K.,
Nakamura, H., Silvestre, T., Breton, V. : Grid as a bioinformatics tool. ,
Parallel Computing, special issue: High-performance parallel bio-
computing, Vol. 30, (2004).

[15] Pearson W.R. ; Searching protein sequence libraries: comparison of the
sensitivity and selectivity of the Smith-Waterman and FASTA
algorithms. PNAS (1988) 85:2444-2448

[16] Perriere, G, Combet, C, Penel, S, Blanchet, C, Thioulouse, J, Geourjon,
C, Grassot, J, Charavay, C, Gouy, M, Duret, L, Deleage, G..: Integrated
databanks access and sequence/structure analysis services at the PBIL.
Nucleic Acids Res. 31, (2003) 3393-9.

[17] Rice,P. Longden,I. and Bleasby,A.: EMBOSS: The European
Molecular Biology Open Software Suite (2000) Trends in Genetics
16(6) 276--277

[18] Sinnott, R., Atkinson, M., Bayer, M., Berry, D., Dominiczak, A.,
Ferrier, M.,Gilbert, D., Hanlon, N., Houghton, D., Hunt, E., White, D.:
Grid Services Supporting the Usage of Secure Federated, Distributed
Biomedical Data. Proceedings of the UK e-Science All Hands Meeting,
Nottingham, UK (2004)

[19] Smith T.F., Waterman M.S. : Identification of common molecular
subsequences. J. Mol. Biol. (1981) 147:195-197

[20] Stoesser, G, Tuli, MA, Lopez, R, Sterk, P : the EMBL nucleotide
sequence database. Nucleic Acids Res. 27 (1999) 18-24.

[21] Thain, D., Klous, S., Wozniak, J., Brenner, P., Striegel, A., Izaguirre, J.:
Separating Abstractions from Resources in a Tactical Storage System.
Proceedings of Supercomputing 2005

[22] Thain, D. and Livny, M.: Parrot: an application environment for data-
intensive computing. Scalable Computing: Practice and Experience 6
(2005) 9-18

[23] Thain, D., Tannenbaum, T. Livny, M.: Distributed computing in
practice: the Condor experience. Concurrency and Computation 17
(2005) 323-356.

[24] Thompson, JD, Higgins, DG, Gibson, TJ : CLUSTAL W: improving
the sensitivity of progressive multiple sequence alignment through
sequence weighting, position-specific gap penalties and weight matrix
choice. Nucleic Acids Res. 22 (1994) 4673-4680.

[25] Vicat-Blanc Primet, P., d’Anfray, P., Blanchet, C., Chanussot, F. : e-
Toile : High Performance Grid Middleware. Proceedings of
Cluster’2003 (2003).

[26] C.H. Wu, L.L. Yeh, H. Huang, L. Arminski, J. Castro-Alvear, Y. Chen,
Z. Hu, R.S. Ledley, P. Kourtesis, B.E. Suzek, C.R. Vinayaka, J. Zhang,
and W.C. Barker. The Protein Information Resource. Nucleic Acids
Research, 31: (2003) 345-347.

[27] Biogrid project, www.biogrid.jp
[28] Biomedical Informatics Research Network (BIRN), www.nbirn.net
[29] The BioCatalog, corba.ebi.ac.uk/Biocatalog
[30] BRIDGES project. www.brc.dcs.gla.ac.uk/projects/bridges
[31] Distributed European Infrastructure for Supercomputing Applications

(DEISA), www.deisa.org
[32] Enabling Grid for E-sciencE (EGEE) www.eu-egee.org
[33] EUROGRID project, www.eurogrid.org
[34] European DataGrid project (EDG) www.eu-datagrid.org
[35] GLOBUS Project, www.globus.org
[36] Logistical Runtime System (LoRS), loci.cs.utk.edu/lors
[37] North Carolina BioGRID, www.ncbiogrid.org/
[38] Open Grid Service Architecture – Data Access and Integration (OGSA-

DAI) www.ogsadai.org
[39] TeraGrid, www.teragrid.org
[40] Handle System, www.handle.net
[41] Siddiqui, M., Villazon, A., Hofer, J. and Fahringer, T. “GLARE: A

Grid Activity Registration, Deployment and Provisioning Framework”
Proceedings of Supercomputing 2005

