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Abstract— Although grid computing offers great potential for 
executing large-scale bioinformatics applications, practical 
deployment is constrained by legacy interfaces. Most widely 
deployed bioinformatics were designed long before grid 
computing arose, and thus are created, tested, and validated in 
the familiar environment of a workstation. Most perform simple 
local I/O and have no facility for interfacing with a distributed 
system.  Because of these limitations, users of bioinformatics 
applications are generally constrained to creating large local 
clustered systems in order to perform data analysis.  In order to 
deploy these applications in wide-area grid systems, users 
require a transparent mechanism of attaching legacy interfaces 
to grid I/O systems. We have explored this problem by deploying 
several bioinformatics databases and programs for protein 
sequence analysis on the European EGEE grid. Using tools for 
transparent adaptation, we have connected legacy applications to 
the logical namespace provided by a replica manager, and 
compared the performance of remote access versus file staging. 
For common bioinformatics applications, we find that remote 
access has performance equal or better than simple file staging, 
with the added advantage that users are freed from stating the 
data needs of applications in advance. 

I. INTRODUCTION 

Managing the deluge of biological data produced by large-
scale experiments such as genome projects is one of the major 
global challenges of bioinformatics. Biological datasets 
present challenges from many different directions. There are 
many laboratories that produce data that must be archived, 
distributed, and indexed.  There are many consumers of data 
that must identify, search, and manipulate data sets.  There are 
many different resource stakeholders that place constraints on 
how networks, storage, and processors may be used, and who 
may use them.  Most importantly, the scale of data to be 
processed requires access to large collections of widely 
distributed resources such as found in computational grids. 

The analysis of this deluge of data will need to be farmed 
out to large computing resources with large and efficient 
storage devices. Indeed, bioinformaticians need for their daily 
analyses of genomes efficient access to these biological data 
and bioinformatics programs. However, these datasets are not 
static: as discoveries are made, new entries are added to the 

database and existing ones are updated.  For example, the 
Swiss-Prot database is updated biweekly as a new complete 
database file containing all the entries in their last release, but 
can be updated every day as a file containing only the updated 
entries. As these updates occur, they must be propagated to 
the various copies spread around the grid, and perhaps re-
executing programs after the updates take place. 

Complicating the problem of data management is the fact 
that most bioinformatics applications are not designed with 
grid computing in mind. Indeed, many valuable applications 
were designed, tested, and validated long before grid 
computing arose.  As a result, such applications are designed 
to perform simple local I/O and have no facility for attaching 
to grid data systems. Regardless, these applications need both 
high-throughput computing and huge data storage [6][14]. 

Why not simply re-write such applications to take 
advantage of the grid?  Although this might be possible for a 
small number of applications, re-writing would be an 
enormous amount of work to address all bioinformatics codes 
in use today.  Many are commercial codes for which source is 
not available.  In some cases, the construction and validation 
of codes is tightly integrated into an audited scientific process; 
changing the code for grid deployment would invalidate the 
application, or at least require a re-certification.  To make grid 
computing easy, we must find a way to access data through 
familiar interfaces without changing applications. 

 In this paper we present how grid computing could be a 
viable solution to distribute and integrate large bioinformatics 
databases, and to make these distributed databases usable by 
legacy bioinformatics programs.  We employ the European 
EGEE data management system for managing, replicating, 
and locating large database files.  We use Parrot [22] to 
connect legacy applications to the EGEE data management 
system.  We modify Parrot to support a logical name space, 
thus freeing users from managing (or even seeing) physical 
file locations.  Finally, we evaluate these tools on a set of 
representative biological databases and bioinformatics 
programs for protein sequences analysis.  We find that the 
combined system provides performance equal or better than 



simple file staging, with the added advantage that users are 
freed from stating the data needs of applications in advance. 

II. BIOINFORMATICS AND PROTEIN SEQUENCES 
ANALYSIS 

A.  Biological Data 

Biological data are available from many different locations 
around the world. They are very large datasets of different 
natures, from different sources, structured according to 
heterogeneous models (See Table I). Genome projects 
produce large sets of raw sequence data needing to be 
analyzed and annotated in order to be useful to the scientific 
community [16]. Biological data are also produced by other 
experimental techniques (biophysics, molecular biology, 
biochemistry.), and stored together in as many databases of 
different nature: protein three-dimensional structures, 
functional signatures, expression arrays, etc. Storing and 
analyzing these data require translation into different 
representation of data such as (i) alphabetical for genes and 
proteins, (ii) numerical, for structural data from X-ray 
crystallography or NMR, or (iii) image for 2D-gel. There are 
currently more than 700 public biomolecular databases [11] 
(see some examples in Table I). All these data are distributed, 
analyzed, crosschecked to other databases, used to predict new 
data, and published into scientific journals. The ratio between 
high-level and raw biological data is generally estimate to be a 
factor of 1,000. Thus, the scale that can be estimated for 
biological data is around petabytes. 

TABLE I 
SIZE OF SOME BIOLOGICAL DATABASES 

Name Nature Rev. Entries 
Size 
(MB) 

GenBank Gene 
Sequence 

153 56,620,500 224,000 

EMBL Gene 
Sequence 

86 69,783,593 ~100,000 

Swiss-
Prot 

Protein 
Sequence 

49.5 216,380 824 

TrEMBL Protein 
Sequence 

32.5 2,807,081 6,347 

PROSITE Protein 
Signature 

19.25 1,411 14 

pFAM-A Protein 
Signature 

19.0 8,183 2,104 

PDB Protein 
Structure 

Apr. 
2006 

36,121 23,316 

 
Most of these databases record their data with their own 

specific format into flat text files. The data are generally split 
into textual entries composed of key-value pairs, which are 
centered on a datum to which are associated metadata. In a 
protein sequence dataset, the datum is the sequence, and 
metadata are items such as the identifier of the protein, the 
bibliographic references of works on the protein, and the 
references to structures published into the Protein Data Bank. 
These data can be scanned in a goal of biological data mining 

or analysis through suitable Web form on their own portal. 
These worldwide databases are available on Internet through 
for example HTTP or FTP transfers for a desktop or site usage 
[4][7][16]. In this case biologist has to get one of several files 
of different sizes containing full release or release updates 
(see Table II). 

Moreover, biological databases are not static. Every day, 
new data are published and existing ones may be updated. 
Thus, biological databases need to be periodically updated. 
Maintaining several instances of these databases becomes 
rapidly a nightmare for end-user as biologist. Not only must 
they have a mechanism for obtaining and updating local 
copies, they must also maintain a mapping from the logical 
identity of the data to one or more local copies.  On top of, 
most worldwide databanks like Swiss-Prot [4], TrEMBL [4], 
GenBank [5] or EMBL [20] have doubled their volume each 
year.  Soon, it will not be practical for every biologist to store 
a local copy. 

TABLE II 
EXAMPLE OF BIOINFORMATICS PROGRAMS 

Name Algorithm Input data 

BLAST Similarity Gene/Protein Sequence 
FASTA Similarity Gene/Protein Sequence 
SSearch Similarity Gene/Protein Sequence 
ClustalW MSA Protein Sequence 
Multalin MSA Protein Sequence 
PattInProt Pattern/Profile Sequence, Pattern, 

profile 
GOR4 PSSP Protein Sequence 
SIMPA96 PSSP Protein Sequence 
SOPMA PSSP Protein Sequence 

PSSP: Protein secondary structure prediction; MSA: Multiple Sequence 
Alignment 

 

B.  Bioinformatics applications and I/O requirements 

In Bioinformatics as in other disciplines, scientists are 
using and producing very different and numerous methods to 
analyze their data. For each scientific domain of 
Bioinformatics, they are very often several different high-
quality programs available for computing the same dataset in 
as many ways. For instance, the BioCatalog [29] was 
referencing at the end of 1990s all the bioinformatics 
programs available to the community: more than 600 had been 
registered into this database, and most probably as many being 
not. Another example is the EMBOSS software suite [17], 
comprising more than 200 programs devoted to molecular 
bioinformatics. Each of these programs answer to as many 
different biological queries, from very simple as converting 
data format to more complex ones such as querying for 
sequence similarity between one sequence and a whole 
database. 

The subject of protein sequence analysis concerns the 
analysis of newly discovered against known sequences: new 
ones are obtain for example by sequencing project and known 



ones are registered within protein databases such as Swiss-
Prot, TrEMBL, PIR [26] or “non-redundant” from NCBI. 
Protein sequence algorithms are also computing different kind 
of input data than sequences: for instance functional sites and 
signatures (represented as patterns or HMM profiles [13]), or 
protein 3D structures. These algorithms can be classified into 
different domains, according to the data they are analyzing 
and the results they are producing: similarity search, sequence 
multiple alignment or pattern/profile scans, etc. (see Table II). 
Several programs are very well known and largely used by the 
bioinformatics community, for instance, BLAST [1], SSearch 
[15], FastA [19], or ClustalW [24]. 

 

Fig. 1. I/O Model of legacy protein sequence analysis programs. Most of 
these programs are only able to access to local data. 

 
Most of these bioinformatics programs are not adapted to 

distributed platform. Indeed, they have been developed in 
most case in a time where only local computing was the usual 
way to compute, at least in the bioinformatics community. 
One main issue is certainly that they are only able to access 
and store data through local I/O. In Figure 1, a simple model, 
centered on the program, describe the I/O of these legacy 
bioinformatics programs. Data processed during the 
computation could be provided by the user or extracted from 
databanks such as these described in Table II. The input data 
can be (i) one or more parameters, (ii) user data, and (iii) 
databases. They are submitted to the program through the 
standard command line interface or through other interface, 
user-friendlier, such as Web pages. The main differences 
between user data and databases are their size and their 
location on the given distributed platform, coupled to the fact 
that the database is not modifiable by the user, but only by the 
responsible scientific publisher. This difference implies that (i) 
user data can been transferred at job submission from the user 

interface to the remote computing node; (ii) databases must be 
registered and replicated in the storage area of the distributed 
platform, identified with logical name within a defined 
namespace, and then transferred from the storage area to the 
computing nodes. 

C. Bioinformatics representative resources 

Among the numerous bioinformatics programs we have 
chosen several representatives. We have taken them as models 
along this works, because of their special requirements for 
input or output of data. The selected programs have been 
BLAST, FastA, SSearch, and the associated databases Swiss-
Prot [4] or TrEMBL [4]. 

BLAST, FastA and SSearch are representative of 
bioinformatics applications having requirement that must 
access large biological databases (as described before) as 
reference sets to compute their analyses, for instance protein 
sequences or pattern databases. They also produce large 
outputs that can be a subset of the input database. This 
database may then be pipelined to another bioinformatics 
program. 

BLAST will be used as a model for the class of 
bioinformatics programs that have requirement of implicit 
parameters files in input. When an analysis is launched with 
BLAST, user has to put on the command line, the pathway of 
the database of protein sequences that will be compared to the 
unknown sequence. These index files have the same filename 
and pathway than the database file except for the extension. 
Thus the extension of the sequence file are most time “.seq” or 
“.fasta”, and their index files are suffixed with the following 
three extension “.phr”, “.pin” and “.psq”, according to the 
three kind of indexes needed by BLAST. But these index 
filename are never put on the command line, they are 
implicitly expected by the program BLAST 

III. DISTRIBUTED STORAGE AND COMPUTING: THE 
GRID 

A. An example of Grid: the European EGEE grid 

Grid computing concept defines a set of information 
resources (computers, databases, networks, instruments, etc.) 
that are integrated to provide users with tools and applications 
that treat those resources as components within a « virtual » 
system [10][23][25]. Grid middleware provides the underlying 
mechanisms necessary to create such systems, including 
authentication and authorization, resource discovery, network 
connections, and other kind of components. 

The Enabling Grids for E-sciencE project (EGEE [32]), 
funded by the European Commission, aims to build on recent 
advances in grid technology and to develop a service grid 
infrastructure. The EGEE consortium involves 70 leading 
institutions in 27 countries, federated in regional Grids, with 
currently a combined capacity of 20,000 CPUs and 5 
petabytes of storage. The platform is built on the LCG-2 
middleware, inherited from the EDG middleware developed 
by the European DataGrid Project [34] (EDG, FP5 2001-
2003). The middleware LCG-2 is based upon the Globus 
toolkit release 2 (GT2) [35] and the Condor middleware [23]. 



The new middleware gLite [32], that is being developed, have 
the goals to improve the performances and the services 
provided by the future EGEE platform. 

There are several important components into the EGEE 
grid: first on the user point of view is the user interface (UI) 
where the user log in and submit their jobs. These jobs need to 
be described by JDL files (Job Description Language) with 
the Condor “ClassAd” formalism. The “workload 
management system” (WMS) is responsible of the job 
scheduling on the platform. The scheduler (or “resource 
broker”, RB) analyzes the JDL file and determines where and 
when to compute a job: (i) using one “computing element” 
(CE) near one “storage element” (SE) containing the data in 
case of simple jobs, or (ii) several CEs and SEs in case of 
larger jobs. A computing element is a gatekeeper to a cluster 
of several CPUs, the worker nodes (WN) managed by a batch 
scheduler system. The “information system” that centralize all 
parameters raised by the grid components (CPUs, storage, 
network, …). 

In this paper, we are most concerned with the EGEE data 
management system (DMS), which is responsible for 
replicating locating files across the grid. 

B. Distributed storage on the EGEE grid 

The “data management system” (DMS) on the EGEE is 
composed of several components. The real element doing the 
storage is the “storage element” (SE), which stores the file on 
different kind of medium: disk or tape. A SE is most of time 
attached to a given computing element. We then call this SE 
the “near-SE” of this given CE. Other components 
participating to the replica manager system are the replica 
catalog and a set of commands available from both the end-
user interface as well as individual worker nodes. Users can 
explicitly manage data with different commands: for instance 
files may be registered into the system, replicated to other 
sites, or deleted from the system entirely. 

Within the DMS, files are available through two 
namespaces: one logical and one physical.  Logical File 
Names (LFNs) are globally unique and describe a file by its 
issuing authority and abstract properties.  Storage File Names 
(SFNs) describe the current physical location of a file.  A vital 
job of the DMS is to mapping an LFN to one or more SFNs. 

For example, the LFN for a file issued by the author’s 
institution might be: 

lfn://ibcp.fr/2006/proteins.data 
To find a copy of this file, a user must contact the DMS in 

order to obtain a list of SFNs.  Each SFN may indicate an FTP 
server where the file may be found, perhaps under an entirely 
different name:  Possible SFNs for this file might be: 

gridftp://ftp.ibcp.fr/data/p2006.data 
gridftp://ftp.nd.edu/ibcp/proteins.data 

Despite these tools to get the SFN from LFN, there are no 
automatic substitution mechanisms for applications to employ. 
A legacy bioinformatics application launched on the EGEE 
grid won’t be able to access the remote data stored on SEs, 
unless the user first resolves the LFN to an SFN, and the 
copies the file from the storage element to the given worker 
node before executing the program.  The DMS on the EGEE 

grid is a key service for our bioinformatics applications. 
Having efficient usage of it will be synonymous of good 
distribution of our protein sequence analysis applications. 

C. Parrot: Custom I/O Services for Legacy Applications 

In conventional systems, new I/O services have been 
attached to applications by either modifying the operating 
system or by modifying the application itself.  For example, 
traditional distributed file systems are implemented in 
privileged file system drivers, while new grid file access 
modes are provided by entirely new interfaces.  Neither of 
these modes is acceptable for bioinformatics applications on 
EGEE: the kernel cannot be modified on execution nodes, nor 
can we expect end users to modify applications. 

Parrot [22] addresses this problem by allowing novel I/O 
services to be transparently connected to unmodified 
applications without requiring kernel changes or any 
privileged activity.  Parrot operates by running an application 
as a child and trapping all attempted system calls using the 
debugging interface.  Modules within Parrot give the 
application access to a variety of external I/O protocols. Any 
I/O service implemented as a C library can be connected to 
Parrot by writing an appropriate module.  Each I/O protocol is 
presented as a directory in the file system namespace.  For 
example, a GridFTP server named ftp.ibcp.fr may be accessed 
under the path /gridftp/ftp.ibcp.fr. 

As discussed above, most applications do not wish to 
address data based on the physical name.  Rather, they wish to 
access a logical address that is then applied to an underlying 
name.  Parrot provides two mechanisms for making this 
mapping at runtime: a static mount table, and a dynamic name 
resolution hook. 

The static mount table resembles the file system mount 
table in a conventional operating system. It consists of a series 
of entries mapping a logical file name to a storage element.  
For example, suppose a BLAST application expects to find its 
data in the /db directory and configuration files in the 
/home/blast directory.  These logical names can be directed to 
two different GridFTP servers with the following mount table: 

 /db  /gridftp/ftp.ibcp.fr/data 
 /home/blast /gridftp/ftp.nd.edu/home 
 
This mechanism can be applied when the set of files needed 

is known in advance and those in the same logical directory 
are stored in the same physical location.  However, for more 
complex configurations, a dynamic mechanism is needed. 

The dynamic name resolution hook is an internal routine 
of Parrot called every time a file is accessed by name.  This 
gives the opportunity for a module to redirect file requests for 
any single file at runtime.  In particular, this mechanism can 
be used to resolve logical file names to physical locations 
using the EGEE file location service.  This allows the decision 
of what file replica to access to be deferred until the moment 
of access. 

IV. RELATED WORK 



They have been numerous groups or projects working on 
grid computing applied to Bioinformatics: Biogrid project [27] 
in Japan, BRIDGES [30] and eScience [18], EuroGRID [33] 
in Europe; in US, there are also the Biomedical Informatics 
Research Network (BIRN) [28] and the North Carolina 
Bioinformatics Grid [37]. Most of them are deploying their 
application on experimental grid (Biogrid, myGrid and 
EuroGRID), or on local cluster (North Carolina). Also large-
scale grids are devoting part of their multiple application 
resources to the bioinformatics applications, like TeraGrid [39] 
in US, DEISA [31] and EGEE [32] in Europe. 

Data are stored and managed in different ways within these 
platforms. Most of them are managing files, replicating them 
and providing remote access with new I/O API: LCG 
middleware with GFAL library in EGEE production platform, 
gLite with gLiteIO in pre-production platform. Others 
examples are about the Internet Backplane Protocol (IBP) [3] 
and the Logistical Runtime System (LoRS) [36]. They supply 
a C API that simplify and automate the management of 
exNode (split of file) on the Logistical Bone (LBone), 
providing users with a networked RAID storage area. Others 
distributed storage environments are dealing with both files 
and object stored into DBMS, like the Storage Resource 
Broker (SRB) [2], OGSA-DAI [38] mediator components, or 
DiscoveryLink [12]. Some of them are providing application 
users with mediation interfaces using SQL or XML query 
interfaces, others through Web services. 

TABLE III 
SOME BIOINFORMATICS RESOURCES DEPLOYED ON THE EGEE GRID 

Resource Grid Descriptor 

Swiss-Prot lfn://genomics_gpsa/db/swissprot/swissprot.
fasta 

And its 
indexes 
in the 
BLAST 
format 

lfn://genomics_gpsa/db/swissprot/swissprot.
fasta.phr 
lfn://genomics_gpsa/db/swissprot/swissprot.
fasta.pin 
lfn://genomics_gpsa/db/swissprot/swissprot.
fasta.psq 

TrEMBL lfn://genomics_gpsa/db/trembl/trembl.fasta 
PROSITE lfn://genomics_gpsa/db/prosite/prosite.dat 

lfn://genomics_gpsa/db/prosite/prosite.doc 
ClustalW ESM tag “genomics_gpsa_clustalw” 
SSearch ESM tag “genomics_gpsa_ssearch” 

Database files have been registered with logical filenames (LFN) within the 
Data Management System (DMS), and programs have been deployed on sites, 
registered also with logical names within the experiment software manager 
(ESM tag). 

 
The HandleSystem [40] is also providing unique persistent 

identifiers for Internet Resources, but these services are linked 
to license fees that could be a limitation. Moreover the 
combinaison of prefix and suffix is making a handle 
composed of numeric string that is not human-friendly, for 
example, "4263537/4000" is a handle for the Handle System 
web site home page. A easy-to-understand naming space is 

needed as the DNS is providing us with IP addresses 
resolution. The GLARE [41] system is a Grid-level 
application that provides users with component registration, 
deployment and provisioning framework. This service is 
focusing on grid applications (activities) deployment, but is 
not dealing with remote access to databases by legacy 
applications that are only able to do local file access calls. 

All of these related works are assuming that users either 
modify the bioinformatics application codes, or that they 
replicate the data on the given nodes before the planned 
computations. Modifying the whole bioinformatics programs 
implies to include the appropriate library calls (in C, Java or 
others) in them, in order to enable them to do remote access 
calls to the remotely-stored biological databases. 

V. DEPLOYING BIOINFORMATICS RESOURCES 
WITHIN EGEE  

A. Virtualization of Bioinformatics Resources 

1)  Defining a Bioinformatics Namespace 

Despite the replica and the software management system 
have no file tree hierarchy, we have decided to create our 
specific namespace with chosen logical filenames and 
program tags. We have then deployed on the EGEE grid the 
representative biological databases and bioinformatics 
programs selected above (see Table III). The data files have 
been registered in the EGEE replica management service 
(RMS) with the appropriate LFNs; and bioinformatics 
programs have been registered tags in the experiment software 
management service (ESM) on several computing elements: 

• databases: lfn://genomics_gpsa/db/dbname/dbfiles 
• programs: genomics_gpsa_program 
 
Both the deployed LFNs and ESM tags play a key-role into 

the scheduling of our future jobs. Indeed, jobs submitted with 
LFN and/or ESM tags within the user’s submission file, will 
be sent according to matchmaking between these logical 
names and the free nodes hosting one physical replica of them. 
We assume that the files have already been replicated to 
several storage elements on the grid according to external 
constraints. 

2)  Virtualizing remote I/O on EGEE 

We have adapted Parrot tool for our application usage on 
the EGEE middleware, we called this modified version 
“Perroquet”. The main change is about the file namespace 
understood by Parrot. We have added the code for the 
recognition of true URL as the LFN is: 

• <protocol>://<hostname>/path/to/resource 
• lfn://genomics_gpsa/db/swissprot/swissprot.fasta 
 
When have also added in Parrot the mechanism for 

resolving these LFNs by querying the EGEE file catalog that 
is in charge of making the name resolution between logical 
namespace and real filenames (SFNs) on the distributed 
storage elements. 



Perroquet is then able to identify LFNs among the program 
command line arguments, to resolve names to locations (SFNs) 
and to get the corresponding SFN from a SE (see Figure 2). 
Thanks to Parrot source code, several transfer protocols are 
available such as for instance FTP, HTTP, or GSI-FTP. We 
use this last one because it is authenticated, encrypted and 
available from the EGEE storage elements. 

The remote I/O are done with local disk cache or without 
for security purpose. In local disk cache mode, Perroquet puts 
the relevant access rights on the cache file and directory and 
remove them after the run. In “on-the-fly” access mode, 
Perroquet is caching remote I/O in a 64KB memory buffer. 

B. Legacy application without remote I/O  

As legacy bioinformatics applications have no remote I/O 
to access remote databases, we need to encapsulate them into 
an execution space that forward their local I/O to remote 
locations. We have tested two ways of providing them with 
remote access to biological database: file replication on the 
local computer or remote I/O. They both mean that the 
prerequisite databases have to been downloaded from the 
remote grid and pushed to the input stream of the program. As 
we cannot modify the application, this remote access has to be 
done by an agent separate from the bioinformatics program.. 

 

Fig. 2. Parrot integration into the EGEE platform. Architecture of the data 
management system with Perroquet, and its integration into the EGEE grid 
platform and middleware (UI: user interface, CE: computing element, SE: 
storage element, WN: worker node, DB: database, LFN: logical file name). 
Perroquet is catching the local I/O and forwarding them through network to 
remote storage element. Several transfer protocols are available such as FTP, 
HTTP, and especially GSI-FTP that is authenticated, encrypted and fully 
compatible with the EGEE grid middleware, component and services. 
Perroquet, is our adaptation of Parrot to the EGEE grid middleware. It 
recognizes canonical URL and EGEE LFNs , like 
lfn://genomics_gpsa/db/Swissprot.fasta, and is also capable of data encryption 
and decryption “on the fly” 

This agent must be able (i) to resolve grid filename(s) to 
locations - from LFN(s) to SFNs - , (ii) to get the data from 
the best location - with the best protocol - and (iii) to launch 
the execution of the program against these downloaded data. 
We use the Perroquet tool as this launcher 

C. File replication vs. remote I/O 

1)  Deployed study sets of biological data 

We have split two protein sequences databases, Swiss-Prot 
and TrEMBL (184,034 entries for Swiss-Prot release 47.2 and 
1,779,481 for TrEMBL release 30.2) into several subsets of 
different protein sequence number The size in bytes of a 
subset file is correlated to the number of sequences stored in 
this subset file, by a linear model, thus we use the number of 
sequence as reference value for our studies. We have deployed 
all the subsets onto the EGEE grid platform using the data 
managing system (DMS). We had labeled them with 
appropriate logical filenames (LFNs, see Table III) into the 
replica manager system (RMS), and randomly replicated these 
LFNs on the storage elements of several grid nodes without 
applying any particular model of replication. 

A local execution model of the selected bioinformatics 
applications has helped us to calibrate these three programs, 
and to decide which of them and which datasets to test on the 
grid: from 200,000-seq subset to 1,000,000-seq for FastA and 
BLAST which are more data intensive, from 50,000-seq to 
200,000-seq for SSearch which is more computing intensive. 

2)  Free storage space on the WN 

In case of file replication to the local storage, the agent 
must make sure that there is enough free space on the local 
storage area of the computing node. Indeed, biological 
database may be several hundred megabytes (see Table I). 
Thus this WN must be able to store this much data on its local 
disk because bioinformatics programs need to access the 
whole database in once run. This constraint of free space will 
be also enhanced in case of a job accessing to several 
databases, or in case of a WN with multiple CPU, then 
accepting multiple in the same time, but sharing the same 
storage space. 

In case of remote I/O with Parrot, the data are put directly 
on the standard input stream of the program, without caching 
them on the local disk. In some cases of special access 
(seek,  …), a cache can be needed if the protocol is not 
supporting such special I/O primitives. 

For large files, the remote I/O mode has the advantage, 
because (i) in most times it doesn’t have to worry about the 
free local space and (ii) this is too late to do this checking of 
the free space when the job is on the worker node. Indeed, it 
should be done before, at least at the job scheduling time. 
Thus the file copy mode implies to modify both the 
information system (to record the free space on WNs) and the 
scheduling mechanism (to include this “free space” element 
when the matching is done between the job requirements and 
the available WNs) whereas the remote I/O mode works with 
the current information system and matching workload. 

3)  Concomitance of data download and job computation 



The file copy mode implies that the agent downloaded the 
database file before the execution of the programs. In the 
remote I/O mode, Parrot is providing the program with the file 
blocks progressively.  With computing intensive programs, 
this should have little impact as with the SSearch program. 
But in case of program that are more data intensive as BLAST 
and FastA, the impact should not be negligible. 

4)  Non-declared input and output files 

As explained above, some bioinformatics programs have 
special behavior regarding the file they needed as input, or the 
files they create as result files. For instance, BLAST program 
expects at each run to find, in the same location of the 
database file, also three others index files; or ClustalW 
produces always a second output file in the same location than 
the declared output file (sequence alignment file). But these 
non-declared files are not present within the command line 
argument of the given program. 

When these files are virtualized with LFNs such as we do it 
with protein sequence databases (see Table III), the program 
will try to attend on the same way to prerequisite non-declared 
LFNs. In case of BLAST, that implies to also gridify the index 
files with the expected LFNs. This could be done easily. 

In file copy mode, the agent has to copy these indexes too. 
The agent has to identify which bioinformatics program will 
be launched, and to get the non-declared file. That means to 
bring knowledge about the program within the agent, with, for 
example, method-specific configuration files. For instance, in 
case of BLAST execution, the agent has to download also the 
indexes of the sequence database. In this way it also increases 
the constraint about free space required on the WN, as seen 
before. 

 

Fig. 3. Download time of a biological database containing 500,000-protein 
sequence (205 Mbytes). We have compared the access to the database file 
through the file copy with “lcg-cp” and through remote I/O with the 
“Perroquet” program. The file is downloaded from any storage element and 
from the near-SE of the computing element (CE). 

 
The remote I/O mode does not care about such issues. 

Parrot catches the I/O requests when they are done. When a 
request is made to open a file the LFN-SFN name resolution is 
done and the transfer begin from the best location 
transparently to the user. The same mechanism is played when 
the program attempts to create a non-declared output file. 

5)  Performances 

In Figure 3 we compare the performances of the two 
transfer mode, local copy and remote I/O, for accessing to a 
remote database or 500,000 protein sequences (205 MB), 
stored on a remote storage element. The database are 
downloaded from any storage element of the EGEE grid and 
from the near-SE of the given worker node. These 
benchmarks show that Parrot has the same efficiency than lcg-
cp (~60 sec), both with local cache mode activated or not. 
This figure also raised the importance of downloading the data 
from the near-SE of the used WN, and not from any SE of the 
grid. Indeed, the performances are four times faster in case of 
access to a SFN on the near-SE. As the biological databases 
are numerous and have large sizes, we certainly won’t be able 
to replicate all of them on all sites (CE & SE), but we will 
need to distribute them according to an efficient model of 
replication 

 

Fig. 4. Comparison of bioinformatics program performances with two 
different file access modes on EGEE grid. We have been using remote I/O 
with Perroquet (“Parrot”, plain curves) or file copy on the worker node 
(“copy”, dashed curves). 

 
In Figure 4, curves show that bioinformatics program used 

with Parrot has equal or better execution time than the 
program computing on copied data. The experiments with lcg-
cp show the overhead due to the download of the file before 
computation. Comparing SSearch curves to BLAST and 
FastA ones, we see that the overhead is function of the size of 
the transferred database, and of the used bioinformatics 
algorithm that can be more or less data intensive, respectively 
BLAST- FastA and SSearch in our work. As lot of biological 
database have size larger than 205 MB, the overhead will be 
in most of cases not negligible for data intensive 
bioinformatics methods. 

VI. CONCLUSIONS 

We have studied several representative biological databases 
and legacy bioinformatics programs for protein sequences 



analysis onto the European EGEE grid. These resources have 
been virtualized within a devoted namespace, open and 
available to biologist and bioinformaticians users registered in 
to the “biomed” virtual organization. Important issues of 
local-only I/O access have been studied (i) with a local copy 
of these databases before the computation and (ii) with the 
remote access provide by the Parrot tool. We observe that 
Parrot has performance equal or better than file copying, with 
the added advantage that the user need not declare all files 
when submitting the job. This grid deployment model of 
legacy bioinformatics applications have been applied to our 
bioinformatics workbenches such as the GPSA bioinformatics 
Web portal, providing biologists with Web transparent access 
to the EGEE grid. 

Future works will be done on the management of access 
rights and authorizations with Access Control Lists (ACLs) on 
these encrypted data, because bioinformatics programs are 
largely used in projects or institutions (like hospitals) that 
require confidentiality, integrity and authorized access to these 
distributed biological data. 
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