
Preserva'on	and	Portability	in	
Distributed	Scien'fic	Compu'ng	

Douglas	Thain	
Grid	5000	Winter	School	
Grenoble,	February	2016	

University	of	Notre	Dame	du	Lac	
Est	1842	

Notre	Dame	de	Paris	
Est	1163	

h>p://ccl.cse.nd.edu	

The	CooperaFve	CompuFng	Lab	
	

The	CooperaFve	CompuFng	Lab	
•  We	collaborate	with	people	who	have	large	
scale	compuFng	problems	in	science,	
engineering,	and	other	fields.	

•  We	operate	computer	systems	on	the	
O(10,000)	cores:	clusters,	clouds,	grids.	

•  We	conduct	computer	science	research	in	the	
context	of	real	people	and	problems.	

•  We	release	open	source	so4ware	for	large	
scale	distributed	compuFng.	

4	h>p://www.nd.edu/~ccl	

DASPOS	Project	
www.daspos.org	

Some	of	Our	Collaborators	
K.	Lannon:	Analyze	2PB	of	
data	produced	by	the	LHC	
experiment	at	CERN	

J.	Izaguirre:	Simulate	10M	
different	configuraFons	of	
a	complex	protein.	

S.	Emrich:	Analyze	DNA	in	
thousands	of	genomes	for	
similar	sub-sequences.	

P.	Flynn:	ComputaFonal	
experiments	on	millions	of	
acquired	face	videos.	

Reproducibility	in	ScienFfic	CompuFng	
is	Very	Poor	Today	

•  Can	I	re-run	a	result	from	a	colleague	from	five	
years	ago,	and	obtain	the	same	result?	

•  How	about	a	student	in	my	lab	from	last	week?	
•  Today,	are	we	preparing	for	our	current	results	to	
be	re-used	by	others	five	years	from	now?	

•  MulFple	reasons	why	not:	
–  Rapid	technological	change.	
– No	archival	of	arFfacts.	
– Many	implicit	dependencies.	
–  Lack	of	backwards	compaFbility.	
–  Lack	of	social	incenFves.	

Our	scienFfic	collaborators	see	the	
value	in	reproducibility…	

	
But	only	if	it	can	be	done	

-	easily	
-	at	large	scale	

-	with	high	performance	

In	principle,	preserving	a	
sofware	execuFon	is	easy.	

I	want	to	preserve	my	simulaFon	method	
and	results	so	other	people	can	try	it	out.	

data	 output	

DOI:10.XXXX	 DOI:10.ZZZZ	

DOI:10.CCCC	

DOI:10.YYYY	

…	and	repeat	this	1M	Fmes	
with	different	–p	values.	

mysim.exe	–in	data	–out	output	–p	10	

But	it’s	not	that	simple!	

I	want	to	preserve	my	simulaFon	method	
and	results	so	other	people	can	try	it	out.	

data	 output	

mysim.exe	–in	data	–out	output	–p	10	

config	

calib	 HTTP	GET	

Green	Goat	Linux	57.83.09.B	

libsim	
ruby	

X86-64	CPU	/	64GB	RAM	/	200GB	Disk	

SIM_MODE=clever	

The	problem	is	
implicit	dependencies:	

	
(things	you	need	but	cannot	see)	

	

How	do	we	find	them?	
How	do	we	deliver	them?	

Two	approaches:	
	

Preserve	the	Mess	
(VMs,	Packaging)	

	
Encourage	Cleanliness	

(CVMFS,	Umbrella,	and	Prune)	

Preserve	the	Mess:	Save	a	VM	

data	 output	

sim.exe	–in	data	–out	output	–p	10	

config	

Green	Goat	Linux	57.83.09.B	

libsim	
ruby	

Hardware	

SIM_MODE=clever	

Virtual	Hardware	

data	 output	

sim.exe	–in	data	–out	output		–p	10	

config	

Green	Goat	Linux	57.83.09.B	

libsim	
ruby	

SIM_MODE=clever	

VMM	

DOI:10.XXXX	

calib	 HTTP	GET	

Preserve	the	Mess:	Save	a	VM	

•  Not	a	bad	place	to	start,	but:	
– Captures	more	things	than	necessary.	
– DuplicaFon	across	similar	VM	images.	
– Hard	to	disentangle	things	logically	–	what	if	you	
want	to	run	the	same	thing	with	a	new	OS?	

– Doesn’t	capture	network	interacFons.	
– May	be	coupled	to	a	specific	VM	technology.	
– VM	services	are	not	data	archives.	

Preserve	the	Mess:	
Trace	Individual	Dependencies	

data	 output	

sim.exe	–in	data	–out	output	–p	10	

config	

Green	Goat	Linux	57.83.09.B	

libsim	
ruby	

Hardware	

SIM_MODE=clever	
calib	 HTTP	GET	

/home/fred/data	
/home/fred/config	
/home/fred/sim.exe	
/usr/lib/libsim	
/usr/bin/ruby	
h`p://somewhere/calib	
.	.	.	

Resource	Actually	Used	Original	Machine	

A	portable	package	that	can	be	
re-executed	using	Docker,	

Parrot,	or	Amazon	

Parrot	

Trace	all	
system	calls	

	Case	Study:	166TB	reduced	to	a	21GB	package.		

Haiyan	Meng,	Ma>hias	Wolf,	Peter	Ivie,	Anna	Woodard,	Michael	Hildreth,	Douglas	Thain,	
A	Case	Study	in	Preserving	a	High	Energy	Physics	Applica'on	with	Parrot,	
Journal	of	Physics:	Conference	Series,	December,	2015.	

Preserve	the	Mess:	
Trace	Individual	Dependencies	

•  Solves	some	problems:	
– Captures	only	what	is	necessary.	
– Observes	network	interacFons.	
– Portable	across	VM	technologies.	

•  SFll	has	some	of	the	same	problems:	
– Hard	to	disentangle	things	logically	–	what	if	you	
want	to	run	the	same	thing	with	a	new	OS?	

– DuplicaFon	across	similar	VM	images	/	packages.	
– VM	services	are	not	data	archives.	

Encourage	Cleanliess:	
First,	preserve	the	necessary	sofware.	

Then,	design	apps	to	access	it.	
	

Case	Study:	
CMS	Data	Analysis	at	Global	Scale	

with	Parrot	and	CMVFS	
	

Large	Hadron	Collider	 Compact	Muon	Solenoid	

Worldwide	LHC	CompuFng	Grid	
Many	PB	
Per	year	

Online	Trigger	

100	GB/s	

CMS	Group	at	Notre	Dame	

Sample	Problem:	
	
Search	for	events	like	this:	
	
t	t	H			->			τ	τ			->		(many)	
	
τ	decays	too	quickly	to	be	
observed	directly,	so	observe	the	
many	decay	products	and	work	
backwards.	
	
Was	the	Higgs	Boson	generated?	
	
(One	run	requires	successive	
reducFon	of	many	TB	of	data	
using	hundreds	of	CPU	years.)	

Anna	Woodard	Ma>hias	Wolf	

Prof.	Hildreth	 Prof.	Lannon	

CMS	ApplicaFon	Sofware	
•  Carefully	curated	and	versioned	collecFon	of	
analysis	sofware,	data	access	libraries,	and	
visualizaFon	tools.		(Good	news!)	

•  Several	hundred	GB	of	executables,	compilers,	
scripts,	libraries,	configuraFon	files…	

•  User	expects:	

•  How	can	we	deliver	the	sofware	everywhere?	

export	CMSSW	/path/to/cmssw	
$CMSSW/cmsset_default.sh	

Parrot	Virtual	File	System	

Unix	
Appl	

Parrot	Virtual	File	System	

Local	 iRODS	 Chirp	 HTTP	 CVMFS	

Capture	System	
Calls	via	ptrace	

/home	=	/chirp/server/myhome	
/sofware	=	/cvmfs/cms.cern.ch/cmssof	

Custom	Namespace	

File	Access	Tracing	
Sandboxing	
User	ID	Mapping	
.	.	.	

Parrot	runs	as	an	ordinary	user,	so	no	special	privileges	required	to	install	and	use.	
Makes	it	useful	for	harnessing	opportunisFc	machines	via	a	batch	system.	

How	to	Use	Parrot	
%	parrot_run	bash	
								(starts	new	shell	with	parrot	enabled)	
	
%	cat	/h>p/www.google.com	
							(see	html	source	of	web	page)	
	
%	cd	/anonfp/fp.gnu.org	
						(browse	GNU	so4ware	archive)	
	
%	cd	/cvmfs/cms.cern.ch	
					(see	global	view	of	CMS	so4ware	via	CVMFS)	
	

h>p://ccl.cse.nd.edu/sofware/parrot	

CVMFS	Filesystem	

www	
server	

CMS	
Task	

Parrot	

squid	
proxy	squid	
proxy	squid	
proxy	

CVMFS	Driver	
meta
data	

data	

data	

data	

meta
data	

data	

data	

CAS	Cache	

CMS	
Sofware	
967	GB	

31M	files	

Content	
Addressable	

Storage	

Bu
ild
	C
AS

	

HTTP	GET	 HTTP	GET	

h`p://cernvm.cern.ch/portal/filesystem	

Parrot	+	CVMFS	at	Scale	
cms	

parrot	
$$$	

cms	

parrot	

cms	

parrot	 CMSSW	
$	 $	 $	

CMS	
Sofware	
967	GB	
31M	files	

/cvmfs/cms.cern.ch	

cms	

parrot	
$$$	

cms	

parrot	

cms	

parrot	
$	 $	 $	

cms	

parrot	
CMSSW	

cms	

parrot	

cms	

parrot	

copy	

HPC	Center:	
No	network	access.	
No	storage	on	node.	

On	
demand	
access.	

Parrot	+	CVMFS	

•  Global	distribuFon	of	a	widely	used	sofware	
stack,	with	updates	automaFcally	deployed.	

•  Metadata	is	downloaded	in	bulk,	so	directory	
operaFons	are	all	fast	and	local.	

•  Only	the	subset	of	files	actually	used	by	an	
applicaFons	are	downloaded.		(Typically	MB)	

•  Data	sharing	at	machine,	cluster,	and	site.	

Jakob	Blomer,	Predrag	Buncic,	Rene	Meusel,	Gerardo	Ganis,	Igor	Sfiligoi	and	Douglas	Thain,	
The	Evolu'on	of	Global	Scale	Filesystems	for	Scien'fic	Sofware	Distribu'on,	
IEEE/AIP	CompuIng	in	Science	and	Engineering,	17(6),	pages	61-71,	December,	2015.	

The	Good	News	
•  ND	daily	producFon	runs	on	1K	cores.	
•  Largest	runs:	10K	cores	on	data	analysis	jobs,	
and	20K	cores	on	simulaFon	jobs.	

•  One	instance	of	Lobster	at	ND	is	larger	than	all	
CMS	Tier-3s,	and	10%	of	the	CMS	WLCG.	

•  CVMFS	distributes	sofware	to	O(100K)	cores	
around	the	world	via	FUSE	or	Parrot.	

Anna	Woodard,	Ma>hias	Wolf,	Charles	Mueller,	Nil	Valls,	Ben	Tovar,	Patrick	Donnelly,	Peter	Ivie,	Kenyi	
Hurtado	Anampa,	Paul	Brenner,	Douglas	Thain,	Kevin	Lannon	and	Michael	Hildreth,	
Scaling	Data	Intensive	Physics	Applica'ons	to	10k	Cores	on	Non-Dedicated	Clusters	with	Lobster,	
IEEE	Conference	on	Cluster	CompuIng,	September,	2015.	

Running	on	10K	Cores	

Portability	and	Reproducibility	
are	Closely	Related!	

•  To	get	portability	around	the	world,	we:	
–  Store	a	single,	consistent	environment	image.	
–  Import	that	image	at	execuFon	sites.	
–  Verify	that	the	environment	is	correct.	
– Allow	the	end-user	to	control	the	namespace.	

•  To	get	reproducibility,	we	need	more:	
– Disallow	access	to	anything	not	in	the	image.	
– Give	user	control	over	storage	of	the	image.	
–  Bring	together	mul'ple	kinds	of	dependencies.	

Encourage	Cleanliness:	
	

We	want	a	structured	way	
to	compose	an	applicaFon	with	

mul%ple	dependencies.	
	

Enable	preservaFon	and	sharing	of	
data	and	images	for	efficiency.	

	
	
	

Encourage	Cleanliness:	Umbrella	
kernel:	{	name:	“Linux”,		version:	“3.2”;	}	
opsys:	{	name:	“Red	Hat”,		version:	“6.1”	}	
	
sofware:	{	

	mysim:	{	
	 	url: 	 	“doi://10.WW/ZZZZ”	
	 	mount: 	“/sof/sim”,	
	}	

}	
data:		{	

	input:	{	
	 	url:	 	 	“h`p://some.url”	
	 	mount	: 	“/data/input”,	
	}	
	calib:		{	
	 	url: 	 	“doi://10.XX/YYYY”	
	 	mount: 	“/data/calib”,	
	}		

}	

“umbrella	run	mysim.json”	
mysim.json	

RedHat	6.1	

Linux	3.2.4	

mysim	

input	 calib	

RedHat	6.1	

input	

mysim	

calib	

Online	Data	Archives	

RedHat	6.1	

RedHat	6.2	

Mysim	3.1	

Mysim	3.2	

InsFtuFonal	Repository	

input1	

calib1	

input2	

calib2	

Linux	3.2.4	

Linux	3.2.5	

RedHat	6.1	

Linux	3.2.4	

Mysim	3.1	

input1	

Umbrella	specifies	a	reproducible	environment	while	
avoiding	duplicaFon	and	enabling	precise	adjustments.	

Run	the	experiment	
Same	thing,	but	use	
different	input	data.	

Same	thing,	but	
update	the	OS	

RedHat	6.1	

Linux	3.2.4	

Mysim	3.1	

input2	

RedHat	6.2	

Linux	3.2.4	

Mysim	3.1	

input2	

Haiyan	Meng	and	Douglas	Thain,	Umbrella:	A	Portable	Environment	Creator	for	Reproducible	
Compu'ng	on	Clusters,	Clouds,	and	Grids,	Virt.	Tech.	for	Distributed	CompuIng,	June	2015.	

SpecificaFon	is	More	Important	
Than	Mechanism	

•  Umbrella	can	work	in	a	variety	of	ways:	
– NaFve	Hardware:	Just	check	for	compaFbility.	
– Amazon:	allocate	VM,	copy	and	unpack	tarballs.	
– Docker:	create	container,	mount	volumes.	
–  Parrot:	Download	tarballs,	mount	at	runFme.	
–  Condor:	Request	compaFble	machine.	

•  More	ways	will	be	possible	in	the	future	as	
technologies	come	and	go.	

•  Key	requirement:	Efficient	runFme	composiFon,	
rather	than	copying,	to	allow	shared	deps.	

Encourage	Cleanliness:	
	

Construct	workflows	from	carefully	
specified	building	blocks.	

Encouraging	Cleanliness:	PRUNE	

•  ObservaFon:	The	Unix	execuFon	model	is	part	of	
the	problem,	because	it	allows	implicit	deps.	

•  Can	we	improve	upon	the	standard	command-
line	shell	interface	to	make	it	reproducible?	

•  Instead	of	interpreFng	an	opaque	string:	
mysim.exe	–in	data	–out	calib	

•  Ask	the	user	to	invoke	a	funcFon	instead:	
output	=	mysim(input,	calib)	IN	ENV	mysim.json	

PRUNE	–	Preserving	Run	Environment	

PUT	“/tmp/input1.dat”	AS	“input1” 	[id	3ba8c2]	
PUT	“/tmp/input2.dat”	AS	“input2” 	[id	dab209]	
PUT	“/tmp/calib.dat”				AS	“calib” 	[id	64c2fa]	
PUT	“sim.funcFon”								AS	“sim”	 	[id	fffda7]	
	
out1	=	sim(input1,	calib)	IN	ENV	mysim.json	

	[out1	is	bab598]	
out2	=	sim(input2,	calib)	IN	ENV	mysim.json	

	[out2	is	392caf]	
out3	=	sim(input2,	calib2)	IN	ENV	be`ersim.json	

	[out3	is	232768]	

RedHat	6.1	

RedHat	6.2	

Mysim	3.1	

Mysim	3.2	

Online	Data	Archive	

input1	

calib1	

outpu11	

myenv1	

Linux	3.2.4	

Linux	3.2.5	

PRUNE	connects	together	precisely	reproducible	
execuFons	and	gives	each	item	a	unique	idenFfier	

myenv1	

input1	

calib1	

output	1	sim	

output1	=	sim(input1,	calib1)	IN	ENV	mysim.json	

bab598	=	fffda7	(3ba8c2,	64c2fa)	IN	ENV	c8c832	

myenv1	

sim2	

PRUNE	is	like	
Version	Control	for	Workflows	

PRUNE	
Repo	1	

PRUNE	
Repo	2	

PUT	A	
PUT	B	
X=F(A,B)	
PUT	C	
Y=F(A,C)	

B	 A	 C	

F	 F	

X	 Y	

EXPORT	Y	TO	FILE	

IMPORT	FILE	
Z	=	F(B,D)	
	
	
	

E1	

A	 C	

F	

Y	

E1	

C	 A	

F	

Y	

E1	

D	

F	

Z	

ScienFfic	Reproducibility	
is	also	a	Social	Problem	

•  Do	we	reward	researchers	that	provide	
detailed	descripFons	of	their	work.	

•  Do	we	insist	that	publicaFons	reveal	their	
configuraFons	in	a	rigorous	way?	

•  Do	we	provide	resources	for	archiving	and	
using	shared	configuraFons?	

•  Technology	can	help,	but	there	must	be	
appropriate	incenFves.	

RecapitulaFon	

•  Key	problem:	User	cannot	see	the	implicit	
dependencies	that	are	criFcal	to	their	code.	

•  Preserve	the	Mess:	
– VMs:	Just	capture	everything	present.	
– Parrot+Packaging:	Capture	only	what	is	actually	used.	

•  	Encourage	Cleanliness:	
– Parrot+CVMFS:	Access	deps	over	the	network.	
– Umbrella:	Describe	all	deps	of	a	single	execuFon.	
– PRUNE:	Like	version	control	for	workflows.	

Advice	on	
Designing	for	Reproducibility	

•  Start	with	a	clean	slate.	
(Clean	filesystem,	empty	environment,	etc.)	

•  Use	explicit	reference	to	dependencies.	
(Prefer	command	line	args	over	environment	vars.)	

•  Do	not	permit	unused	dependencies.	
(Otherwise	dep	lists	grow	without	bound.)	

•  Separate	the	logical	and	physical	namespaces.	
(Otherwise	you	cannot	move	things	around.)	

•  Preserve	dependencies	before	using	them.	
(Otherwise	you	will	forget	to	preserve	them.)	

Many	Open	Problems!	

•  Naming:	Tension	between	usability	and	
durability:	DOIs,	UUIDs,	HMACs,	.	.	.	

•  Overhead:	Tools	must	be	close	to	naFve	
performance,	or	they	won’t	get	used.	

•  Usability:	Do	users	have	to	change	behavior?	
•  Layers:	Preserve	program	binaries,	or	sources	+	
compilers,	or	something	else?	

•  Repositories:	Will	they	take	provisional	data?	
•  CompaFbility:	Can	we	plug	into	exisFng	tools?	
•  ComposiFon:	Connect	systems	together?	

Acknowledgements	

45	

Center	for	Research	CompuFng	
Paul	Brenner	
Sergeui	Fedorov	

CCL	Team	
Ben	Tovar	
Peter	Ivie	
Patrick	Donnelly	

Notre	Dame	CMS	Team	
Anna	Woodard	
Ma>hias	Wolf	
Chales	Mueller	
Nil	Valls	
Kenyi	Hurtado	
Kevin	Lannon	
Michael	Hildreth	

HEP	Community	
Jakob	Blomer	–	CVMFS	
David	Dykstra	-	FronFer	

NSF	Grant	ACI	1148330:	
“ConnecFng	
Cyberinfrastructure	with	
the	CooperaFve	
CompuFng	Tools”	

Data	and	Sofware	PreservaFon	
					for	Open	Science	

h>p://www.daspos.org	
	
	

The	CooperaFve	CompuFng	Lab	
h>p://ccl.cse.nd.edu	

Prof.	Douglas	Thain	
h>p://www.nd.edu/~dthain	
@ProfThain	

