

<LRH>10. Distributed Data Analysis</LRH>
COMP: Please use most recent H1 head (i.e., before the end of
each recto page), including section number, for each RRH
throughout Chapter 10.

<RRH></RRH>
<CN>Chapter 10</CN>
<ATL>Distributed Data Analysis: Federated Computing for High-Energy
Physics</ATL>
<AU>Greg Graham, Richard Cavanaugh, Peter Couvares, Alan DeSmet, and Miron
Livny</AU>
<TXT>CMS (Compact Muon Solenoid) is a high-energy physics detector planned for the Large
Hadron Collider (LHC) at the European Center for Nuclear Research (CERN) near Geneva,
Switzerland. CMS is currently under construction and is expected to be completed in 2007, at
which time it will begin to record data from the highest-energy proton–proton collisions
(“events”) yet produced. Data from these collisions will shed light on many fundamental
scientific issues, including a definitive search for the Higgs particle and the possible origin of
mass in the universe, the existence of a new fundamental symmetry of nature called
supersymmetry, and even the possible discovery of new spatial dimensions. The data will contain
information from potentially millions of individual elements within the detector itself, which will
be used to reconstruct the actual collision. Even though these data will be filtered online before
analysis, it is still expected that CMS will produce up to several petabytes of data per year.

Although the CMS detector will not begin taking data until after 2007, hundreds of
physicists around the world, members of the CMS collaboration, are currently taking part in
compute-intensive Monte Carlo simulation studies of the detector and its potential for uncovering
new physics. Monte Carlo simulation studies integrate clean theoretical predictions of underlying
physics against all of the efficiencies and electronic noise of the millions of detector elements in
order to produce realistic simulation data. This simulation data can be used to help predict the
impact of detector design on discovery potential. Once the CMS detector is functioning, the
output of simulation studies will be compared directly against actual data. Such comparisons
provide improved detector calibrations, measurements of physical processes, and indications of
possible scientific discoveries.

The scientists and institutions participating in the CMS collaboration are located
throughout the world. These scientists are not expected to live at CERN for the duration of its
expected 15-year lifetime, but rather need to make significant contributions to the scientific
process “at a distance.” Therefore, even before the completion of the CMS detector, and then
throughout its lifetime, there will be a need to knit scientists together worldwide and put large
heterogeneous worldwide-distributed institutional compute and storage resources at their disposal
in an organized way. In this regard, Grid technology has shown great promise to:

• <BL>manage effectively the addition and removal of heterogeneous institutional
resources in a virtual organization that changes with time;

• expose these resources to the entire worldwide collaboration in a consistent set or
protocols and APIs; and

• provide mechanisms to control and to optimize the enormous flow of data from the CMS
detector to scientists working around the world.</BL>

In order to address these issues, the U.S. participants in the CMS collaboration (US-
CMS) began exploring Grid technology in the autumn of 2002 to accomplish an official
production request of Monte Carlo simulation data. One of these efforts is the US-CMS Grid.
Participating Grid sites include the California Institute of Technology; the Fermi National
Accelerator Laboratory; the University of California, San Diego; the University of Florida, and
the University of Wisconsin, Madison. For a period of time, a group from CERN also joined the
US-CMS Grid effort. Table 10.1 Error! Reference source not found.shows the resources of the
US-CMS Grid (90). Sites were linked by high-bandwidth Internet connections, typically OC12 or
higher, with gigabit or 100-Mbit connections to each computer. Our goal was to complete an
assignment of 1 million “events” requiring roughly 200,000 CPU-h in a 60-day timeframe. This is
roughly the amount of time it took for these same sites to complete an assignment of this size in
the past, managing their own computations using existing non-Grid technology.
ED/AU: “Table 10.1” as meant in above para.?

<TN>Table 10.1</TN><TT> US-CMS Grid Resources</TT>

<TCH1>Site</TCH1> <TCH1>Number of worker
CPUs</TCH1>

<TB>Caltech 40 (0.75 GHz)
40 (2.4 GHz)

Fermilab 80 (0.85 GHz)
University of Florida 80 (1 GHz)
UC San Diego 40 (0.75 GHz)

40 (2.4 GHz)
CERN 72 (2.4 GHz)
UW Madison 5 (0.85 GHz)</TB>

The participating sites are typically organized as cluster farms with server nodes and
worker nodes. The worker nodes were either on the public Internet or behind a NAT firewall.

<H1>10.1 Implementation</H1>
We chose to base the US-CMS Grid upon the basic functionality provided in early versions of the
GriPhyN Virtual Data Toolkit, which is in turn based upon the Globus Toolkit (276) (Chapter 4)
and the Condor High-Throughput Computing System (446) (Chapter 19), including the Condor-G
(292) job submission interface to the Globus Toolkit. In addition, we employed rudimentary
software to manage the US-CMS Virtual Organization. This approach toward basic middleware
functionality allowed rapid middleware deployment and facilitated a relatively high level of fault
tolerance by reducing the variety of possible failure modes.

<H2>10.1.1 The Virtual Data Toolkit</H2>
The Virtual Data Toolkit (VDT) is produced by GriPhyN (93), and includes the core Grid
middleware necessary to deploy and operate a computational Grid. In addition, the VDT employs
a packaging manager known as Pacman for automated installation of Grid middleware to the
various US-CMS Grid sites. Once installed, the Grid site administrator is able to manually
configure the VDT to fit the appropriate local compute cluster architecture.

The US-CMS Grid evolved over several VDT releases, each time providing useful
scalability testing information back to the middleware developers. We relied on the VDT for all
Grid components, which allowed for simple and consistent management of the middleware across
the entire Grid.

This is not to say that Grid middleware deployment was never problematic. There were
problems from time to time with low operating system resource defaults for file handles and
inodes, for example. There were also problems with unreliable file transfers. However, none of
these problems proved to be showstoppers, and more importantly all provided important feedback
to the middleware developers themselves.
<TN>Table 10.2</TN><TT> Software from the VDT 1.1.3, Currently Installed on the US-CMS
Grid</TT>

<TCH1>Virtual data toolkit
components</TCH1>

<TCH1>Version</TCH1> <TCH1>Comments</TCH1>

<TB>Server
 Globus Tookit

2.0

Modified GASS cache/jobmanager

 Condor 6.4.3 Includes DAGMan
 Fault Tolerant Shell 0.99 Provided fault tolerant data transfers
Client
 Globus Clients

2.0

GSI, GridFTP

 Condor-G 6.4.3 —</TB>
The particular version deployed on the US-CMS Grid for the production run described

here was VDT 1.1.3 and 1.1.4, which included core client and server components from the
Globus Toolkit and Condor (see Table 10.2Error! Reference source not found.).

<H2>10.1.2 CMS Specific Software</H2>
The physics simulation software used by CMS is complicated and has evolved over

years—in some cases decades—to embody a great deal of accumulated knowledge and problem-
solving experience. Furthermore, it has taken time for scientists to trust the core software to
perform correctly. For these reasons, it was important to adapt existing simulation software to the
Grid as much as possible, rather than rewrite it from the ground up as a Grid application.

This approach presented challenges, however. Specifically, past practice had been to run
the software in much smaller and more controlled environments than the Grid. For example,
shared-file systems and common user databases were assumed to exist between submission and
execution machines and the necessary software was assumed to be installed locally beforehand.
Also, the standard methodology for running the CMS software had evolved over time from
systems managed by hand on individual computers by a few researchers or small clusters of
loosely managed computers, to large batch systems utilizing large clusters of largely homogenous
resources.

Several layers of management software had therefore been written to help automate the
process of running the multiple computations in order on multiple computers and organizing the
results. In CMS, this included a legacy, Bash script based, job-tracking system (IMPALA), which
provided a relatively robust system for declaring, creating, executing, and tracking large numbers
of individual jobs through a variety of locally resident batch systems. The more recent MCRunjob
(319) package provides a metadata-based approach for specifying more complex workflow
patterns, translating them into a set of submittable jobs in a variety of environments, including
virtual data language, DAGMan directed acyclic graphs, and the legacy IMPALA environment.

In order to get early buy-in from CMS, we utilized as much of the existing scientific and
production-management software as possible, while enabling it to run on the Grid. This approach
enabled direct comparisons between Grid and non-Grid methods. To produce these results as
quickly as possible, we chose to insert an adapter layer of software into the existing system,
called MOP, and reengineer the existing layers as little as possible. See Table 10.3Error!
Reference source not found..

<TN>Table 10.3 </TN><TT> Post-Grid Software Layers</TT>

<TB>Condor/FBS Local site batch system
Globus Toolkit Security, I/O, GRAM resource allocation protocol and services,

GridFTP
Condor-G Grid job management
DAGMan Job dependency management
MOP Grid “wrapper” generation for non-Grid jobs
IMPALA/MCRunJob Job creation layer
CMSIM Physics simulation code</TB>
Actual Monte Carlo production depends most critically on the size of each “event” at the

CMKIN stage (which simulates the “event”): the more by-product particles produced after the
initial proton–proton collision translate into higher processing times for later stages of
computation. The CMSIM stage simulates the CMS detector's response to the particles produced
in the CMKIN stage and is the most CPU intensive of all stages. CMS Monte Carlo production
consists of pipelining several stages together where the output of one stage serves as the input to
the next (434). The longest stages are typically CPU-bound, but some are I/O-bound, and some
vary depending on the data. Table 10.4Error! Reference source not found. summarizes the
typical characteristics of the stages used in CMS Monte Carlo production.

<TN>Table 10.4 </TN><TT> CMS Computation Stages and Their Typical
Characteristics (Approximate)</TT>

<TCH1>Step</TCH1> <TCH1>CPU time
(s/event)</TCH
1>

<TCH1>Output size
(Mb/event)</TCH1
>

<TCH1>Boun
d</TC
H1>

<TB>Stage 1 (CMKIN) 0.05 0.05 CPU
Stage 2 (CMSIM) 350 2.0 CPU
Stage 3 (writeHits) 0.05 1.0 I/O
Stage 4a (writeDigis No-PU)
Stage 4b (writeDigis 1034 PU)

2.0
10.0

0.3
3.0

CPU
CPU and I/O

Stage 5 (ntuple) < 1 0.05 CPU and
I/O</
TB>

<TFTN>Note: The overall results can be highly variable depending on the physics process being
simulated.</TFTN>

Quality assurance considerations require that all productions run uniformly and utilize
specific versions of the CMS software. In order to create a “sandbox” environment for the CMS
binary executables, a distribution after release (DAR) packaging and deployment mechanism was
developed for CMS software. DAR bundles all shared object libraries (including any necessary
gcc libraries) along with scripts for setting up the necessary environment variables for job
execution. The DAR release version corresponding to the particular production run described in
Section 10.2 was then uniformly preinstalled across all US-CMS Grid sites.

CMS Monte Carlo production normally proceeds by breaking up production requests into
250-event collections and processing each collection serially through all stages. For the US-CMS
Grid production during autumn 2002, there were two requests for events. The first request was for
1 million events processed through all steps. The second request was for 500,000 events
processed only through the CMSIM stage.

<H2>10.1.3 Integration Software—MOP</H2>
MOP (short for Monte Carlo Production) is a “Grid adapter” developed for CMS that sits
between the job creation step and the Grid middleware in the Virtual Data Toolkit, and adds

necessary subtasks to each job to enable it to run on the Grid without modification. As such,
MOP provided a Grid interface very much similar to that of a traditional batch system.
ED/AU: Change in above para. OK? Or is “added” an adjective, as
in “the [necessarily] added subtasks”? If the latter, please
clarify the sentence.

The jobs, as produced for the US-CMS Grid production run, were not themselves
particularly “Grid aware.” MOP represented each generated job as directed acyclic graphs
(DAGs), using four DAG node types: stage-in nodes to transport the execution environment to
the worker node, run nodes to run the executables on remote resources using the Globus GRAM
interface, stage-out nodes to transport results back to the submit site, and cleanup nodes to
remove any leftover job state from the worker nodes. From the standpoint of the CMS software,
the jobs are still “local jobs” and MOP takes care of the Grid issues of staging, data transfer, and
cleanup.

During production Grid runs, MOP was invoked to create DAG representations of each
job at submit time. Once a DAG was produced, MOP submitted the DAG to the DAGMan
package of Condor, which ran the DAG nodes using the Condor-G gateway, allowing DAGMan
to run DAG nodes on remote compute sites running Globus job-managers. In turn, these Globus
job-managers are able to run the jobs using local batch queues.

<H2>10.1.4 Virtual Organization</H2>
Much like local networks of machines, worldwide networks of Grid resources require some kind
of centralized user database management. The Globus Toolkit provides a local mechanism for
each system to map Grid user certificates to local users (280) (Chapter 21), but provides no way
to synchronize or automatically distribute this information between multiple systems.

In order to automate the process of adding and removing users from the US-CMS Grid,
we used the Caltech Virtual Organization Group Manager, which stores the user information in a
central LDAP database and allows an administrator to create groups and populate users.

<H1>10.2 The Production Run</H1>
In large collaborative environments, such as that associated with the CMS experiment, the stress
of running large-scale Monte Carlo productions can approach stresses not encountered anywhere
outside of the running of the actual experiment. The consequences of failure in large-scale Monte
Carlo production do not approach those associated with the loss of actual data. However, they
include missing important deadlines set by funding agencies, failure to validate fundamental
computing models, and in the era of data taking they include the possibility of falling behind
competitors in the race for scientific discoveries. In this modern age of high-energy particle
physics, computing is seen more and more as a critical extension to detectors themselves.

The emerging US-CMS Grid entered this highly charged environment during the spring
2002 CMS Monte Carlo production, in support of the technical design report of the data
acquisition system, and quickly fell to its knees! Close inspection of the middleware revealed that
although the underlying Grid computing model was sound, several key components were lacking
in implementation. After a six-month period of reengineering, the US-CMS Grid reemerged in
the autumn of 2002. After breezing through an initial 50,000-event test run in September, the US-
CMS Grid was ready to participate in a 10 million-event study of the backgrounds in the CMS
detector. The part assigned to the US-CMS Grid consisted of a 1 million-event request processed
through all steps Error! Reference source not found.(excepting pileup) plus a 500,000-event
request to be processed through the CMSIM stage only.

CMS Monte Carlo production is highly organized. Conveners of special purpose groups
(organized around specific physics topics) enter production requests into a reference database at
CERN. Production staff at CERN review new requests and break them up into smaller parts. Each
part is assigned to a participating CMS regional center. Regional centers receive requests for
production by e-mail, with each request including a key into the assigned part of the production in
the reference database.

The US-CMS Grid was set up as a virtual regional center in order to participate in the
CMS production. After receipt of an e-mail request, the CMS job creation tools were invoked
with the given key. The tools then contacted the reference database at CERN and downloaded all
necessary parameters via HTTP. Each created job consisted of executable scripts with parameters
to generate 250 events (using the CMKIN stage) and process them through the CMSIM,
writeHits, writeDigis(NoPU), and ntuple making stages for the 1 million-event request;
MCRunJob also create a different, simpler script performing just the CMKIN and CMSIM steps
for the 500,000-event request.

During the running of the US-CMS Grid, the operator would typically generate a few
hundred jobs at a time and assign them to different Grid sites by hand. This approach did not
attempt to use a scheduler or resource broker because we felt that there were still lessons to be
learned lurking in the middleware itself. Job submission involved the invocation of MOP, which
took the job scripts and wrapped them into DAG nodes as described previously. DAGMan then
took these DAGs and, using Condor-G as a backend, was able to run the DAG nodes on remote
Globus job-managers. In the US-CMS Grid, these job-managers were configured to use either
regular Condor or the Fermilab Farm Batch System as queue managers on local clusters.
Information and job output were sent back to the submit site by the “stage-out” DAG node.

We encountered many problems during the run and fixed many of them, including
integration issues arising from the integration of legacy CMS software tools with Grid tools,
bottlenecks arising from operating system limitations, and bugs in both the Grid middleware and
application software.

Every component of the software contributed to the overall “problem count” in some
way. However, we found that with the current level of functionality, we were able to operate the
US-CMS Grid with 1.0 FTE effort during quiescent times over and above normal system
administration and up to 2.5 FTE during crises. This compares favorably with the official spring
2002 Monte Carlo production of CMS, but concrete comparisons are hard to draw because of the
looser organization of the spring 2002 effort, as discussed in the next section. The following are
examples of the problems encountered:

• <BL>(Pre-Grid) During spring 2002, the Globus 2.0 GASS Cache (117) was found to not
support the required level of performance for CMS production. The software was
reengineered in consultation with Condor developers and Globus developers over the
summer of 2002, and released in Globus 2.2.

• It was found that many simultaneous globus-url-copy operations originating from the
MOP master site when submitting many jobs would cause some globus-url-copy
operations to hang. Globus-url-copy operations were wrapped in Fault Tolerant Shell
(FTSH) scripts. FTSH contains semantics to time out and retry shell commands; we
found that it could be applied to many other places to add fault tolerance to existing
applications (see Chapter 19).

• Condor was configured to resubmit failed jobs in some instances. We did not have
sophisticated problem-tracking tools during this run, and therefore there was often an
inability to realize that something was wrong when problems were occurring.

• Jobs sometimes failed due to application code problems. During one episode in
November, middleware was suspected of causing disk cache overruns. A “War Room” of
middleware developers was organized to create a problem tree and explore all of its
branches. Eventually, after three days, the bug was traced to incorrect but innocuous-
looking program input from the job creation step and given to a developer of the job
creation software, after which the problem was diagnosed and fixed within 90 minutes.
More sophisticated error analysis is needed to sort bugs correctly to the right people.

• Condor-G running on the MOP Master site uses a “gahp_server” to handle its
communication with processes running under Globus on remote worker sites, one thread
per tracked process. With over 400 CPUs available to the US-CMS Grid at later stages of
production, running two assignments to produce 1.5 million events, we had to divide
production over two physically separate MOP master machines, to avoid the scaling limit
of the number of gahp_server threads.</BL>

<H1>10.3 Conclusions</H1>
The US-CMS Grid was a success in that it produced all of the required events and provided many
useful insights into operating a Grid in production mode (86). Also, many problems were
uncovered with the software at all levels. Figure 10.1 shows the progress of the US-CMS Grid
full ntuple production during the fall of 2002.

<FIG>Figure 10.1 The two left plots show the US-CMS Grid throughput as a function of time.
The two right plots show the maximum throughput estimated by measuring performance on a
single CPU at 750 MHz. Each completely simulated event required about 430 CPU-s. Adjusting
for different CPUs, a theoretical maximum of 45,000 events/day for the US-CMS Grid was
calculated.</FIG>

Despite the problems, the production was remarkably smooth and sustained for over two
months. The two notable flat spots occur during the SC2002 conference and during the winter
holidays, which reflect loss of manpower to submit new jobs during those periods.

In order to better quantify efficiency, the US-CMS Grid run period was divided into 12
periods of about five days each. The average daily production rate in each interval was compared

to the theoretical maximum daily rate of 45K events per day US-CMS Grid-wide. The average
efficiency was just under 40% (Figure 10.2).

<FIG>Figure 10.2 Performance achieved on the US-CMS Grid, measured in average events per
day, during each of 12 roughly five-day periods, shown as a function of time (above) and in
histogram format (below).</FIG>

This performance is comparable to the conventional CMS spring 2002 production. The
spring 2002 production was more complicated in that it involved more events with pileup and
many more file transfers. Also, it is hard to calculate efficiency of the spring 2002 production
because it is hard to determine when a site was unavailable due to problems or just idle for lack of
a request. Nonetheless, similar estimates of efficiency range from 30 to 50%.

Scheduling functionality was not implemented in the MOP system during the fall 2002
US-CMS Grid run. Rather, jobs were distributed by direct operator specification at job
submission time. MOP was logically divided into the MOP master site and the MOP worker sites.
Jobs were created and submitted from the MOP master site, all input files were staged in from the
MOP master site, and all output was returned to the MOP master site. No replica catalogs
(Chapter 22) were used during the production process itself, but resulting data products were

registered in GDMP (612) at the end of processing. These issues are being studied in anticipation
of a MOP upgrade. During fall 2002, Fermilab hosted the US-CMS Grid MOP master
site.</TXT>

<H1>Acknowledgments</H1>
<ACK>We acknowledge the CMS Core Computing and Software group and the US-CMS
Software and Computing projects for supporting this effort. We especially thank Veronique
Lefebure and Tony Wildish of the CMS Production Team for their support and helpful
discussions. Also thanks to the US-CMS Grid Team: Erik Aslakson, Julian Bunn, Saima Iqbal,
Harvey Newman, Suresh Singh, and Conrad Steenberg of California Institute of Technology; M.
Anzar Afaq, Shafqat Aziz, L. A. T. Bauerdick, Michael Ernst, Joseph Kaiser, Natalia Ratnikova,
Hans Wenzel, and Yujun Wu of Fermi National Accelerator Laboratory; James Branson, Ian
Fisk, and James Letts of University of California, San Diego; Adam Arbree, Paul Avery, Dimitri
Bourilkov, Jorge Rodriguez, and Suchindra Kategari at University of Florida; Jaime Frey, Alain
Roy, and Todd Tannenbaum at University of Wisconsin, Madison.</ACK>

<H1>Further Reading</H1>
<FR>For more information on the topics covered in this chapter, see
http://www.mkp.com/grids.</FR>

	<H1>10.1 Implementation</H1>
	<H2>10.1.1 The Virtual Data Toolkit</H2>
	<H2>10.1.2 CMS Specific Software</H2>
	<H2>10.1.3 Integration Software—MOP</H2>
	<H2>10.1.4 Virtual Organization</H2>

	<H1>10.2 The Production Run</H1>
	<H1>10.3 Conclusions</H1>
	<H1>Acknowledgments</H1>
	<H1>Further Reading</H1>

