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CBE 20258 Algorithm Problem Set 3 
 

Due in class 2/18/16 
 
Problem 1). In the first project, you calculated the flow rates for a set of seven streams in 
a cell separator as a function of operating pressures, and then used the information to 
determine the allowable operating ranges.  As you probably noticed, it actually took a 
few moments for the code to run, even if you had a reasonably efficient algorithm.  This 
can cause some real problems if you ask slightly different questions! 

Suppose your boss says, OK – we know the operating ranges for a particular 
combination of channel lengths.  How does the operating region change if we modify 
the various values of each length Li*?  If we do a combinatoric study for 10 values of 
each of 7 lengths, that would involve resolving the code a whopping 107 times: it would 
take about a year to execute!  You could do much better by recognizing that, without 
loss of generality, you can take L1* to be fixed at unity, and then use symmetry to ignore 
variations in the mirror image streams (this kills off another 3 variables).  Still, it takes 
103 combinations to explore even this reduced set: meaning about an hour of execution 
time!  Thus, it pays to use numerical analysis to create a much more elegant solution to 
the problem! 

a. The problem you were investigating involved the solution of the expression 
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Explicitly obtain the expression for the flow rate Qi in terms of p1* and p2* and the 
elements of A-1. (Note: no numbers or values of Li*, just leave it in the form 
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where the indices are identified) 

b. These expressions are all hyper-planes (e.g., a particular Qi is a linear function of the 
two variables p1* and p2*).  The valid and invalid regions in p1* and p2* space are 
bounded by lines where the various Qi are zero.  Develop an analytic expression for 
each of these lines (e.g., where Qi = 0) in terms of the elements of A-1. 

c. The vertices of the valid regions are just the intersection points of these lines (where 
Qi = Qj = 0).  Develop an expression for the intersection point of the ith and jth line. 
There would be a total of 7*6=42 of these, but leave it in i,j form (single expression). 
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You could go back to your graph for a single test case and figure out exactly which of 
these intersections matter to get the two little “valid triangles” you highlighted in your 
project, but I’m not asking you to do that here.  If you had to figure out, say, how the 
area of allowable operating pressures (the area of the triangles) depended on the 
channel segment lengths, this is the way you would approach it! 

Problem 2). On the first algorithm assignment you determined the optimum depth of 
the second probe in a two-probe system for calculating the temperature gradient at the 
surface.  Suppose your boss says that this isn’t good enough, and suggests adding in a 
third probe (e.g., one at a depth h and the second at a depth 2h).  Take the expected 
temperature profile to be about T0 + A*exp(b*x) where A = 2°C and b = 0.5 cm-1.  The 
probes have a random error of ±0.1°C. 

a. Redo the calculations for the two probe system, this time calculating the random 
experimental error using the correct error propagation formula used in class and the 
expected temperature distribution given above.  What is the optimum value of h, and 
what is the best we can do calculating the derivative? 

b. For your three probe system you will not want to weight the probes evenly.  
Determine the optimum weighting of the three probes for getting the surface derivative 
(Hint: you need to keep another term in your Taylor series expansion for the algorithm 
error, and try to get the quadratic term exactly!) 

c. Determine the random experimental error for this new three probe formula as a 
function of h, and determine both the optimum h and the minimum derivative 
measurement error. 

 

Problem 3). You are using a falling-ball rheometer to measure the viscosity of a liquid.  
The fluid is sufficiently viscous that the Stokes sedimentation equation described in 
class is assumed to apply (you will learn all about that next term).  The experiment 
consists of measuring how long (t) it takes a sphere of radius (a) to fall a distance (L).  
The sphere density is (!s) and the fluid density is (!f).  The velocity Us = L/t.  We have 
the measurements (regarded as independent): 
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value 1"
a 100µm 1µm
#s 1.18g /cm3 0.01g /cm3

# f 0.98g /cm3 0.002g /cm3

g 980.6cm /s2 0
L 2cm 0.01cm
t 230 s 0.5 s
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a. What is the 2" error bound for the measured viscosity (µ)?  Report this in units of 
g/cm-s. 

b. Which measurement had the largest contribution to the error in the final result (e.g., 
which measurement would you want to spend some time and money improving)? 

Hint: It is much easier if you do this one with variables using the computer.  I would 
write a short function which takes in all the parameters as a vector and spits out the 
viscosity.  You can then take the derivative using the finite difference method as 
discussed in class and calculate the error.  You can also see which term has the largest 
contribution to the overall error (e.g., part b).  You can do it all using pencil and paper, 
of course: your choice. 

 

Problem 4). In the last project you found that the average Notre Dame high temperature 
excursion last year was 0.937 degrees above the historic averages, and the standard 
deviation was 9.938 degrees. 
 
a. If we assume that all the days are independent, what is the probability of the average 
excursion being this large or higher? 
 
b. What is wrong with the answer to part a, and about what should the correct value 
be?  State your (new) assumptions. 
 
c. For an extra credit point, get a precise value for part b using the results of your 
project.  This will require a few lines of matlab code.  


