
Demonstration of Unstable Control

In this example we are exploring what happens if you have too many sensors and actuators in
a control problem. Suppose we are trying to achieve a particular profile by the linear
superposition of a distribution of Gaussian impulses. As an example, suppose each actuator
is a hammer which delivers a force distributed over some range (standard deviation of the
Gaussian impulse), and whose magnitude is the adjustable parameter we want to solve for.
The idea is to determine the distribution of impulse strengths (force applied to each of the
hammers) that yields the desired force distribution over the entire range from 0 to 1. We will
explore the dependence of the solution on the size of the problem (number of actuators and
number of points at which the force is evaluated).
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Part 1: Setting up the problem

We begin by setting up the array of actuators and measurement points (points where we will
match the distribution) as well as an array for plotting purposes:

echo on
nact=20;
nmeas=25;

tact=linspace(1/nact/2,1-1/nact/2,nact)'; %Where we put the actuators
tmeas=linspace(0,1,nmeas)'; %Where we do the measurements
tplot=[0:.001:1]'; %an array we will use for plotting things up.

% OK, now we want to construct the matrices representing the impulse array.
% We will do this both for the points where we will "measure" the
% distribution, as well as a more closely spaced array for plotting
% purposes:

a=zeros(nmeas,nact); %The array for calculation of the solution vector
aplot=zeros(length(tplot),nact); %The array for plotting purposes

for j=1:nact
    a(:,j)=pdf('normal',tmeas,tact(j),2/nact);
    aplot(:,j)=pdf('normal',tplot,tact(j),2/nact);
    % We take the actuator distribution to be normal, with a s.d. equal to
    % twice the spacing, so there is a bit of overlap
    echo off
end

echo on
%Now let's plot up the distribution of all the actuators:
figure(1)
plot(tplot,aplot)
xlabel('t')
ylabel('distribution')
title('Distribution from individual activators')



title('Distribution from individual activators')

% We see that each of the actuators yields a distributed force, and that we
% can combine these to get the desired distribution.

echo off

nact=20;
nmeas=25;

tact=linspace(1/nact/2,1-1/nact/2,nact)'; %Where we put the actuators
tmeas=linspace(0,1,nmeas)'; %Where we do the measurements
tplot=[0:.001:1]'; %an array we will use for plotting things up.

% OK, now we want to construct the matrices representing the impulse array.
% We will do this both for the points where we will "measure" the
% distribution, as well as a more closely spaced array for plotting
% purposes:
a=zeros(nmeas,nact); %The array for calculation of the solution vector
aplot=zeros(length(tplot),nact); %The array for plotting purposes

for j=1:nact
    a(:,j)=pdf('normal',tmeas,tact(j),2/nact);
    aplot(:,j)=pdf('normal',tplot,tact(j),2/nact);
    % We take the actuator distribution to be normal, with a s.d. equal to
    % twice the spacing, so there is a bit of overlap
    echo off
%Now let's plot up the distribution of all the actuators:
figure(1)
plot(tplot,aplot)
xlabel('t')
ylabel('distribution')
title('Distribution from individual activators') 

% We see that each of the actuators yields a distributed force, and that we
% can combine these to get the desired distribution.  
echo off



Part 2: The actuator distribution

Now we need to determine the amplitude of each activator that achieves some distribution of
measured values. We shall use a quadratic distribution over the domain [0,1] as our target.

echo on
% We set up the right hand side vector:

b=2+2*tmeas.^2; %for calculation of x
bplot=2+2*tplot.^2; %for plotting purposes

% The solution is very easy!
x=a\b;

% And we plot it up:
figure(2)
plot(tmeas,b,'og',tplot,aplot*x,'r')
xlabel('t')
ylabel('distribution')
legend('target values','actuator results')
title(['Combined Distribution from ',num2str(nact),' Actuators'])

% This -looks- fine, but we actually have a big problem: The magnitude of
% the solution vector x is getting huge!

% We can see the problem if we look at the solution vector x:
x

% Note that while we are trying to get "positive" force everywhere, some of



% Note that while we are trying to get "positive" force everywhere, some of
% the coefficients are negative: equivalent to banging on the other side of
% the plate to get forces to cancel out!  We are also very sensitive to
% errors in x.  Suppose we have a small 0.05% error in each value.  What would
% our system look like then?

er=0.0005;
xerror=x+er*x.*randn(size(x));
figure(2)
plot(tmeas,b,'og',tplot,aplot*x,'r',tplot,aplot*xerror,'k')
xlabel('t')
ylabel('distribution')
legend('target values','actuator results',['with ',num2str(er),' error'])
title(['Combined Distribution from ',num2str(nact),' Actuators'])

echo off

% We set up the right hand side vector:
b=2+2*tmeas.^2; %for calculation of x
bplot=2+2*tplot.^2; %for plotting purposes

% The solution is very easy!
x=a\b;

% And we plot it up:
figure(2)
plot(tmeas,b,'og',tplot,aplot*x,'r')
xlabel('t')
ylabel('distribution')
legend('target values','actuator results')
title(['Combined Distribution from ',num2str(nact),' Actuators'])

% This -looks- fine, but we actually have a big problem: The magnitude of
% the solution vector x is getting huge!
% We can see the problem if we look at the solution vector x:
x

x =

    3.3417
  -10.4797
   20.3470
  -27.7848
   28.6041
  -18.1237
   -4.4082
   38.8164
  -80.7404
  125.8079
 -166.7933
  198.4298
 -214.4700
  212.8341
 -192.1271
  156.6762
 -111.6821



  156.6762
 -111.6821
   67.1541
  -30.4611
    8.6698

% Note that while we are trying to get "positive" force everywhere, some of
% the coefficients are negative: equivalent to banging on the other side of
% the plate to get forces to cancel out!  We are also very sensitive to
% errors in x.  Suppose we have a small 0.05% error in each value.  What would
% our system look like then?
er=0.0005;
xerror=x+er*x.*randn(size(x));
figure(2)
plot(tmeas,b,'og',tplot,aplot*x,'r',tplot,aplot*xerror,'k')
xlabel('t')
ylabel('distribution')
legend('target values','actuator results',['with ',num2str(er),' error'])
title(['Combined Distribution from ',num2str(nact),' Actuators'])

echo off

Part 3: The fix: SVD

The difficulty with the problem was that with all these actuators, the matrix was actually close
to singularity. Let's do SVD and look at this, as well as figuring out how to fix it!

echo on



echo on

% First, we do SVD:
[u s v]=svd(a);

% And we plot up the singular values:
ds=diag(s);
figure(3)
plot(abs(ds))
xlabel('n')
ylabel('singular value (magnitude)')
title('Plot of singular values')

% As you can see, the higher singular values drop off pretty quickly.  It
% is the last few that are causing all the trouble.

% We can fix the problem by only keeping some of the singular values:
nkeep=ceil(nact/1.5); %We use 2/3 of them
smod=zeros(size(s));
smod(1:nkeep,1:nkeep)=diag(ds(1:nkeep));

amod=u*smod*v'; %The modified matrix a with only the larger singular values
xmod=amod\b %The new solution vector

% Where all the values are much smaller!

% Now we see how we do (with error as well):
xmoderror=xmod+er*xmod.*randn(size(x));

figure(4)
plot(tmeas,b,'og',tplot,aplot*xmod,'r',tplot,aplot*xmoderror,'k')
xlabel('t')
ylabel('distribution')
legend('target values','actuator results',['with ',num2str(er),' error'])
title(['Combined Distribution from Actuators with ',num2str(nkeep),' singular values'])

% So we don't exactly match the desired distribution with a reduced number
% of singular values, but we are very close - and we aren't sensitive to
% errors in the solution vector.  This is important for control problems
% where actuators aren't perfect, and thus if you have a solution matrix
% that is close to singularity, you will wind up getting instabilities in
% the thing you are trying to control.  By using the reduced problem, you
% are essentially controlling all the actuators in a pattern corresponding
% to the first nkeep columns of the matrix V, rather than controlling all
% of them individually.

echo off

% First, we do SVD:
[u s v]=svd(a);

% And we plot up the singular values:
ds=diag(s);
figure(3)
plot(abs(ds))
xlabel('n')
ylabel('singular value (magnitude)')



xlabel('n')
ylabel('singular value (magnitude)')
title('Plot of singular values')

% As you can see, the higher singular values drop off pretty quickly.  It
% is the last few that are causing all the trouble.
% We can fix the problem by only keeping some of the singular values:
nkeep=ceil(nact/1.5); %We use 2/3 of them
smod=zeros(size(s));
smod(1:nkeep,1:nkeep)=diag(ds(1:nkeep));

amod=u*smod*v'; %The modified matrix a with only the larger singular values
xmod=amod\b %The new solution vector
Warning: Rank deficient, rank = 14,  tol =    4.5676e-14. 

xmod =

    1.0117
   -0.9215
         0
    1.3042
   -0.9127
         0
    0.9351
   -0.4212
         0
    0.4419
         0
    0.1966
         0
   -0.0013
    0.7966
         0
   -1.9434
    4.9999
   -5.1380
    3.0856

% Where all the values are much smaller!
% Now we see how we do (with error as well):
xmoderror=xmod+er*xmod.*randn(size(x));

figure(4)
plot(tmeas,b,'og',tplot,aplot*xmod,'r',tplot,aplot*xmoderror,'k')
xlabel('t')
ylabel('distribution')
legend('target values','actuator results',['with ',num2str(er),' error'])
title(['Combined Distribution from Actuators with ',num2str(nkeep),' singular values'])

% So we don't exactly match the desired distribution with a reduced number
% of singular values, but we are very close - and we aren't sensitive to
% errors in the solution vector.  This is important for control problems
% where actuators aren't perfect, and thus if you have a solution matrix
% that is close to singularity, you will wind up getting instabilities in
% the thing you are trying to control.  By using the reduced problem, you
% are essentially controlling all the actuators in a pattern corresponding
% to the first nkeep columns of the matrix V, rather than controlling all



% are essentially controlling all the actuators in a pattern corresponding
% to the first nkeep columns of the matrix V, rather than controlling all
% of them individually.
echo off



Part 4: Smaller numbers of actuators

It is interesting to see what happens if you have a much smaller number of actuators acting
over a larger area. We can easily use some "cut and paste" to change this:

echo on
nact=5;

tact=linspace(1/nact/2,1-1/nact/2,nact)'; %Where we put the actuators
a=zeros(nmeas,nact); %The array for calculation of the solution vector
aplot=zeros(length(tplot),nact); %The array for plotting purposes

for j=1:nact
    a(:,j)=pdf('normal',tmeas,tact(j),2/nact);
    aplot(:,j)=pdf('normal',tplot,tact(j),2/nact);
    % We take the actuator distribution to be normal, with a s.d. equal to
    % twice the spacing, so there is a bit of overlap
    echo off
end

echo on
%Now let's plot up the distribution of all the actuators:
figure(5)
plot(tplot,aplot)
xlabel('t')
ylabel('distribution')
title('Distribution from individual activators')

% We see that each of the actuators yields a distributed force, and that we
% can combine these to get the desired distribution.



% We see that each of the actuators yields a distributed force, and that we
% can combine these to get the desired distribution.

% The solution is very easy!
x=a\b;

% And we plot it up:
xerror=x+er*x.*randn(size(x));
figure(6)
plot(tmeas,b,'og',tplot,aplot*x,'r',tplot,aplot*xerror,'k')
xlabel('t')
ylabel('distribution')
legend('target values','actuator results',['with ',num2str(er),' error'])
title(['Combined Distribution from ',num2str(nact),' Actuators'])

% This works just about as well as the larger number of actuators and is
% far less sensitive to error!  It goes to show that more is not
% necessarily better when it comes to stability!
echo off

nact=5;

tact=linspace(1/nact/2,1-1/nact/2,nact)'; %Where we put the actuators
a=zeros(nmeas,nact); %The array for calculation of the solution vector
aplot=zeros(length(tplot),nact); %The array for plotting purposes

for j=1:nact
    a(:,j)=pdf('normal',tmeas,tact(j),2/nact);
    aplot(:,j)=pdf('normal',tplot,tact(j),2/nact);
    % We take the actuator distribution to be normal, with a s.d. equal to
    % twice the spacing, so there is a bit of overlap
    echo off
%Now let's plot up the distribution of all the actuators:
figure(5)
plot(tplot,aplot)
xlabel('t')
ylabel('distribution')
title('Distribution from individual activators') 

% We see that each of the actuators yields a distributed force, and that we
% can combine these to get the desired distribution.  
% The solution is very easy!
x=a\b;

% And we plot it up:
xerror=x+er*x.*randn(size(x));
figure(6)
plot(tmeas,b,'og',tplot,aplot*x,'r',tplot,aplot*xerror,'k')
xlabel('t')
ylabel('distribution')
legend('target values','actuator results',['with ',num2str(er),' error'])
title(['Combined Distribution from ',num2str(nact),' Actuators'])

% This works just about as well as the larger number of actuators and is
% far less sensitive to error!  It goes to show that more is not
% necessarily better when it comes to stability!
echo off



% necessarily better when it comes to stability!
echo off


