\qquad
$\begin{array}{lr}\text { Cheg } 258 \text { Third Hour Exam } & \text { 5/7/96 } \\ \text { Closed Book and Closed Notes } & \end{array}$

Problem 1). Integration Error Propagation:
a. Derive the local error and propagation error for the Euler method.
b. What is the stability interval for this method?
c. Name two high order (e.g., greater than $O(h)$) methods we have discussed in class useful for stiff ODE's.

Problem 2). Runge-Kutta Methods:
The differential equation:

$$
\frac{d y}{d t}=-4 y, \quad y(0)=1
$$

has the solution:

$$
y=e^{-4 t}
$$

Solve this equation numerically using the 2-stage Runge-Kutta method with step size $\mathrm{h}=1 / 2$ over the interval $[0,1]$ (e.g., for two steps) and compare your result to the exact answer. Why do they differ so greatly?
\qquad

Problem 3). Weighted Linear Regression:
We have made a series of observations b_{i} such that we know the variance of each point, given by $\sigma_{b_{i}}^{2}$. These observations are all independent, but the variances are not the same!!
a. Write down the form of the matrix of covariance of the observations (this is easy - don't make it hard).
b. The weighted regression problem may be stated as:

$$
\min _{\underset{\sim}{x}}^{\underset{\sim}{r}} \underset{\sim}{T}\left(\Sigma_{\underset{\sim}{x}}^{2}\right)^{-1} \underset{\sim}{r}
$$

where:

$$
\underset{\sim}{r}=A \underset{\sim}{x}-\underset{\sim}{b}
$$

Develop (or derive) the normal equations for the weighted regression problem.
c. Determine the matrix of covariance for the fitting parameters $\underset{\sim}{x}$.

NAME

Problem 4). Quadrature:
Accurately estimate the integral:

$$
I=\int_{0}^{\pi} \cos (x) \ln (x) d x
$$

using two-point Gaussian quadrature. Show all of your work.

