VC3

Virtual Clusters for Community Computation

DOE NGNS PI Meeting
September 27–28, 2017

Douglas Thain, University of Notre Dame
Rob Gardner, University of Chicago
John Hover, Brookhaven National Lab
A platform for provisioning cluster frameworks over heterogenous resources for collaborative science teams
Project & People

- Joint project started in 2016 between University of Chicago, Notre Dame, and BNL
- Funded for three years by DOE Office of Advanced Scientific Computing Research (ASCR) and Next Generation Networking Services (NGNS)
- co-PIs: Rob Gardner, David Miller (UC), Douglas Thain, Kevin Lannon, Mike Hildreth, Paul Brenner (ND), and John Hover (BNL)
- Dev & Ops Team: Lincoln Bryant, Jeremy Van (UC), Ben Tovar, Kenyi Hurtado Anampa (ND), Jose Caballero (BNL)
- Testing and app on-boarding: Suchandra Thapa (UC/OSG), Ben Benedikt Riedel (UC/OSG)
You have developed a complex workload which runs successfully at one site, perhaps your home university.

Now, you want to migrate and expand that application to national-scale infrastructure. And allow others to easily access and run similar workloads.

Traditional HPC Facility  Distributed HTC Facility  Commercial Cloud
Concept: Virtual Cluster

- 200 nodes of 24 cores and 64GB RAM/node
- 150GB local disk per node
- 100TB shared storage space
- 10Gb outgoing public internet access for data
- CMS software 8.1.3 and python 2.7
What is it?

VC3 aggregates allocation-based resources, dynamically constructing homogeneous virtual clusters (middleware) as a service. Key features:

- **Automated**: Clusters are requested, built, used, and torn down by the system, driven by a user-facing web portal.

- Utilizes **dynamic infrastructure**. Factories and other central services are spawned as needed (and destroyed when finished). Static components relatively lightweight.

- **Application (middleware) agnostic**: Cluster middleware can be HTCondor, WorkQueue. Extensible, e.g. Apache Spark or Kubernetes.

- **VC3 Builder** satisfies all dependencies specified in cluster definition, *as needed*.

- **User driven**: Oriented toward aggregating individual or small group allocations, e.g. campus clusters, academic clouds, university HPCs for **federated teams**.
What it’s not

● VC3 is **not** a workload management system. It doesn’t run **jobs**, it provisions a customized cluster for your chosen middleware.

● It isn’t oriented toward creating large scale, global clusters

● Clusters are short-lived, for individuals or small groups, purpose-built for a workflow/task.

● Doesn’t currently handle data. Globus integration is forseen.

● Not expected to be picked up and deployed by a VO; it will be a service. But all the code is open, packages and dependencies are published, so in theory someone **could**.

● Not developed from scratch. Integrates existing technologies and combines them into a fully automated, user-oriented service.
Representative Use Case

- A university researcher has a small group cluster, a campus batch cluster, and access to OSG.
- A colleague from another institution has an allocation on an academic cloud and an Amazon credit.
- They can create a VC3 project and each assign their resources (or a portion) to it.
- For a particular workflow, they define a virtual cluster, e.g.
  - 50 nodes of 2GB RAM, 25GB disk.
  - RHEL6
  - HTCondor cluster (managed with dynamic CM, schedd).
  - CVMFS
  - GCC 4.3 (an older version)
  - Other arbitrary package dependencies.

And request it, specifying a usage policy.
The VC3 system then...

- Sorts out which resources *can* service the request.
- Spawns a dynamic master to manage this single cluster.
- Controller launches/configures a provisioning factory and central middleware infrastructure (e.g. the vc3-factory + HTCondor central manager and schedd.)
- The factory then submits vc3-builders to resources, re-submitting as needed.
- vc3-builder, for each worker, satisfies all dependencies *however needed on that node.*
  - If GCC 4.3 is not present, installs it.
  - If fuse not present for CVMFS, sets up Parrot.
- User then either loads workflow and data on managed infrastructure, or triggers remote submission into it.
- User triggers cluster teardown when done, (staging out data if not handled out of band).
- When all workers are gone, central infrastructure shut down. Request completed.
VC3 Architecture

Static Infrastructure

Web Portal | Master | Factory

Information Service

DOE HPC

Cloud Provider

Campus Batch

Resource Provider

Resource Provider

Resource Provider

Create a virtual cluster!
VC3 Architecture

Static Infrastructure
- Web Portal
- Master
- Factory
- Information Service

Dynamic Infrastructure
- VC Head Node
- Middleware Scheduler

DOE HPC
- Builder
- Builder
- Builder

Cloud Provider
- Builder

Campus Batch
- Builder
VC3 Architecture

Static Infrastructure
- Web Portal
- Master
- Factory
- Information Service

Dynamic Infrastructure
- VC Head Node
- Middleware Scheduler

DOE HPC
- MW Node
- MW Node
- MW Node

Cloud Provider
- MW Node
- MW Node

Campus Batch
- MW Node

Resource Provider
Resource Provider
Resource Provider
Cleanup is Critical

Static Infrastructure

- Web Portal
- Master
- Factory

Information Service

Do not destroy my virtual cluster!

Dynamic Infrastructure

- DOE HPC
- Cloud Provider
- Campus Batch

Resource Provider

MW Node

Safe Schedule

Everything Cleaned Up

Static Infrastructure

Web Portal  Master  Factory

Information Service

DOE HPC  Cloud Provider  Campus Batch

Resource Provider  Resource Provider  Resource Provider
Details: Cluster Lifecycle

Web Site
- Update User's Intent
- View System State

Master
- Read User's Intent
- Repair System To Match Intent

Info Service
- JSON Database

Allocation Lifecycle
- New
- Keygen
- Validated
- Deleted

Virtual Cluster Lifecycle
- New
- Valid
- Config
- Growing
- Ready
- Invalid
- Term’ated
- Term Req
Details: Cluster Provisioning

Master
- Read User’s Intent
- Repair System To Match Intent

Translate VC Intent to Factory Config

AutoPy Factory
- Query Pilot State

Condor Collector
- Report Pilot Status

APF Queues
- NERSC-Cori
- UChicago-Midway
- ATLAS-T3
- others

Cori
- pilot

Midway
- pilot

T3
- pilot

(Web Site Info Service)

(SSH (BOSCO))

Translate VC Intent to Factory Config

Translate VC Intent to Factory Config

Query Pilot State

Report Pilot Status
Details: Software Environments

- **Native Availability**
  - Specify desired OS from list.

- **Containers (Docker/Singularity/Shifter)**
  - Specify image to pull from Docker Hub.

- **On-Demand Deployment (CVMFS)**
  - Specify CVMFS repo, system mounts it.
  - CVMFS via FUSE (kernel) or Parrot (user)

- **Build on Site**
  - Specify list of software packages needed.
  - VC3-Builder downloads and installs.
Custom docker container in Jetstream took weeks to install pieces by hand. Converted to vc3-builder, successfully ported to Stampede in a single automated install.
Details: System Monitoring

Virtual Cluster Resources (running)

Virtual Cluster Resources (queued)

Virtual Cluster Size (running)

Virtual Cluster Size (queued)

Virtual Cluster by User (running)

Virtual Cluster by User (queued)
Current System Status

- Basic functionality is up and running and used daily by project members.
  - Users can create projects, define cluster templates, attach allocations, create virtual clusters, monitor status, and tear them down.
  - Scale: $O(100)$ VCs running concurrently
- Resources Connected:
  - NERSC – Cori (SLURM + Docker)
  - UChicago Midway (SLURM), ATLAS T3 (HTCondor + CVMFS)
  - OSG Testbed (HTCondor)
  - Syracuse (HTCondor), Stampede2 (PBS), Notre Dame (SGE) – Testing Stages
- Middleware Selectable: HTCondor or Work Queue
- Authentication Mechanisms:
  - Globus Auth for User $\rightarrow$ Portal, SSH Key for Portal $\rightarrow$ Resource
Applications Working Under VC3

- Various Bioinformatics Workflows
  - Makeflow + HTCondor + BWA, Shrimp, BLAST...
- Lobster CMS Data Analysis
  - Work Queue + Builder + CVMFS
- South Pole Telescope (SPT–3G)
  - HTCondor Jobs + Docker + CVMFS
- XENON1T
  - Pegasus + HTCondor + CVMFS
- MAKER Bioinformatics Pipeline
  - Work Queue + Builder
- IceCube Simulation Framework
Connect allocations, create virtual clusters with both HTCondor and Work Queue to work workflows with Pegasus and Makeflow:

(Live Demo!)
Connect allocations, create virtual clusters with both HTCondor and Work Queue to work workflows with Pegasus and Makeflow:
Challenges and Considerations

● **Software: Diversity or Consistency?**
  ○ What do users really want? Global container names vs local site installs vs CVMFS mount vs on-demand installs? No method applies globally.

● **Authentication Complexity**
  ○ 2FA: pass to user, or argue that site is a “factor”?  
  ○ SSH Keys: auth file / auth db / Kerberos  
  ○ Alternate approach: Provide pull-mode “recipe” for user to invoke.

● **Punching Through Layers**
  ○ Ex: NERSC Shift Docker name goes in the job script header.  
  ○ Must modify Condor-G BOSCO, APF, resource description, web portal, ...
Challenges and Considerations (2)

● Concurrency Management at Master
  ○ Basic idea is simple, but corner cases are challenging.
  ○ Too many ssh connections: tarpitted!
  ○ Remote systems become less responsive as queues get longer.
  ○ Small scales: event-driven; large scales: periodic bulk behavior.

● Capturing Failure Modes
  ○ Knowing, detecting, reporting, reacting. “Unknown unknowns”

● Dimensions of Scalability / Performance
  ○ # of nodes in virtual cluster is interesting but not the main concern!
  ○ # of concurrent virtual clusters
  ○ # of concurrent allocations usable by one cluster
  ○ Overhead to setup / tear down a virtual cluster
Plans Going Ahead

● Completing the VC3 Vision:
  ○ Fully dynamic deployment of cluster head nodes.
  ○ Select (or recommend) sites based on requirements.
  ○ Parameterize software environment from interface.

● Expanding Coverage:
  ○ Sites: Campus Clusters + DOE Facilities
  ○ Middleware (Spark) Applications (LHC, HEP, Bio)

● Serving Users:
  ○ Closed Beta (late 2017), Open Beta (2018)
Collaborators and Connections

S2I2 Software Infrastructure

HTCondor

CI Logon

Open Science Grid

CMS

Xe Xenon

Dark Matter Project

AutoPyFactory

Grafana

Science Gateways
Community Institute

OpenStack

Flask

web development, one drop at a time

MakeFlow

globus

Pegasus 4.8.0

ci Connect
VC3

Virtual Clusters for Community Computation

http://www.virtualclusters.org
https://github.com/vc3-project