
Challenges	in	Delivering	and	Deploying	
Software	at	Scale	in	Large	Clusters	

Douglas	Thain	and	Kyle	Sweeney	
University	of	Notre	Dame	

{dthain|ksweene3}@nd.edu	
	
	
	

Software	Deployment	on	HPC	
•  Classic	Approach	

– Single	process	MPI	app	created	by	end	user.	
– Sysadmin	installs,	tests,	proves	the	application.	
– Adjust	to	exploit	local	libraries	/	capabilities.	
– Application	satisfied	with	a	single	site.	

•  Evolving	Approach	
– Complex	stacks	of	commodity	software.	
– Developer	is	not	the	user!	
–  Installed	by	end	user	just	in	time.	
– Users	migrate	quickly	between	sites.	

Problem:	Software	Deployment	
•  Getting	software	installed	on	a	new	site	is	a	
big	pain!		The	user	(probably)	knows	the	top	
level	package,	but	doesn't	know:	
– How	they	set	up	the	package	(sometime	last	year)	
– Dependencies	of	the	top-level	package.	
– Which	packages	are	system	default	vs	optional	
– How	to	import	the	package	into	their	
environment	via	PATH,	LD_LIBRARY_PATH,	etc.	

•  Many	scientific	codes	are	not	distributed	via	
rpm,	yum,	pkg,	etc.		(and	user	isn't	root)	

Typical	User	Dialog	Installing	BLAST	

"I just need BLAST."
"Oh wait, I need Python!"
"Sorry, Python 2.7.12"
"Python requires SSL?"
"What on earth is pcre?"
"I give up!"

VC3:	Virtual	Clusters	
for	Community	Computation	

Douglas	Thain,	University	of	Notre	Dame	
Rob	Gardner,	University	of	Chicago	

John	Hover,	Brookhaven	National	Lab	

http://virtualclusters.org	

Lincoln Bryant, Jeremy Van, Benedikt Riedel, Robert Gardner,
Jose Caballero, John Hover, Ben Tovar, and Douglas Thain,
VC3: A Virtual Cluster Service for Community Computation,
PEARC 2018. DOI: 10.1145/3219104.3219125

You	have	developed	a	large	scale	workload	which	runs	successfully	at	a	University	cluster.	

Now,	you	want	to	migrate	and	expand	that	application	to	national-scale	infrastructure.	
(And	allow	others	to	easily	access	and	run	similar	workloads.)	

Traditional	HPC	Facility	 Distributed	HTC	Facility	 Commercial	Cloud	

Traditional	HPC	Facility	 Distributed	HTC	Facility	 Commercial	Cloud	

Concept:	Virtual	Cluster	
•  200	nodes	of	24	cores	and	64GB	RAM/node	
•  150GB	local	disk	per	node	
•  100TB	shared	storage	space	
•  10Gb	outgoing	public	internet	access	for	data	
•  CMS	software	8.1.3	and	python	2.7	

Virtual	Cluster	Service	

Virtual	
Cluster	
Factory	

Deploy	Services	 Deploy	Services	 Deploy	Services	

Virtual	
Cluster	
Factory	

Virtual	Cluster	

Virtual	
Cluster	
Factory	

Virtual	
Cluster	
Factory	

Virtual	
Cluster	
Factory	

How	do	we	get	complex	software	
delivered	and	deployed	to	diverse		

computing	resources?	
	

(without	bothering	sysadmins)	

Delivery	vs	Deployment	

•  Delivery:	Articulating	and	installing	all	of	the	
necessary	components	at	one	site.	

•  Deployment:	Moving	all	of	the	necessary	
components	to	each	individual	cluster	node	in	
an	efficient	manner.		

Example:	CMS	Analysis	Software	
Large Hadron Collider Compact Muon Solenoid

Worldwide LHC Computing Grid
Many PB
Per year

Online Trigger

100 GB/s

Example:	CMS	Analysis	Software	
•  Developed	over	the	course	of	decades	by	
1000s	of	contributors	with	different	expertise.	

•  Core	codes	in	F77/F90/C99/C++18	+	shell	
scripts,	perl	and	python,	scripts,	shared	
libraries,	config	files,	DSLs…	

•  Centrally	curated	by	experts	at	CERN	for	
consistency,	reproducibility,	etc.	

•  One	release:	975GB,	31.4M	files,	3570	dirs.	
•  Releases	are	very	frequent!	

Example:	MAKER	Genome	Pipeline	

Example:	MAKER	Genome	Pipeline	
•  Large	number	of	software	dependencies	
(OpenMPI,	Perl	5,	Python	2.7,	RepeatMasker,	
BLAST,	several	Perl	modules)	

•  Composed	of	many	sub-programs	written	in	
different	languages	(Perl,	Python,	C/C++)	

•  21,918	files	in	1,757	directories	
•  Typical	installation	model:	
Ask	author	for	help!	

Software	Deployment/Delivery	
•  Filesystem	Methods	

– Big	Bucket	of	Software!	
– MetaFS:	Metadata	Acceleration	
– CVMFS:	A	Global	Filesystem	

•  Packaging	Methods	
– VC3-Builder:	Automated	Package	Installation	
– Builder	+	Workflows	

•  Container	Methods	
– Container	Technologies	
– Containers	+	Workflows	

Big	Bucket	of	Software!	
•  Collect	everything	–	binaries,	interpreters,	
libraries	–	into	one	big	tarball.	

•  Delivery	is	easy:	copy,	unpack,	setenv.	
–  (Not	all	software	can	be	relocated	to	a	new	path)	

•  User-compatible	approach	–	no	sysadmin	
support	needed,	occupies	user	storage,	etc.	

•  Just	set	up	batch	jobs	to	refer	to	the	deployed	
location,	set	PATH,	and	go.	

But:	Metadata	Storms!	

•  Common	behavior:	long	burst	of	metadata	
access	at	the	beginning	of	an	application:	
– Search	through	PATH	for	executables.	
– Search	through	LD_LIBRARY_PATH	for	libraries.	
– Load	Java	classes	from	CLASSPATH.	
– Load	extensions	from	file	system.	
– Bash	script?		Repeat	for	every	single	line!	

•  Complex	program	startup	can	result	in	
millions	of	metadata	transactions!	

Metadata	Storm	

Metadata Server

Directory Tree

Program	

Data Server Data Server

stat
readdir
access

open

read/write

Same problem on any
parallel filesystem: Ceph,
HDFS, Panasas, Lustre, …

MAKER	Metadata	Storm	
Single	Node	Filesystem	Load	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Tim	Shaffer	and	Douglas	Thain,	Taming	Metadata	Storms	in	Parallel	
Filesystems	with	MetaFS,	PDSW	Workshop,	2017.	http://dx.doi.org/
10.1145/3149393.3149401	

Idea:	Bulk	Metadata	Distribution	

•  We	know	some	things	in	advance:	
– Which	nodes	need	to	load	the	software.	
– Which	software	is	needed.	
– Software	won't	change	during	the	run.	

•  Idea:	
– Build	up	all	the	metadata	needed	in	advance.	
– Deliver	it	in	bulk	to	each	node.	
– Cache	it	for	as	long	as	the	workflow	runs.	

Bulk	Metadata	Load	

Metadata Server

Directory Tree

Program	

Metadata	
Listing	

Traversal	
Script	

FUSE	

Metadata	
Listing	

Bu
lk
	

Tr
an
sf
er
	

Software metadata is cached
on all nodes for the
duration of the workflow
and served at $$$ speed.

read / write

	
	
	

CVMFS	Filesystem	on	>100K	Cores	
Around	the	World	

CMS	Software	
967GB	File	System	

at	CERN	

App	

FUSE	

Metadata	
And	

Checksums	
A	

B	 C	

Individual Files

CVMFS	

App	

FUSE	

CVMFS	

$$$	

$$$	 $$$	

CVMFS: Cern-VM Filesystem

Generate	
Index	

Proxy
Cache
Network

Some	Quick	Numbers	

Jakob	Blomer,	Predrag	Buncic,	Rene	Meusel,	Gerardo	Ganis,	Igor	Sfiligoi	and	Douglas	
Thain,	The	Evolution	of	Global	Scale	Filesystems	for	Scientific	Software	Distribution,	
IEEE/AIP	Computing	in	Science	and	Engineering,	17(6),	pages	61-71,	December,	2015.	
DOI:	10.1109/MCSE.2015.111	

Nearly 2.5M metadata
ops to start application

Reduced to a load of a
single 147MB metadata file.

However	CVMFS	on	HPC	is	tricky!	

•  Mounting	filesystem	on	user	nodes	
– FUSE	->	requires	some	degree	of	privilege	
– Parrot	->	requires	precise	ptrace	behavior	

•  Live	network	access	can	be	a	problem.	
– Cache	software	in	advance	locally.	
– But	which	parts	are	needed	for	job	X?	

•  CVMFS	itself	can	be	metadata	intensive!	
– One	site:	Admins	limited	number	of	in-memory	
inodes	allocatable	by	a	given	user,	couldn't	run!	

Software	Deployment/Delivery	
•  Filesystem	Methods	

– Big	Bucket	of	Software!	
– MetaFS:	Metadata	Acceleration	
– CVMFS:	A	Global	Filesystem	

•  Packaging	Methods	
– VC3-Builder:	Automated	Package	Installation	
– Builder	+	Workflows	

•  Container	Methods	
– Wharf:	Docker	on	Shared	Filesystems	
– Containers	+	Workflows	

User-Level	Package	Managers	

•  Idea:	Provide	build	recipes	for	many	packages.	
•  Build	software	automatically	in	user	space,	
each	package	in	its	own	directory.	

•  Only	activate	software	needed	for	a	particular	
run.		(PATH,	LD_LIBRARY_PATH,…)	

•  Examples:	
– Nix	–	Build	from	ground	up	for	reproducibility.	
– Spack	–	Build	for	integration	with	HPC	modules.	
– VC3-Builder	–	Build	via	distributed	resources.	

	

MAKER	Bioinformatics	Pipeline	

Sealed	Package	
	
	
	

VC3-Builder	Architecture	

Upstream	
Sources	

Builder	

Cached	
Sources	

Install	
Tree	

Task	

Task Sandbox A	 B	

C	 D	

Software	
Recipes	

Cached	
Recipes	

A	 B	

C	 D	
Recipe	

Archival or
Disconnected
Operation

PATH
PYTHONPATH
LD_LIBRARY_PATH

..Plan: ncbi-blast => [,]

..Try: ncbi-blast => v2.2.28

....Plan: perl => [v5.008,]

....Try: perl => v5.10.0

....could not add any source for: perl v5.010 => [v5.8.0,]

....Try: perl => v5.16.0

....could not add any source for: perl v5.016 => [v5.8.0,]

....Try: perl => v5.24.0

......Plan: perl-vc3-modules => [v0.001.000,]

......Try: perl-vc3-modules => v0.1.0

......Success: perl-vc3-modules v0.1.0 => [v0.1.0,]

....Success: perl v5.24.0 => [v5.8.0,]

....Plan: python => [v2.006,]

....Try: python => v2.6.0

....could not add any source for: python v2.006 => [v2.6.0,]

....Try: python => v2.7.12

......Plan: openssl => [v1.000,]
 ………………..
Downloading 'Python-2.7.12.tgz' from http://download.virtualclusters.org/builder-files
details: /tmp/test/vc3-root/x86_64/redhat6/python/v2.7.12/python-build-log
processing for ncbi-blast-v2.2.28
preparing 'ncbi-blast' for x86_64/redhat6
Downloading 'ncbi-blast-2.2.28+-x64-linux.tar.gz' from http://download.virtualclusters.org…
details: /tmp/test/vc3-root/x86_64/redhat6/ncbi-blast/v2.2.28/ncbi-blast-build-log

"vc3-builder	–require	ncbi-blast"	
(New Shell with Desired Environment)

bash$ which blastx
/tmp/test/vc3-root/x86_64/redhat6/ncbi-blast/v2.2.28/
bin/blastx

bash$ blastx –help
USAGE
 blastx [-h] [-help] [-import_search_strategy filename]
 . . .

bash$ exit

Problem:	Long	Build	on	Head	Node	
•  Many	computing	sites	limit	the	amount	of	
work	that	can	be	done	on	the	head	node,	so	
as	to	maintain	quality	of	service	for	everyone.	

•  Solution:	Move	the	build	jobs	out	to	the	
cluster	nodes.			(Which	may	not	have	network	
connections.)	

•  Idea:	Reduce	the	problem	to	something	we	
already	know	how	to	do:	Workflow!	

•  But	how	do	we	bootstrap	the	workflow	
software?		With	the	builder!	

vc3-builder	
				--require	makeflow	
				--require	ncbi-blast	
				--	
				makeflow	–T	condor	blast.mf	

Head	Node	
	
	
	
	
	
	
	
	

Bootstrapping	a	Workflow	

Upstream	
Sources	

Builder	

Software	
Recipes	 Worker	

Nodes	

Makeflow	 Makeflow	

Build	
Task	

Build	
Task	

Build	
Task	

Build	
Task	

Build	
Task	

Build	
Task	

Build
Makeflow

Build
BLAST

BLAST	

BLAST	
Task	

BLAST	
Task	

BLAST	
Task	

BLAST	
Task	

BLAST	
Task	

BLAST	
Task	

Example	Applications	

MAKER Octave
Benjamin Tovar, Nicholas Hazekamp, Nathaniel Kremer-Herman, and Douglas
Thain, Automatic Dependency Management for Scientific Applications on Clusters,
IEEE International Conference on Cloud Engineering (IC2E) , April, 2018.

Delivering	a	Global	Filesystem		
with	VC3-Builder	

..Plan: cvmfs => [,]

..Try: cvmfs => v2.0.0

....Plan: parrot => [v6.0.16,]

....Try: parrot => v6.1.1

......Plan: cctools => [v6.1.1,]

......Try: cctools => v6.1.1

........Plan: zlib => [v1.002,]

........Try: zlib => v1.2.8

........Success: zlib v1.2.8 => [v1.2.0,]

......Fail-prereq: cctools-v6.1.1

........Plan: perl => [v5.010.000, v5.010001]

........Try: perl => v5.10.0

..........Plan: perl-vc3-modules => [v0.001.000,]

..........Try: perl-vc3-modules => v0.1.0

..........Success: perl-vc3-modules v0.1.0 => [v0.1.0,]

........could not add any source for: perl v5.010 => [v5.10.0, v5.10001.0]

........Try: perl => v5.16.0

..........Plan: perl-vc3-modules => [v0.001.000,]

..........Try: perl-vc3-modules => v0.1.0

..........Success: perl-vc3-modules v0.1.0 => [v0.1.0,]

........could not add any source for: perl v5.016 => [v5.10.0, v5.10001.0]

........Try: perl => v5.24.0

..........Plan: perl-vc3-modules => [v0.001.000,]

..........Try: perl-vc3-modules => v0.1.0

..........Success: perl-vc3-modules v0.1.0 => [v0.1.0,]

........Success: perl v5.24.0 => [v5.10.0, v5.10001.0]

"vc3-builder	–require	cvmfs"	

(New Shell with Desired Environment)

bash$ ls /cvmfs/oasis.opensciencegrid.org

atlas csiu geant4 ilc nanohub osg-software
auger enmr glow ligo nova sbgrid
cmssoft fermilab gluex mis osg
snoplussnolabca
. . .

bash$ exit

Software	Deployment/Delivery	
•  Filesystem	Methods	

– Big	Bucket	of	Software!	
– MetaFS:	Metadata	Acceleration	
– CVMFS:	A	Global	Filesystem	

•  Packaging	Methods	
– VC3-Builder:	Automated	Package	Installation	
– Builder	+	Workflows	

•  Container	Methods	
– Container	Technologies	
– Containers	+	Workflows	

Many Possible Container Techs

36

✔ Widely used
✔ Convenient global repo
❌ Builds up images locally
❌ Root Daemon

✔ Built on Docker Images
✔ No Root Daemon
❌Requires Very Modern Kernel

✔ No Root Daemon
✔ Only one file
✔ Works with many image types
❌Loop Devices

"runos slc6 – mysim.exe"

37

Site A Site C Site B

slc6 rhel7 debian45

docker singularity charliecloud mysim.exe

slc6

mysim.exe

slc6

mysim.exe

Desired Architecture

38

Types of Data

39

OS
Read-Only Workdata

Container Composition

40

Static Composition Dynamic Composition

Kyle Sweeney and Douglas Thain,
Efficient Integration of Containers into Scientific Workflows,
Science Cloud Workshop at HPDC, June, 2018. DOI: 10.1145/3217880.3217887

Experiment: BLAST

41

We delivered 1/3rd less data, and finished in ~3/4ths the runtime using
dynamic composition

Putting	it	All	Together	

Submit Batch Jobs

Native	RHEL7	Machines	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

RunOS	"rhel6"	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Singularity	Container	
	
	
	
	
	
	
	
	
	
	
	
	

VC3	Builder	
	
	
	
	
	
	
	
	
	

Parrot	+	CVMFS	
	
	
	
	
	
	

Factory	

Request 128 nodes of16 cores, 4G RAM, 16G disk
with RHEL6 operating system, CVMFS and Maker software installed:

Worker	

128X

HTCondor	
Batch	System	

Makeflow	

Sand	
box	
	
	

Task	

Same	Thing,	Different	Site:	

Submit Batch Jobs

Native	SLES9	Machines	w/FUSE	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

RunOS	"rhel6"	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Docker	Container	
	
	
	
	
	
	
	
	
	
	
	
	

VC3	Builder	
	
	
	
	
	
	
	
	
	

FUSE	+	CVMFS	
	
	
	
	
	
	

Factory	

Request 128 nodes of16 cores, 4G RAM, 16G disk
with RHEL6 operating system, CVMFS and Maker software installed:

Worker	

128X

Torque	
Batch	System	

Makeflow	

Sand	
box	
	
	

Task	

•  Big	Bucket	of	Software	
+	Maximum	portability,	compatibility,	archivability.	
-  Horrible	metadata	performance.	
+	/	-	Correct	with	metadata	oriented	filesystems.	

-  User-Level	Package	Managers	
+	Explicit	statement	of	dependences.		(repro!)	
+	Deliver	only	needed	components.		(sharing!)	
-	Long	build/deploy	processes.	(use	cluster)	

•  Container	Technologies	
+	Leverage	commodity	software	tools.	
+	Naturally	metadata	efficient.	
-  Requires	privileges,	kernel	tech,	specialized	tools.	
-  Create	new	storage	management	problems.	

Thoughts	on	Dependencies:	
•  Make	software	dependencies	more	explicit.	

– Proposed:	Nothing	should	be	available	by	default,	
all	software	should	require	an	"import"	step.	

•  Need	better,	portable,	ways	of	expressing:	
– What	software	environment	the	user	wants.	
– What	software	components	are	actually	used.	
– What	environment	the	site	provides.	

•  The	ability	to	nest	environments	is	critical!	
– Sysadmin	provisions	machine	via	VM/container.	
– Batch	system	provisions	slot	with	container.	
– User	provisions	software	with	container.	

Thoughts	on	Filesystems	
•  Open/read/write/close	has	worked	well	for	a	
long	time,	but	seems	to	be	too	small	a	
granularity	for	large	scale	systems/software.	

•  Can	we	have	flexible	transaction	to	balance	
between	small	changes	and	wide	distribution?	

•  Do	we	need	new	filesystem	ops?	
–  fd	=	Opentree("/home/dthain",O_RDONLY);	
– Results	=	Search("$PATH","sim.exe");	
– Something	like	SQL	for	metadata?	

Acknowledgements	

DE-SC0015711
VC3: Virtual Clusters for
Community Computation

ACI-1642409
SI2-SSE: Scaling up Science
on Cyberinfrastructure with the
Cooperative Computing Tools

Notre Dame CMS:
Kevin Lannon
Mike Hildreth
Kenyi Hurtado

Univ. Chicago:
Rob Gardner
Lincoln Bryant
Suchandra Thapa
Benedikt Riedel

Brookhaven Lab:
John Hover
Jose Caballero

http://ccl.cse.nd.edu	
	

@ProfThain	
	

http://virtualclusters.org	
	

