Solution to Project 2

This project looks at the molar flow rates associated with a reactor/separator system. We are examining the dehydrogenation reaction of propane to propene +H 2 , with a side reaction using up some of this H 2 and propane to make methane. In part 1 we are just looking at the reactor itself, while in part 2 we look at the complete system.

Contents

- Part 1
- Part 2

Part 1

Let's take pa to be propane, pe to be propene, h to be hydrogen and m to be methane. We have four molar balances over the reactor. The fractional conversions will be taken as c1=0.3 and $c 2=0.05$. The total molar flow rate is tot $=100$. So:

```
clear
tot=100;
pa(1)=.9*tot;
pe(1)=.05*tot;
h(1)=0.03*tot;
m(1)=0.02*tot;
% The concentration on the downstream side of the reactor is just that due
% to the reaction:
c1=0.3;
c2=0.05;
pa(2)=pa(1)*(1-c1-c2);
pe(2)=pe(1)+pa(1)*c1;
h(2)=h(1)+pa(1)*(c1-2*c2);
m(2)=m(1)+pa(1)*3*c2;
%We can present this in table form:
table1=num2str([pa;pe;h;m]);
left=str2mat('propane ','propene ','hydrogen ','methane ');
table1=[left,table1];
top='component stream1 stream2';
table1=str2mat(top,table1)
```

table1 =

component	stream1	stream2
propane	90	58.5
propene	5	32
hydrogen	3	21
methane	2	15.5

Part 2

Now we work on the complete problem. We have four components in 6 streams, so that gives
us a total of 24 unknowns. Because streams $5 \& 6$ can be directly calculated from streams 2 and 3 , however, we can actually solve the reduced problem for streams $1-4$, and then calculate streams $5 \& 6$ later. This gives us a $4 \times 4=16$ element solution vector.

```
% We shall take this solution vector to be the column vector x. The first
% four elements will be pa, the second four pe, third four h, and final
% four m. We thus convert the 16 equations into matrix form. Each molar
% balance will represent one row of our matrix.
a=zeros(16,16);
b=zeros(16,1); %The right hand side...
% We will replace the zeros in a and b (where appropriate) one at a time.
% Note that we could do this in an excel worksheet, and then simply upload
% the array into matlab. Either approach works fine: you just have to get
% the matrix right! Anyway:
% The propane balances:
% Mixer: pa(1)-pa(4)=feed
a(1,1)=1; a(1,4)=-1;b(1)=100;
% Reactor: pa(2)+(c1+c2-1)*pa(1)=0
a(2,1)=(c1+c2-1); a(2,2)=1;
% First separator: pa(3)-pa(2)=0
a(3,2)=-1; a(3,3)=1;
% Second separator: pa(4)-0.95*pa(3) = 0
a(4,3)=-0.95; a(4,4)=1;
% The propene balances:
% Mixer: pe(1)-pe(4)=0
a(5,5)=1; a(5,8)=-1;
% Reactor: pe(2)-pe(1)-c1*pa(1)=0
a(6,6)=1; a(6,5)=-1; a(6,1)=-c1;
% First separator: pe(3)-pe(2)=0
a(7,7)=1; a(7,6)=-1;
% Second separator: pe(4)-0.05*pe(3)=0
a(8,8)=1; a(8,7)=-0.05;
% The hydrogen balances:
% Mixer: h(1)-h(4)=0
a(9,9)=1; a(9,12)=-1;
% Reactor: h(2)-h(1)-(c1-2*c2)*pa(1)=0
a(10,10)=1; a(10,9)=-1; a(10,1)=-(c1-2*c2);
% First separator: h(3)-0.05*h(2)=0
a(11,11)=1; a(11,10)=-0.05;
% Second separator: h(4)-h(3)=0
a(12,12)=1; a(12,11)=-1;
% The methane balance:
% Mixer: m(1)-m(4)=0
a(13,13)=1; a(13,16)=-1;
% Reactor: m(2)-m(1)-3*c2*pa(1)=0
a(14,14)=1; a(14,13)=-1; a(14,1)=-3*c2;
% First separator: m(3)-0.05*m(2)=0
a(15,15)=1; a(15,14)=-0.05;
% Second separator: m(4)-m(3)=0
a(16,16)=1; a(16,15)=-1;
```

```
%So we get the matrix:
```

a
\%Note that there are ones down the main diagonal, as well as a number of
\%entries down the first subdiagonal (either -1 if there was no removal, or
\%a smaller value if some of the material was extracted) and entries in the
\%first column corresponding to the reaction. The solution vector is just:
$\mathrm{x}=\mathrm{a} \backslash \mathrm{b}$
\%We can decompose this into the different components, as well as adding in
\%the last two streams (5 \& 6):
pa=[x(1:4);0;0.05*x(3)];
$\mathrm{pe}=[\mathrm{x}(5: 8) ; 0 ; 0.95 * \mathrm{x}(7)]$;
h=[x(9:12);0.95*x(10);0];
m=[x(13:16);0.95*x(14);0];
\%And we can put this together in matrix form:
table2=num2str([pa,pe,h,m]);
left=str2mat('stream 1: ','stream 2: ','stream 3: ','stream 4: ','stream 5: ',
table2=[left,table2];
top='stream Propane Propene Hydrogen Methane';
table2=str2mat(top,table2)
\% Thus, from our feed of 100 moles/s of propane we recover 78.4 moles/s of
\% propene and 52.3 moles/s of hydrogen.
a =
Columns 1 through 8

1.0000	0	0	-1.0000	0	0	0	0
-0.6500	1.0000	0	0	0	0	0	0
0	-1.0000	1.0000	0	0	0	0	0
0	0	-0.9500	1.0000	0	0	0	0
0	0	0	0	1.0000	0	0	-1.0000
-0.3000	0	0	0	-1.0000	1.0000	0	0
0	0	0	0	0	-1.0000	1.0000	0
0	0	0	0	0	0	-0.0500	1.0000
0	0	0	0	0	0	0	0
-0.2000	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
-0.150	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	

Columns 9 through 16

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

261.4379
169.9346
169.9346
1.4379
. 1280
82.5593
4.1280
2.7520
55.0396
2.7520
2.7520
2.0640
41.2797
2.0640 2.0640
table2 =

Propene
4.127967
82.55934
82.55934
4.127967
0
78.43137
Hydrogen
2.063983
. 06398
2.063983

0

