
CBE 20258 Numerical and Statistical Analysis 
 

Algorithm Problem Set 6 
 

due in the box in the CBE office Friday, 4/28/17 
 

Problem 1. Optimal Quadrature:  A sphere of dimensionless radius of unity is first 
heated to a uniform temperature (dimensionless value of unity as well), and then the 
surface is quenched to a fixed temperature T = 0 (e.g., reference value).  You are 
assigned the task of measuring the total energy content of the sphere as a function of 
time, but you are only given one temperature probe to do it with.   
 
a. It is proposed to simply put the probe in the center of the sphere and assume that the 
entire sphere is at that constant temperature.  What would be the quadrature rule 
consistent with that assumption? 
 
b. You respond with “wait a minute – we know that the temperature at the surface is 
zero, and that the temperature is also an even function of r from symmetry!  Using this, 
and leaving the probe in the center, what is a better quadrature rule that takes 
advantage of this observation? 
 
c. Your buddy argues that even this isn’t optimal: you can instead put the probe at a 
location different from the center.  What is the optimal location to put it, and how do 
you calculate the energy content from this measurement (e.g., your best quadrature 
rule)? 
 
The dimensionless energy integral is given by: 
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d. The exact temperature and energy can be calculated from the infinite series solution: 
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Using this, plot up the results of the three quadrature rules for the total energy as well 
as the exact solution for t* from zero to 0.5.  On a separate graph, plot up the deviation 
of the quadrature rules from the exact value for the same range in time.  Turn the grid 
on so that the result is much clearer.  Note that the series for the temperature converges 
-very- slowly for r = 0 at short times (it requires n>>1/r* at t* = 0 to converge).  Thus, 
just evaluate the temperature for r* = 0.001 for those cases, and keep a lot of terms in the 
series!  This can be done via an anonymous function using “sum” and taking n as a 
vector. 
 
e. There is an experimental measurement error of the probe of ±0.01.  What is the 
random experimental error of each of the quadrature rules above?  Is there any point 
where this dominates the overall error, and which rule would be optimal in this case? 



Problem 2. Quadrature and Error:  
 
a. Any quadrature rule basically boils down to a weighted linear combination of 
function evaluations.  Sometimes we are integrating functions of data.  If we have the 
rule: 
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where the bi are data measurements at node locations xi and the wi are the quadrature 
weights, what is the random error in the integral in terms of the matrix of covariance of 
the data? 
 
b. Often we want to integrate data, meaning that our function evaluations are done at 
fixed, evenly spaced node locations where the data has been measured.  This is usually 
done via either Simpson’s Rule, or the Trapezoidal Rule.  Suppose we have a large 
number of panels (e.g., a large number of points where we have done the evaluation).  
Discounting the first and last point (remember that for both SR and TR the weight on 
these is different from interior nodes), calculate the ratio of the random error of the 
integral of evenly spaced data points using these two rules, assuming that the data 
points are independent. 
 
Problem 3. Systems of Equations: 
 
The velocity profile due to a heated wire (this is one of the experiments in senior lab) is 
governed by the pair of coupled non-linear ODE's given below.  
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For those of you who are interested, f ' is the dimensionless vertical velocity (f is the 
streamfunction) and g is the dimensionless temperature.  Pr is the Prandtl number, a 
constant determined by the fluid used in the experiment. 
 
a. For this problem, write down the equivalent set of first order coupled ODE's, 
identifying all the dependent variables. 
 
b. Show how you can calculate the stability characteristics of this set of equations (e.g., 
explicitly get the Jacobian). 
 
 



Problem 4. Integration Error: You are integrating the non-linear ODE: 
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This actually has the simple solution: 
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a. Using a step size of ½, integrate this ODE from 0 to 1 using the Euler Method. 
 
b. Using the same step size, integrate it using the Backward Euler Method. 
 
c. Which integration procedure is more accurate and why?  What are the stability 
intervals (maximum step size) for each method? 
 
 
Problem 5.  Quadrature and Integration in Matlab: 
 
The following are pretty quick little programs using the matlab canned routines 
discussed in class, and most easily addressed using anonymous functions: 
 

a. Integrate y/x over the triangular domain x=[0,1], y=[0,x], e.g., 
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(using the appropriate integrator, this program is actually only three lines long…) 
 
b. The species A undergoes a dimerization reaction 2A -> B with rate k1CA

2.  The 
reaction continues, however, with the further reaction B+A -> C with rate k2CACB.  We 
would like to maximize the product B, so we need to stop the reaction when this is at a 
maximum.  If we take k1 = 2 and k2 = 4, and the initial concentration of CA is 1, use an 
integrator such as ode23 to determine the concentrations as a function of time.  Plot 
these up for the range times from 0 to 3, and using the “max” command estimate what 
the maximum concentration of B is and when it occurs.  Mark this point on your plot.   
 
Note that this point will be a little off using the “max” command: this is because there is 
a pretty big space between where the concentrations are evaluated.  You could get a 
much better value via interpolation: fitting a parabola to the maximum and the points 
on either side of it! 
 
c. An iron cannonball of mass 1kg is fired upwards at a velocity of 200m/s.  In addition 
to gravity, there is a drag due to air resistance given by FD = -0.00292 U|U| where U is 
dh/dt (all units SI).  Note that we have to use U|U| rather than U2 because we have to 
keep track of the sign.  Using Newton’s law, set the problem up as a pair of coupled 
first order equations and solve it using matlab.  Plot up the height and velocity as a 
function of time and (again using the max command) determine the maximum 
elevation of the cannonball and mark it on the graph. 


