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Software	Deployment	on	HPC	
•  Classic	Approach	

– Single	process	MPI	app	created	by	end	user.	
– Sysadmin	installs,	tests,	proves	the	application.	
– Adjust	to	exploit	local	libraries	/	capabilities.	
– Application	satisfied	with	a	single	site.	

•  Evolving	Approach	
– Complex	stacks	of	commodity	software.	
– Developer	is	not	the	user!	
–  Installed	by	end	user	just	in	time.	
– Users	migrate	quickly	between	sites.	



Problem:	Software	Deployment	
•  Getting	software	installed	on	a	new	site	is	a	
big	pain!		The	user	(probably)	knows	the	top	
level	package,	but	doesn't	know:	
– How	they	set	up	the	package	(sometime	last	year)	
– Dependencies	of	the	top-level	package.	
– Which	packages	are	system	default	vs	optional	
– How	to	import	the	package	into	their	
environment	via	PATH,	LD_LIBRARY_PATH,	etc.	

•  Many	scientific	codes	are	not	distributed	via	
rpm,	yum,	pkg,	etc.		(and	user	isn't	root)	



Typical	User	Dialog	Installing	BLAST	

"I just need BLAST." 
"Oh wait, I need Python!" 
"Sorry, Python 2.7.12" 
"Python requires SSL?" 
"What on earth is pcre?" 
"I give up!" 
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You	have	developed	a	large	scale	workload	which	runs	successfully	at	a	University	cluster.	

Now,	you	want	to	migrate	and	expand	that	application	to	national-scale	infrastructure.	
(And	allow	others	to	easily	access	and	run	similar	workloads.)	

Traditional	HPC	Facility	 Distributed	HTC	Facility	 Commercial	Cloud	



Traditional	HPC	Facility	 Distributed	HTC	Facility	 Commercial	Cloud	

Concept:	Virtual	Cluster	
•  200	nodes	of	24	cores	and	64GB	RAM/node	
•  150GB	local	disk	per	node	
•  100TB	shared	storage	space	
•  10Gb	outgoing	public	internet	access	for	data	
•  CMS	software	8.1.3	and	python	2.7	
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How	do	we	get	complex	software	
delivered	and	deployed	to	diverse		

computing	resources?	
	

(without	bothering	sysadmins)	



Delivery	vs	Deployment	

•  Delivery:	Articulating	and	installing	all	of	the	
necessary	components	at	one	site.	

•  Deployment:	Moving	all	of	the	necessary	
components	to	each	individual	cluster	node	in	
an	efficient	manner.		



Example:	CMS	Analysis	Software	
Large Hadron Collider Compact Muon Solenoid 

Worldwide LHC Computing Grid 
Many PB 
Per year 

Online Trigger 

100 GB/s 



Example:	CMS	Analysis	Software	
•  Developed	over	the	course	of	decades	by	
1000s	of	contributors	with	different	expertise.	

•  Core	codes	in	F77/F90/C99/C++18	+	shell	
scripts,	perl	and	python,	scripts,	shared	
libraries,	config	files,	DSLs…	

•  Centrally	curated	by	experts	at	CERN	for	
consistency,	reproducibility,	etc.	

•  One	release:	975GB,	31.4M	files,	3570	dirs.	
•  Releases	are	very	frequent!	



Example:	MAKER	Genome	Pipeline	



Example:	MAKER	Genome	Pipeline	
•  Large	number	of	software	dependencies	
(OpenMPI,	Perl	5,	Python	2.7,	RepeatMasker,	
BLAST,	several	Perl	modules)	

•  Composed	of	many	sub-programs	written	in	
different	languages	(Perl,	Python,	C/C++)	

•  21,918	files	in	1,757	directories	
•  Typical	installation	model:	
Ask	author	for	help!	



Software	Deployment/Delivery	
•  Filesystem	Methods	

– Big	Bucket	of	Software!	
– MetaFS:	Metadata	Acceleration	
– CVMFS:	A	Global	Filesystem	

•  Packaging	Methods	
– VC3-Builder:	Automated	Package	Installation	
– Builder	+	Workflows	

•  Container	Methods	
– Container	Technologies	
– Containers	+	Workflows	



Big	Bucket	of	Software!	
•  Collect	everything	–	binaries,	interpreters,	
libraries	–	into	one	big	tarball.	

•  Delivery	is	easy:	copy,	unpack,	setenv.	
–  (Not	all	software	can	be	relocated	to	a	new	path)	

•  User-compatible	approach	–	no	sysadmin	
support	needed,	occupies	user	storage,	etc.	

•  Just	set	up	batch	jobs	to	refer	to	the	deployed	
location,	set	PATH,	and	go.	



But:	Metadata	Storms!	

•  Common	behavior:	long	burst	of	metadata	
access	at	the	beginning	of	an	application:	
– Search	through	PATH	for	executables.	
– Search	through	LD_LIBRARY_PATH	for	libraries.	
– Load	Java	classes	from	CLASSPATH.	
– Load	extensions	from	file	system.	
– Bash	script?		Repeat	for	every	single	line!	

•  Complex	program	startup	can	result	in	
millions	of	metadata	transactions!	
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Same problem on any 
parallel filesystem: Ceph, 
HDFS, Panasas, Lustre, … 



MAKER	Metadata	Storm	
Single	Node	Filesystem	Load	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Tim	Shaffer	and	Douglas	Thain,	Taming	Metadata	Storms	in	Parallel	
Filesystems	with	MetaFS,	PDSW	Workshop,	2017.	http://dx.doi.org/
10.1145/3149393.3149401	



Idea:	Bulk	Metadata	Distribution	

•  We	know	some	things	in	advance:	
– Which	nodes	need	to	load	the	software.	
– Which	software	is	needed.	
– Software	won't	change	during	the	run.	

•  Idea:	
– Build	up	all	the	metadata	needed	in	advance.	
– Deliver	it	in	bulk	to	each	node.	
– Cache	it	for	as	long	as	the	workflow	runs.	
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CVMFS	Filesystem	on	>100K	Cores	
Around	the	World	
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Some	Quick	Numbers	

Jakob	Blomer,	Predrag	Buncic,	Rene	Meusel,	Gerardo	Ganis,	Igor	Sfiligoi	and	Douglas	
Thain,	The	Evolution	of	Global	Scale	Filesystems	for	Scientific	Software	Distribution,	
IEEE/AIP	Computing	in	Science	and	Engineering,	17(6),	pages	61-71,	December,	2015.	
DOI:	10.1109/MCSE.2015.111	

Nearly 2.5M metadata 
ops to start application 

Reduced to a load of a 
single 147MB metadata file. 



However	CVMFS	on	HPC	is	tricky!	

•  Mounting	filesystem	on	user	nodes	
– FUSE	->	requires	some	degree	of	privilege	
– Parrot	->	requires	precise	ptrace	behavior	

•  Live	network	access	can	be	a	problem.	
– Cache	software	in	advance	locally.	
– But	which	parts	are	needed	for	job	X?	

•  CVMFS	itself	can	be	metadata	intensive!	
– One	site:	Admins	limited	number	of	in-memory	
inodes	allocatable	by	a	given	user,	couldn't	run!	



Software	Deployment/Delivery	
•  Filesystem	Methods	

– Big	Bucket	of	Software!	
– MetaFS:	Metadata	Acceleration	
– CVMFS:	A	Global	Filesystem	

•  Packaging	Methods	
– VC3-Builder:	Automated	Package	Installation	
– Builder	+	Workflows	

•  Container	Methods	
– Wharf:	Docker	on	Shared	Filesystems	
– Containers	+	Workflows	



User-Level	Package	Managers	

•  Idea:	Provide	build	recipes	for	many	packages.	
•  Build	software	automatically	in	user	space,	
each	package	in	its	own	directory.	

•  Only	activate	software	needed	for	a	particular	
run.		(PATH,	LD_LIBRARY_PATH,…)	

•  Examples:	
– Nix	–	Build	from	ground	up	for	reproducibility.	
– Spack	–	Build	for	integration	with	HPC	modules.	
– VC3-Builder	–	Build	via	distributed	resources.	

	



MAKER	Bioinformatics	Pipeline	
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VC3-Builder	Architecture	
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..Plan:    ncbi-blast => [, ] 

..Try:     ncbi-blast => v2.2.28 

....Plan:    perl => [v5.008, ] 

....Try:     perl => v5.10.0 

....could not add any source for: perl v5.010 => [v5.8.0, ] 

....Try:     perl => v5.16.0 

....could not add any source for: perl v5.016 => [v5.8.0, ] 

....Try:     perl => v5.24.0 

......Plan:    perl-vc3-modules => [v0.001.000, ] 

......Try:     perl-vc3-modules => v0.1.0 

......Success: perl-vc3-modules v0.1.0 => [v0.1.0, ] 

....Success: perl v5.24.0 => [v5.8.0, ] 

....Plan:    python => [v2.006, ] 

....Try:     python => v2.6.0 

....could not add any source for: python v2.006 => [v2.6.0, ] 

....Try:     python => v2.7.12 

......Plan:    openssl => [v1.000, ] 
 ……………….. 
Downloading 'Python-2.7.12.tgz' from http://download.virtualclusters.org/builder-files 
details: /tmp/test/vc3-root/x86_64/redhat6/python/v2.7.12/python-build-log 
processing for ncbi-blast-v2.2.28 
preparing 'ncbi-blast' for x86_64/redhat6 
Downloading 'ncbi-blast-2.2.28+-x64-linux.tar.gz' from http://download.virtualclusters.org… 
details: /tmp/test/vc3-root/x86_64/redhat6/ncbi-blast/v2.2.28/ncbi-blast-build-log 

"vc3-builder	–require	ncbi-blast"	
(New Shell with Desired Environment) 

 
bash$  which blastx 
/tmp/test/vc3-root/x86_64/redhat6/ncbi-blast/v2.2.28/
bin/blastx 
 
bash$ blastx –help 
USAGE 
  blastx [-h] [-help] [-import_search_strategy filename] 
   . . . 
 
bash$ exit 



Problem:	Long	Build	on	Head	Node	
•  Many	computing	sites	limit	the	amount	of	
work	that	can	be	done	on	the	head	node,	so	
as	to	maintain	quality	of	service	for	everyone.	

•  Solution:	Move	the	build	jobs	out	to	the	
cluster	nodes.			(Which	may	not	have	network	
connections.)	

•  Idea:	Reduce	the	problem	to	something	we	
already	know	how	to	do:	Workflow!	

•  But	how	do	we	bootstrap	the	workflow	
software?		With	the	builder!	



vc3-builder	
				--require	makeflow	
				--require	ncbi-blast	
				--	
				makeflow	–T	condor	blast.mf	
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Bootstrapping	a	Workflow	
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Example	Applications	

MAKER Octave 
Benjamin Tovar, Nicholas Hazekamp, Nathaniel Kremer-Herman, and Douglas 
Thain, Automatic Dependency Management for Scientific Applications on Clusters, 
IEEE International Conference on Cloud Engineering (IC2E) , April, 2018. 



Delivering	a	Global	Filesystem		
with	VC3-Builder	



..Plan:    cvmfs => [, ] 

..Try:     cvmfs => v2.0.0 

....Plan:    parrot => [v6.0.16, ] 

....Try:     parrot => v6.1.1 

......Plan:    cctools => [v6.1.1, ] 

......Try:     cctools => v6.1.1 

........Plan:    zlib => [v1.002, ] 

........Try:     zlib => v1.2.8 

........Success: zlib v1.2.8 => [v1.2.0, ] 

......Fail-prereq: cctools-v6.1.1 

........Plan:    perl => [v5.010.000, v5.010001] 

........Try:     perl => v5.10.0 

..........Plan:    perl-vc3-modules => [v0.001.000, ] 

..........Try:     perl-vc3-modules => v0.1.0 

..........Success: perl-vc3-modules v0.1.0 => [v0.1.0, ] 

........could not add any source for: perl v5.010 => [v5.10.0, v5.10001.0] 

........Try:     perl => v5.16.0 

..........Plan:    perl-vc3-modules => [v0.001.000, ] 

..........Try:     perl-vc3-modules => v0.1.0 

..........Success: perl-vc3-modules v0.1.0 => [v0.1.0, ] 

........could not add any source for: perl v5.016 => [v5.10.0, v5.10001.0] 

........Try:     perl => v5.24.0 

..........Plan:    perl-vc3-modules => [v0.001.000, ] 

..........Try:     perl-vc3-modules => v0.1.0 

..........Success: perl-vc3-modules v0.1.0 => [v0.1.0, ] 

........Success: perl v5.24.0 => [v5.10.0, v5.10001.0] 

"vc3-builder	–require	cvmfs"	

(New Shell with Desired Environment) 
 
bash$  ls /cvmfs/oasis.opensciencegrid.org 
 
atlas   csiu     geant4  ilc   nanohub  osg-software 
auger   enmr     glow    ligo        nova       sbgrid 
cmssoft  fermilab  gluex   mis   osg    
snoplussnolabca 
. . . 
 
bash$ exit 



Software	Deployment/Delivery	
•  Filesystem	Methods	

– Big	Bucket	of	Software!	
– MetaFS:	Metadata	Acceleration	
– CVMFS:	A	Global	Filesystem	

•  Packaging	Methods	
– VC3-Builder:	Automated	Package	Installation	
– Builder	+	Workflows	

•  Container	Methods	
– Container	Technologies	
– Containers	+	Workflows	



Many Possible Container Techs 

36 

✔   Widely used 
✔   Convenient global repo 
❌ Builds up images locally 
❌ Root Daemon 

✔  Built on Docker Images 
✔  No Root Daemon 
❌Requires Very Modern Kernel 
 

✔  No Root Daemon 
✔  Only one file 
✔  Works with many image types 
❌Loop Devices 



"runos slc6 – mysim.exe" 

37 

Site A Site C Site B 

slc6 rhel7 debian45 

docker singularity charliecloud mysim.exe 

 
 
 

slc6 

mysim.exe 
 
 
 

slc6 

mysim.exe 



Desired Architecture 

38 



Types of Data 

39 

OS  
Read-Only Workdata 



Container Composition 

40 

Static Composition Dynamic Composition 

Kyle Sweeney and Douglas Thain, 
Efficient Integration of Containers into Scientific Workflows, 
Science Cloud Workshop at HPDC, June, 2018. DOI: 10.1145/3217880.3217887 



Experiment: BLAST 

41 

We delivered 1/3rd less data, and finished in ~3/4ths the runtime using 
dynamic composition 



Putting	it	All	Together	



Submit Batch Jobs 
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Same	Thing,	Different	Site:	



Submit Batch Jobs 
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•  Big	Bucket	of	Software	
+	Maximum	portability,	compatibility,	archivability.	
-  Horrible	metadata	performance.	
+	/	-	Correct	with	metadata	oriented	filesystems.	

-  User-Level	Package	Managers	
+	Explicit	statement	of	dependences.		(repro!)	
+	Deliver	only	needed	components.		(sharing!)	
-	Long	build/deploy	processes.	(use	cluster)	

•  Container	Technologies	
+	Leverage	commodity	software	tools.	
+	Naturally	metadata	efficient.	
-  Requires	privileges,	kernel	tech,	specialized	tools.	
-  Create	new	storage	management	problems.	



Thoughts	on	Dependencies:	
•  Make	software	dependencies	more	explicit.	

– Proposed:	Nothing	should	be	available	by	default,	
all	software	should	require	an	"import"	step.	

•  Need	better,	portable,	ways	of	expressing:	
– What	software	environment	the	user	wants.	
– What	software	components	are	actually	used.	
– What	environment	the	site	provides.	

•  The	ability	to	nest	environments	is	critical!	
– Sysadmin	provisions	machine	via	VM/container.	
– Batch	system	provisions	slot	with	container.	
– User	provisions	software	with	container.	



Thoughts	on	Filesystems	
•  Open/read/write/close	has	worked	well	for	a	
long	time,	but	seems	to	be	too	small	a	
granularity	for	large	scale	systems/software.	

•  Can	we	have	flexible	transaction	to	balance	
between	small	changes	and	wide	distribution?	

•  Do	we	need	new	filesystem	ops?	
–  fd	=	Opentree("/home/dthain",O_RDONLY);	
– Results	=	Search("$PATH","sim.exe");	
– Something	like	SQL	for	metadata?	
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