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Figure 2. The effect of recycle flow on methane conver-
sion for a feed concentration, C,,, of 1.976x10" mol/liter.
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2/24/14 2:20 PM_ /stuff/cheg classes/cbe 20258 .../delta.m 1 of 1

function y=delta(guess)

%This function takes in guesses for the unknown parameters n, 1ln(k0) and
‘E/RTr, and returns the deviation between the model and the data. We bring
4#the data in through the "global" command:

global crpass crOpass Tpass

Tr=298; %The reference temperature.
qr=0.1; %The flow rate (liters/min)
m=1; %The amount of catalyst (g}

n=guess(1l); %The first parameter
kO=exp(guess{2}); %The second parameter
ERTr=guess(3); %The third parameter

miss=crpass-crOpass+m/gr*crpass.”“n*k0.* (Tr./Tpass) . n. *exp (-ERTr*Tr. /Tpass) ;

%0K, the question is how to weight each of the data points. BAs it is
$currently written, it tends to accentuate the weighting at higher
$temperatures where the conversion is the largest. This is because cr is
$lowest, and it is multiplied by a large value to make it balance cr0. It
%also places a stronger weight on the runs with higher intial

$concentrations. On the other hand, for lower c¢r we should have more
%accurate measurements (if the fractional error is fixed, for example).
tDifferent weightings will yield different "solutions" for optimal parameters.

%A reasonable choice is to weight each of the runs with the inverse of the
$initial concentration. This is essentially equivalent to assuming an error
$proportional to the concentration measured, and each data point should be
$of 0{(1). Thus:

miss=miss./cxrOpass;

tand thus we get the objective function:
y=sum{miss.*miss);




gx,lg’

clear

echo on

$In this example we analyze the catalytic oxidation data obtained by a

¥group of students in senior lab. Under CSTR conditions they measured outlet
$concentrations for three different reactor feed concentrations. The data
$for the three feeds cr0 are given below:

Ta=[423 449 471 495 518 534 549 563);
cra=[l1.66E-04 1.66E-04 1.59E-04 1.37E-04 8.90E-05 5.63E-05 3.04E-0D¢
crla=1.64E-4;

Th=[423 446 469 490 507 523 539 553 575];
crb={3.73E-04 3.72E-04 3.59E-04 3.26E-04 2.79E-04 2.06E-04 1.27E-0¢
crO0b=3.6%e-4;

Tc=[443 454 463 475 485 497 509 520 534 545 555 568]);

crc=[2.85E-04 2.84E-04 2.84E-04 2.74E-04 2.57E-04 2.38E-04 2.04E-0¢
cric=2.87e-4;

pause

tWe can calculate conversion ratios for these three runs:
xa=l-cra/croa;
xb=l~crb/crob;
xc=l-crc/cric;

tand we can plot them up:

figure(l)

plot(Ta,xa,'c’',Tbh,xb,'*',Tc,xc,'"")

xlabel( ' Temperature (K)','FontSize',b14)

ylabel( 'conversion ratios', 'FontSize',14)

legend(['Cr0 = ',num2str{crla)],['Cr0 = ',num2str({crOb)],['Cr0 = ',num2str(crodc)],'l
title('Conversion ratios at different feed concentrations', 'FontSize',14)

set(gca, 'FontSize',14)

pause

$Looking at this plot, we can immediately see why the standard technique
$for analyzing the reaction data will run into trouble: Even with
f$interpolation, it will be very hard to get accurate values of the
fconversion at different concentrations for fixed temperatures. To use
$non-linear regression to get at the fitting parameters, we will have to
tdefine an objective function for minimization, as well as some initial
tguesses for the parameters. We can pass the data into the objective
%function using the "global" meat axe:

global crpass cr0Opass Tpass

Tpass=[Ta,Tb,Tc];
crpass=[cra,crb,crc];
cr0pass=(crla*ones(size(Ta))},crOb*ones(size(Th}),crlc*ones(size(Tc))];

$and you will have to save the function "delta.m" which returns the
fobjective function to be minimized.
pause



%0K, let's do it. We have the initial guesses:
guess=zeros(3,1);

guess{l)=.5; %¥This is the guess for n
guess{2)=15; %This is the guess for 1ln(k0)
guess({3)=38; %This is the gquess for E/RTr

$And we go:

guess=fminsearch('delta’,guess)

pause

$Looking at these values, they aren't too far off of those in the
tliterature. 1In particular, the exponent is quite close to the
texpected value of 0.5, and the activation energy is only off by 7%!
pause

iWe can plot the model up too. We need the other parameters
% (both here and in the function delta.m).

Tr=25%8; %The reference temperature.

gr=0.1; %The flow rate (liters/min)

m=1; %The amount of catalyst (g)

n=guess(l);
kO=exp{guess(2));
ERTr=guess(3);

Trange={min(Tpass):max(Tpass)]); %A plotting range
xmodel=m/gr*(Tr./Trange)."n*k0.*exp(-ERTr*Tr./Trange);

xafn=xa./(l-xa)."n/crl0a*(n-1);
xbfn=xb./(l-xb).*n/cr0b~(n-1});
xcfn=xc./(l-xc).~n/crlc”(n=-1);

10K, we've got the model and the data for the function x/(l-x)"n/er0~(n-1}.
$It should be independent of the concentration. Let's plot it up:

pause

figure(2)

plot(Ta,xafn, 'o’',Tbh,xbfn, '*',Tc,xcfn, '+',Trange, xmodel)

xlabel (' Temperature (K)','FontSize',14)
ylabel('x/(1-x)}"n/cr0~(n-1)', 'FontSize', 14)

legend(['Cr0 = ',num2str{crla)],['Cr0 = ',num2str{crOb}],['Cr0 = ', num2str{crlc)],'n
title(] 'Comparison of data to model, n = ',num2str(n)],’'FontSize',14)
set(gca, 'FontSize',14)

$Which shows that we get pretty much perfect collapse of the data.

pause

tNow we turn to the trickier error calculations. First, we need to get a
fmeasure of the uncertainty in the concentration measurements. We can get
fthis from the magnitude of the "miss" in the data:
miss=crpass-cripass+m/qr*crpass.“n*k0.*(Tr./Tpass}. n.*exp(-ERTr*Tr./Tpass);

tWe must adjust this to account for the relative weighting of the data. ZIn
3this case, a rough correction for the actual fractional deviation in cr
%$is given by:

miss=miss./cr0pass.*(crpass./crlpass);

$Thus we get the fractional standard deviation {assuming randomness) of:
crstdev=norm(miss)/(length(Tpass)-3)~.5



tWhich yields a fractional error of around 3% - not too bad. Note that these
tdeviations could have been due to errors in the temperature just as readily!
pause

30K, it is always important to plot up the residuals to see if the error is
¥really random. It is useful to plot up the actual cr's and predicted
%cr's. Alas, we have an implicit equation for the predicted cr's which
%cannot be solved analytically. Instead, we shall use the "miss” from the
tminimization routine. We need the range of indices corresponding to each
tdata set:

a=[l:length(Ta)];

b=[max(a)+l:max(a)+length(Tb)];

c=[max(b)+l:max(b)+length(Tc)];

figure(3)

plot(Ta,miss(a),'o’,Tb,miss(b),"'*',Tc,miss{c), '+")

hold on

plot(Trange, zeros(size(Trange)))

hold off

xlabel ( 'Temperature (K)','FontSize',14)

ylabel('Residual (dimensionless fractional deviation)', 'FontSize',14)
title('Plot of Residuals', 'FontSize',14)

legend(['Cr0 = ',num2str(crda)],['Cr0 = ',num2str(crdb)],['Cr0 = ',num2str(crdc)],'n
set(gca, 'FontsSize',14)
pause

#As you can see, there is a pretty significant systematic deviation between

$the model and the data. That means that the random error in cr is
t-overestimated- (it's less than 3%) while assuming the data to be

tdominated by independent random error will lead to errors in fitting parameters
$to be underestimated! It also means that there is something going on which is
tnot captured by the model - not a big surprise.

pause

%0K, we still want to measure the sensitivity of the calculated values to
$errors in measured concentrations. This can be done by taking the
tderivative of the fitted values with respect to each of the data points
% (not forgetting the initial concentrations, which have error tootl).
$First, let's do the cr's:

crkeep=crpass;
gradfcr=zeros(3,length(Tpass)); %The array where we stuff the gradient.
for j=l:length(Tpass)
crpass=crkeep;
ep=crpass(j)*crstdev; %The amount we change the j'th data point by.
crpass(j)=crpass(j)+ep;
$Now we calculate new values of the fitted parameters:
newguess=fminsearch('delta’,guess);
gradfcr(:,j)=(newguess-guess)/ep; %The gradient.
echo off
end
echo on

$And we do the same for the initial concentrations:
crpass=crkeep;



gradfcr0=zeros(3,3); %We had three initial concentrations.

cripass=[crla*(l+crstdev)*ones(size(Ta))},cr0b*ones(size(Th)),cr0c*ones{size(Tc}))];
gradfcr0(:,1l)=(fminsearch('delta’',guess})-guess)/(crstdev*cria};

crOpass=[cr0a*ones(size(Ta)),chb*(1+crstdev)*ones(size{Tb)),crOc*ones(size(Tc))];
gradfcr0(:,2)=(fminsearch('delta’,guess)-guess})/(crstdev*crib);

cr0pass=[cr0a*ones(size(Ta)),cr0b*ones(size(Tb)),cr0c*(1l+crstdev)*ones(size(Tc))];
gradfcr0(:,3)=(fminsearch('delta’,guess)-guess)/(crstdev*crlc);

fand we put crOpass back again:
criOpass=[crla*ones(size(Ta)),cr0Ob*ones(size(Tb)),cr0c*ones(size(Tc))];

pause

$That gives us the sensitivity gradients. To complete the problem, we need
tto determine the matrix of covariance of the concentration measurements.
tThis is a little more "iffy" because we -know- that they are not really
trandom! sStill, if we make the randomness assumption, we can get an
testimate of the matrix of covariance of the fitting parameters.

varcr=diag( (crstdev*crpass)."2);
varcrO=diag{([cr0a,cr0b,croc]*crstdev)."2);

tNote that we multiply by the wvalue of cr, etc., as crstdev was an
$estimate of the -fractional- standard deviation!

pause

$These will both contribute to the uncertainty. We can look at each
$separately. First, from cr:
varl=gradfcr*varcr*gradfcr’

tand now from cxr0:
varZ=gradfcro*varcri*gradfcri’
pause

tNote that the error due to the ipitial concentrations is actually greater
$than that due to all the reactor outlet measurements put together! That's
tbecause it is used in every calculated value of the fitting parameters,
twhile the "randomness" of the outlet measurements gets averaged out.

$Putting these two together yields an estimate of the variance:
var=varl+var2

Zand the fitting parameters + error:
(guess,diag(var).".5]

twhich, I would guess, gives a reasonable measure of the random uncertainty
tin the values. This is because the uncertainty in cr0 (which is probably
%overestimated) dominates the calculation, while the "randomness
%$assumption” underestimates the contribution due to error in cr. The total
$error will be greater due to other contributions not considered here. 1In
tparticular, calibration errors will yield systematic error not chservable
$from the residuals!

pause



%80, in conclusion, the fractional exponent lies within approximately two
¥standard deviations of the literature value of 0.5, and the activation
fenergy is also within two sigma of 38.5 (at Tr=298K). Error estimates
tcould be improved by having independent estimates of the uncertainty in
%cr0 (the dominant source), by modeling the matrix of covariance in cr,
%and by studying the effect of errors in the other parameters in the
$problem, such as T, gqr, and m. You can also study how the modeling
$parameters change if you leave cr0 as an additional adjustable parameter
%in the model, and simply add its normalized deviation from the measured
%value as an additional contribution to the objective function. That would
fdecrease the model dependence on these few particular data points, and
tmight actually decrease the parameter error bars and reduce the systematic
tdeviation in the residual. To get the most out of your data, you need to
%think about the analysis procedure: what assumptions and relative
3weighting it is putting on particular data points. You will have fun with
%this experiment senior year!

echo off

%In this example we analyze the catalytic oxidation data obtained by a

tgroup of students in senior lab. Under CSTR conditions they measured outlet
*concentrations for three different reactor feed concentrations. The data

%for the three feeds cr0 are given below:

Ta=[423 449 471 495 518 534 549 563];

cra=[1l.66E-04 1.66E-04 1.59E-04 1.37E~04 B.90E-05 5.63E-05 3.04E-0°¢
crl0a=1.64E~4;

Th=[423 446 469 490 507 523 539 553 575};
crb=[3.73E-04 3.72B~04 3.59E-04 3.26E-04 2.79E-04 2.06E-04 1.27E-0¢
cr0b=3.69%e-4;

Tc=[443 454 463 475 485 497 509 520 534 545 555 568);

crec=[2.85E-04 2.8B4E-04 2.84E-04 2.74E-04 2.57E-04 2.38E-04 2.04E-0¢
crlc=2.87e-4;

pause

tWe can calculate conversion ratios for these three runs:
xa=l-cra/crla;
xb=1l-crb/crib;
xec=l-crc/ecric;

%and we can plot them up:

figure(l)

plot(Ta,xa, 'o',Tb,xb,'*',Tc,xc, "~ ')

xlabel{'Temperature (K)','FontSize',14)

ylabel( 'conversion ratios', 'FontSize',14)

legend([ ‘Cxr0 = ',num2str(crla)),['Cr0 = ',num2str{crOb)],['Cr0 = 'ynum2str(crlc)],'1
title('Conversion ratios at different feed concentrations', 'FontSize',14)

set{gca, 'FontSize',14)

pause

$Looking at this plot, we can immediately see why the standard technique
%for analyzing the reaction data will run into trouble: Even with
$interpolation, it will be very hard to get accurate values of the
tconversion at different concentrations for fixed temperatures. To use
tnon-linear regression to get at the fitting parameters, we will have to



tdefine an objective function for minimization, as well as some initial
tguesses for the parameters. We can pass the data into the objective
tfunction using the "global" meat axe:

global crpass crOpass Tpass

Tpass=[Ta,Thb,Tc];
crpass={cra,crb,crcj;
cripass=[crla*ones(size(Ta)),crOb*ones(size(Tb)),crlic*ones(size(Tc))];

$and you will have to save the function "delta.m" which returns the
tobjective function to be minimized.
pause

80K, let's do it. We have the initial guesses:
guess=zeros(3,1);

guess{1l)=.5; %This is the guess for n
guess(2)=15; 3%This is the guess for In(k0}
guess(3)=38; %This is the guess for E/RTr

$And we go:
guess=fminsearch('delta’',guess)
guess =

0.6152

15.0920

36.0888
pause
tLooking at these values, they aren't too far off of those in the
$literature. 1In particular, the exponent is quite close to the
texpected value of 0.5, and the activation energy is only off by 7%!
pause

%We can plot the model up too. We need the other parameters
% (both here and in the function delta.m).

Tr=298; %The reference temperature.

qr=0.1; %The flow rate (liters/min)

m=1; %The amount of catalyst {g)

n=guess(1);
kO=exp(guess(2)};
ERTr=gquess(3);

Trange=[min(Tpass) :max(Tpass})]; %A plotting range
xmodel=m/gr*(Tr./Trange)."n*kl. *exp(-ERTr*Tr./Trange);

xafn=xa./(l-xa})."n/crla”(n-1);
xbfn=xb./(1-xb).*n/cx0b”(n-1);
xcfn=xc./(l-xc}. "n/ecrlc”(n=-1);

$0K, we've got the model and the data for the function x/(l1-x)*n/cr0-(n-1).

tIt should be independent of the concentration. Let's plot it up:

pause

figure(2)

plot(Ta,xafn, 'o',Tb,xbfn,'*' ,Tc,xcfn, '+',Trange, xmodel)

xlabel ('Temperature (K)', 'FontSize',b14)

ylabel('x/(1-x)"n/cr0~(n-1)', 'FontSize', 14)

legend(['Cr0 = ',num2str(crfa)],{'Cr0 = ',num2str(crldb)],['Crd = ',num2str(cric)],'n



title([ 'Comparison of data to model, n = ',num2str(n)], 'FontSize',14)
set(gca, 'FontSize',14)

tWhich shows that we get pretty much perfect collapse of the data.
pause

tNow we turn to the trickier error calculations. First, we need to get a
tmeasure of the uncertainty in the concentration measurements. We can get
$this from the magnitude of the "miss” in the data:
miss=crpass-crlpass+m/qr*crpass. "n*k0.*(Tr./Tpass). "n.*exp(-ERTr*Tr./Tpass});

%We must adjust this to account for the relative weighting of the data. In
%this case, a rough correction for the actual fractional deviation in cr
%is given by:

miss=miss./crlpass.*(crpass./cr0pass);

$Thus we get the fractional standard deviation (assuming randomness) of:
crstdev=norm({miss)/(length(Tpass)~3)".5
crstdev =

0.0312

tWhich yields a fractional error of around 3% - not too bad. Note that these
tdeviations could have been due to errors in the temperature just as readily!
pause

$0K, it is always important to plot up the residuals to see if the error is
%really random. It is useful to plot up the actual cr's and predicted
tcr's. Alas, we have an implicit equation for the predicted cr's which
tcannot be solved analytically. Instead, we shall use the "miss" from the
tminimization routine. We need the range of indices corresponding to each
fdata set:

a=[l:length{Ta)];

b=[max(a)+l:max(a)+length(Tb)];

c=[max(b)+l:max(b)+length(Tc)];

figure(3)

plot(Ta,miss(a),'o',Tb,miss(b), "*',Tc,miss(c),'+")

hiold on

plot({Trange,zeros(size(Trange))}

hold off

xlabel('Temperature (K)', ' 'FontSize',14)

ylabel('Residual (dimensionless fractional deviation)', 'FontSize',14)
title('Plot of Residuals', 'FontSize',14)

legend(['Cr0 = ',num2stricrla)],{'Cr0 = ',num2str{crOb})],{'Cr0 = ',num2str(crlc)],'n
set(gca, 'FontSize',14)
pause

tAs you can see, there is a pretty significant systematic deviation between

$the model and the data. That means that the random error in cr is
t-overestimated- (it's less than 3%) while assuming the data to be

tdominated by independent random error will lead to errors in fitting parameters
%to be underestimated! It also means that there is something going on which is
tnot captured by the model - not a big surprise.

pause

%0K, we still want to measure the sensitivity of the calculated values to
$errors in measured concentrations. This can be done by taking the



tderivative of the fitted values with respect to each of the data points
t(not forgetting the initial concentrations, which have error too!).
%First, let's do the cr's:
crkeep=crpass;
gradfcr=zeros(3,length(Tpass)); %The array where we stuff the gradient.
for j=1:length(Tpass)
crpass=crkeep;
ep=crpass(j)*crstdev; %The amount we change the j'th data point by.
crpass(j)=crpass(j)tep;
$Now we calculate new values of the fitted parameters:
newguess=fminsearch('delta’',guess);
gradfcr(:,j)=({newguess-guess)/ep; %The gradient.
echo off

$&nd we do the same for the initial concentrations:
crpass=crkeep;
gradfcrO=zeros(3,3); %We had three initial concentrations.

crbpass=[cr0a*(l+crstdev)*ones(size(Ta)),crOb*ones(size(Thb)),crlc*ones{size(Tc))];
gradfcrl(:,l)=(fminsearch('delta’',guess)-guess)/(crstdev*crla);

cripass=[cr0a*ones(size(Ta)),crOb*(l+crstdev)*ones(size(Tb)),crl0c*cnes(size(Tc)}];
gradfer0(:,2)={fminsearch('delta’',quess)-guess)/({crstdev*crib);

crOpass=[crla*ones(size(Ta)),crl0b*ones(size(Th)),cr0c*(l+crstdev)*ones(size(Tc))];
gradfcr0(:,3)=(fminsearch('delta’',guess)-guess)/{crstdev*cric);

tand we put crOpass back again:
cripass=[cr0a*ones(size(Ta)),crOb*ones(size(Thb)),crlc*ones(size(Tc))];

pause

$That gives us the sensitivity gradients. To complete the problem, we need
%to determine the matrix of covariance of the concentration measurements.
$This is a little more "iffy" because we -know- that they are not really
trandom! Still, if we make the randomness assumption, we can get an
testimate of the matrix of covariance of the fitting parameters.
varcr=diag({(crstdev*crpass}.~2);
varcr0=diag(([crla,cr0b,cric]*crstdev).”2);

$Note that we multiply by the value of cr, etc., as crstdev was an
testimate of the -fractional- standard deviation!

pause

$These will both contribute to the uncertainty. We can look at each
tseparately. First, from cr:
varl=gradfcr*varcr*gradfcr'
varl =
0.0005 0.0117 0.0127
0.0117 0.3550 0.4275
0.0127 0.4275 0.5431

$and now from cro:
var2=gradfcr0*varcr*gradfcr(’
var2 =
0.0027 0.0697 0.0759
0.0697 1.8849 2.1491



—

0.0759 2.1491 2.5335
pause

tNote that the error due to the initial concentrations is actually greater
$than that due to all the reactor outlet measurements put together! That's
tbecause it is used in every calculated value of the fitting parameters,
twhile the "randomness" of the outlet measurements gets averaged out.
$Putting these two together yields an estimate of the variance:
var=svarl+var2
var =

0.0032 0.0814 0.0886

0.0814 2.2400 2.5766

0.0886 2.5766 3.0765

%and the fitting parameters + error:
[guess,diag(var}.”.5]
ans =

0.6152 0.0565

15.0920 1.4966

36.0888 1.7540

twhich, I would guess, gives a reasonable measure of the random uncertainty
tin the values. This is because the uncertainty in cr0 {(which is probably
foverestimated) dominates the calculation, while the "randomness
$assumption” underestimates the contribution due to error in cr. The total
terror will be greater due to other contributions not considered here. 1In
tparticular, calibration errors will yield systematic errer not observable
$from the residuals!

pause

$S0, in conclusion, the fractional exponent lies within approximately two
$standard deviations of the literature value of 0.5, and the activation
tenergy is also within two sigma of 38.5 (at Tr=298K). Error estimates
$could be improved by having independent estimates of the uncertainty in
$crd (the dominant source), by modeling the matrix of covariance in cr,
tand by studying the effect of errors in the other parameters in the
tproblem, such as T, gr, and m. You can also study how the modeling
tparameters change if you leave cr0 as an additional adjustable parameter
$in the model, and simply add its normalized deviation from the measured
%value as an additional contribution to the objective function. That would
%decrease the model dependence on these few particular data points, and
tmight actually decrease the parameter error bars and reduce the systematic
tdeviation in the residual. To get the most out of your data, you need to
$think about the analysis procedure: what assumptions and relative
$weighting it is putting on particular data points. You will have fun with
%this experiment senior year!

echo off
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