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clear

format compact

echo on

%3The Jackknife

2In this example, we demonstrate the jackknife - a2 way of estimating the
$matrix of covariance of a set of fitted parameters without requiring
¥modeling of the residuals directly. We do this by solving the problem
fover and over, leaving out one data point each time. We then calculate
$the matrix of covariance of the fitted values. This has the advantage of
$not relying on the residuals being normalliy distributed, although if the
fresiduals are not of uniform error the same issues with bias of the
fregression will occur.

$0K, we shall take as our example the "ball in air" problem we've looked at
tbefore:

t=(0:.1:1]";

tand we generate some "data":

xexact=[0,2,-2]'; %The exact values

a=[ones(size(t)),t,t."2];

noise=0.05; %The amplitude of the noise

b=a*xexact+noise*randn(size(t})); %Our artificial data set.

pause

%$%Basic Regression:

$We solve this using the usual regression formula:
k=inv(a'*a)*a’';

x=k*b

tWe calculate the error in the usual way:

r=a¥*x-b;

varb=r'*r/(length(r)-3); %Three degrees of freedom lost
sigb=varb~.5

$Which is (usually) close to the value of noise we put in
varx=k*varb*k’

tand in particular we have the 2-sigma confidence intervals of the x
tvalues:

xinterval=[x-2*diag(varx).”.5,x+2*diag(varx).".5]

fwhich usually contains the exact values:

xexact

$Where probabilities are governed by the t-distribution:
prob=tcdf(2,length(b)-3)~-tedf(-2,length(b)-3)

%80 the 2-sigma probability in the 90% range (depending on n-m).

pause

*Now let's plot this up. We want some smooth plotting:

tp=[(0:.01:1]"';

ap=(ones(size(tp)),tp,tp."2];

bp=ap*x;

sigbp=diag(ap*varx*ap').”.5;

figure(1}

plot(t,b,'o',tp,ap*xexact, 'k',tp,bp,tp,bp+sigbp, ':r',tp,bp-sigbp,':r')



set(gca, 'FontSize',14)

xlabel('time')

ylabel('position'})

legend('data’', 'exact', 'model’, '1sig confidence interval’','Location’', 'South'}

pause

%%The Jackknife
%Now we look at how to estimate the matrix of covariance using the jackknife
fapproach. We simply leave off one of the data points and resolve for x.
$We then subtract it from the value obtained by loocking at all the points,
tand determine the matrix of covariance:
[n m]=size(a);
xjksgall=zeros(m,m); %We initialize the array.
xjkall=zeros(m,1);
for i=1:n
iall=[1l:n];
ikeep=find(iall-=i); %We keep all but the ith data point!
ajk=a(ikeep,:};
bijk=b(ikeep);
xjk=ajk\bjk;
xjksgall=xjksqall+xjk*xjk’;
xjkall=xjkall+xjk;
echo off
end
echo on
$And we get the final result:
xjk=xjkall/n
twith the matrix of covariance:
varxjk=(xjksgall-n*xjk*xjk')*(n-1)/n
3And that generates the matrix, without having to assume anything about the
tmatrix of covariance of b - other than assuming that the data points are
$independent, of course.

pause

$Let's compare this to the values we obtained using the error propagation
%formula:
var_ratio=varxjk./varx

$Which is (usually) close to one - it will change every time you run it. If
$you have a large number of data points it will converge exactly to one, as
texpected, but it takes about a thousand or so.

pause

tWe can also add this to our plot:

bpjk=ap*xjk;

sigbpjk=diag(ap*varxjk*ap').”.5;

figqure(2)

plot(t,b,'o’,tp,ap*xexact, 'k',tp,bpjk,tp,bptsigbp,':r',tp,bpjktsigbpik, '=-g',tp,bp-¢
set(gca, 'FontSize',14)

xlabel{'time')

ylabel('position')

legend('data’', 'exact', 'model’', 'normal error','jacknife error’','Location','South’)



pause

$4s a final note, the Jackknife will work both for linear and non-linear
fregression, although it does involve solving the problem n times. It does
$not require determining the residuals (other than assuming independence),
$but you can't use it if you -require- one of the data points in the model
%fitting (such as cr0 in Tuesday's reaction engineering problem). It also
$may be more prone to "strange results" if the number of data points is
$small, whereas the exact expressions (if the number of data points is
3still sufficient to estimate the variance in the data, or if you can get
$it in other ways) are less so. For example, if you have a small number of
tdata points and "leave off the one on the end", you will tend to get a
fmuch different value for fitting parameters, leading to (on average} an
foverestimate of the variance.

echo off

$3%The Jackknife

$In this example, we demonstrate the jackknife - a way of estimating the
gmatrix of covariance of a set of fitted parameters without requiring
g¢modeling of the residuals directly. We do this by solving the problem
$over and over, leaving out one data point each time. We then calculate
$the matrix of covariance of the fitted values. This has the advantage of
$not relying on the residuals being normally distributed, although if the
$residuals are not of uniform error the same issues with bias of the
$regression will occur.

$0K, we shall take as our example the "ball in air" problem we've looked at
$before:

t=[0:.2:1]";

%and we generate some "data":

xexact={0,2,-2]"'; %The exact values

a=[ones(size(t)),t,t."2];

noise=0.05; %The amplitude of the noise

b=a*xexact+noise*randn(size(t)); %Our artificial data set.

pause
$tBasic Regression:

$We solve this using the usual regression formula:
k=inv(a'*a)*a';

X=k*b
x=
-0.0174
2.1482
-2.1776

$We calculate the error in the usual way:
r=a*x-b;
varb=r'*r/(length{r)-3); %¥Three degrees of freedom lost
sigb=varb~.5
sigb =
0.0401
$Which is (usually) close to the value of noise we put in
varx=k*varb*k'
varx =
0.0009 -0.0035 0.0028



-0.0035 0.0202 -0.0187
0.0028 -0.0187 0.0187
tand in particular we have the 2-sigma confidence intervals of the x
fvalues:
xinterval=[x-2*diag(varx).".5,x+2*diag(varx).”.5]
xinterval =
-0.0785 0.0437
1.8640 2.4325
-2.4514 -1.9038
$which usually contains the exact values:
xexact
xexact =
0
2
-2
tWhere probabilities are governed by the t-distribution:
prob=tedf (2, length(b)-3)-tedf (-2, length(b)-3)
probh =
0.9195
$So0 the 2-sigma probability in the 90% range (depending on n-m).
pause

§Now let's plot this up. We want some smooth plotting:

tp=[(0:.01:1]1";

ap=[ones(size(tp)),tp,tp."21;

bp=ap*x;

sigbp=diag(ap*varx*ap').”".5;

figure(l)

plot(t,b,'c',tp,ap*xexact, 'k',tp,bp,tp,bptsigbp,':r',tp,bp-sigbp,':r")
set(gca, 'FontSize',14)

xlabel{'time"'}

ylabel{ 'position')

legend('data’, 'exact’, 'model’', '1sig confidence interval’', '‘Location', 'South')

pause

%%The Jackknife
¥Now we look at how to estimate the matrix of covariance using the jackknife
$approach. We simply leave off one of the data points and resolve for x.
tWe then subtract it from the value obtained by looking at all the points,
¢and determine the matrix of covariance:
[n m]=size(a);
xjksqgall=zeros(m,m); %We initialize the array.
xjkall=zeros(m,1);
for i=1l:n
iall=[1l:n];
ikeep=find(iall~=i); %We keep all but the ith data point!
ajk=a{ikeep,:);
bik=b{ikeep);
xjk=ajk\bjk;
¥xjksqgall=xjksgall+xjk*xjk’';
xjkall=xjkall+xijk;
echo off
$And we get the final result:
xjk=xjkall/n
xjk =



-0.0189

2.1549

-2.1833
$with the matrix of covariance:
varxjk=(xjksgall-n*xjk*xjk')*(n-1)/n

varxik =
0.0018 -0.0087 0.0052
-0.0067 0.0337 -0.02%0

0.0052 -0.0290 0.0258
$And that generates the matrix, without having to assume anything about the
tmatrix of covariance of b - other than assuming that the data points are
$independent, of course.
pause

$Let's compare this to the values we obtained using the error propagation
$formula:
var_ratio=varxjk./varx
var_ratio =
1.9536 1.899%4 1.8468
1.8994 1.6686 1.5467
1.8468 1.5467 1.3782

$Which is (usually) close to one - it will change every time you run it. If
tyou have a large number of data points it will converge exactly to one, as
texpected, but it takes about a thousand or so.

pause

tWe can also add this to our plot:

bpjk=ap*xjk;

sigbpjk=diag(ap*varxjk*ap'}.".5;

figure(2)

plot{t,b, 'o',tp,ap*xexact, 'k',tp,bpjk,tp,bp+tsigbp,':r',tp,bpjk+sigbpik, '--g',tp,bp-:¢
set{gca, 'Fontsize',14)

xlabel('time')

vlabel('position')

legend('data’, 'exact', 'model', ‘normal error', 'jacknife error’', 'Location', 'South')

pause

¢as a final note, the Jackknife will work both for linear and non-linear
$regression, although it does involve solving the problem n times. It does
tnot require determining the residuals {other than assuming independence),
tbut you can't use it if you -require- one of the data points in the model
$§fitting (such as cr0 in Tuesday's reaction engineering problem). It also
tmay be more prone to "strange results" if the number of data points is
¥small, whereas the exact expressions (if the number of data points is
$still sufficient to estimate the variance in the data, or if you can get
%it in other ways) are less so. For example, if you have a small number of
tdata points and "leave cff the one on the end”, you will tend to get a
$much different value for fitting parameters, leading to (on average) an
%overestimate of the variance.

echo off
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ex 20

clear

format compact

echo on

$¥The Bootstrap

$In this example, we demonstrate the bootstrap technique to estimate the
tmatrix of covariance. It is similar to the jacknife, except this time we
fanalyze the data by taking a random sample of data drawn from an
$infinitely replicated data set. The assumption is that our data is drawn
$from an infinite array of possible observations, and that the actual data
¥is a good representation of this data set.

iWe use the "ball in air" problem again:

t=[0:.02:1)])"';

tand we generate some "data":

Xexact=[0,2,-2]'; $The exact values
a=[ones(size(t)),t,t-"2];

noise=0.05; %The amplitude of the noise
b=a*xexact+noise*randn(size(t)); %Our artificial data set.

pause

$%Basic Regression:

3We solve this using the usual regression formula:
k=inv(a'*a)*a';

X=Kk*b

tWe calculate the error in the usual way:

r=a*x-b;

varb=r'*r/(length(r)-3); %Three degrees of freedom lost

sigb=varb~.5

%Which is (usually) close to the value of noise we put in
varx=k*varb*k"'

tand in particular we have the 2-sigma confidence intervals of the x
$values:

xinterval=[x-2*diag(varx).”.5,x+2*diag(varx).".5]

$which usually contains the exact values:

xexact

$Where probabilities are governed by the t-distribution:
prob=tcdf(2,length(b)-3)-tcdf(-2,length(b)-3)

¥So the 2-sigma probability in the 90% range (depending on n-m).
¥Now let's plot this up. We want some smooth plotting:
tp=[0:.01:1)"';

ap={ones(size(tp)),tp,tp."2];

bp=ap*x;

sigbp=diag(ap*varx*ap').".5;

figure(l)
plot(t,b,'o',tp,ap*xexact,'k',tp,bp,tp,bp+sighp,':r',tp,bp-sigbp,':x")
set(gca, 'Fontsize', 14)

xlabel('time')

ylabel{'position')

legend('data’', 'exact', 'model’, '1sig confidence interval', 'Location’', 'South'})

pause



$%The Bootstrap

$Now we look at how to estimate the matrix of covariance using the
fbootstrap approach. We Xeep our matrix a, but we "sample" it nbs times.
$For this to work, nbs has to be a pretty large number.

[n mi=size(a);
¥bssqall=zeros(m,m); %We initialize the array.
xbsall=zeros(m,1};
nbs=100;
for i=l:nbs
ikeep=ceil{rand(n,1)*n); %The indices we keep this time around
a bs=a(ikeep,:);
b_bs=b(ikeep);
xbs=a_bs\b_bs;
xbsall=xbsall+xbs;
xbssgall=xbssgall+xbs*xbs’;
echo off
end
echo on
¥Now we calculate the mean and matrix of covariance of these values:
xbs=xbsall/nbs
$And the covariance:
varxbs=(xbssgall-nbs*xbs*xbs')/(nbs-1)
$And that generates the matrix, without having to assume anything about the
tmatrix of covariance of b - other than assuming that the data points are
$independent, of course.

pause

tLet's compare this to the values we obtained using the error propagation
gformula:
var_ratio=varxbs./varx

$Which is (usually) close to one - it will change every time you run it. If
$you have a large number of data points it will converge exactly to one, as
texpected, but it takes about a thousand or so.

pause

fWe can also add this to our plot:

bpbs=ap*xbs;

sigbpbs=diag(ap*varxbs*ap').”.5;

figure(2)

plot{t,b,'oc',tp,ap*xexact, 'k',tp,bp,tp,bp+sigbp,’':r',tp,bpbs+sigbpbs,'--g',tp,bp-si¢
set(gca, 'FontSize', 14)

xlabel('time’}

ylabel('position’)

legend( 'data‘', 'exact’', 'model’, 'normal error', 'bootstrap error','Location','South’})

pause

%The bootstrap is an interesting approach, but it suffers £from the problem

%that you have to solve the problem a fairly large number of times to get a
$reasonable estimate of the variance. Even more than the jacknife, it runs
*into trouble with small data sets: there is a finite probability that all

%n data points it picks will be the same one, leading to a degenerate



$matrix and lots of warning messages! The variance calculated in this way
$is usually higher than the "correct" variance because of this effect. If
$both n and nbs are large, however, the variances will be the same.

echo off

$%The Bootstrap

%In this example, we demonstrate the bootstrap technique to estimate the
tmatrix of covariance. It is similar to the jacknife, except this time we
*analyze the data by taking a random sample of data drawn from an
$infinitely replicated data set. The assumption is that our data is drawn
%¥from an infinite array of possible observations, and that the actual data
%is a good representation of this data set.

iWe use the "ball in air" problem again:

t=f{0:.02:1]"';

tand we generate some "data":

xexact=[0,2,-2]'; %The exact values

a=[ones({size(t)),t,t."2];

noise=0.05; %The amplitude of the noise

b=a*xexact+noise*randn(size(t)); %Our artificial data set.

pause
%%Basic Regression:

%We solve this using the usual regression formula:
k=inv(a'*a)*a"';

x=k*b
x:
-0.0121
2.0129
-1.9847

$We calculate the error in the usual way:
r=a*x-b;
varb=r'*r/(length(r}-3); ¥Three degrees of freedom lost
sigb=varb~.5
sigb =
0.0384
$Which is (usually) close to the value of noise we put in
varx=k*varbr*k'
varx =
0.0002 -0.001¢ 0.0008
-0.0010 0.0051 -0.0048
0.0008 -0.0048 0.0048
tand in particular we have the 2-sigma confidence intervals of the x
tvalues:
xinterval=[x-2*diag(varx).".5,x+2*diag(varx}.”.5]
Xinterval =
-0.0431 0.0189
1.8695 2.1562
-2.1234 -1.8461
$which usually contains the exact values:
xexact
Xexact =
0
2



-2
tWhere probabilities are governed by the t-distribution:
prob=tecdf(2,length{b}-3)-tcdf(-2,length(b)-3)
prob =
0.9488
$S0 the 2-sigma probability in the 90% range (depending on n-m).
%Now let's plot this up. We want some smooth plotting:
tp=[0:.01:1}"';
ap=fones(size(tp)),tp,tp."2];
bp=ap*x;
sigbp=diag{ap*varx*ap').".5;
figure(l)
plot(t,b, 'o',tp,ap*xexact, 'k',tp,bp,tp,bp+sigbp, ':r',tp,bp-sigbp, ':r')
set(gca, 'FontSize',14)
xlabel('time"'}
ylabel('position')
legend('data’, 'exact', 'model', '1sig confidence interval', 'Location', 'South')

pause

§¥The Bootstrap
tNow we look at how to estimate the matrix of covariance using the
tbootstrap approach. We keep our matrix a, but we "sample" it nbs times.
¥For this to work, nbs has to be a pretty large number.
[n mj=size(a);
¥bssqgall=zeros(m,m}); %We initialize the array.
xbsall=zeros(m,1);
nbs=100;
for i=l:nbs

ikeep=ceil(rand(n,l)*n); %The indices we keep this time around

a_bs=a({ikeep,:);

b_bs=b(ikeep};

xbs=a_bs\b_bs;

xbsall=xbsall+xbs;

xbssgall=xbssgall+xbs*xbs’';

echo off
¥Now we calculate the mean and matrix of covariance of these values:
xbs=xbsall/nbs
Xbs =

-0.0122

2.0178

-1.9922
%And the covariance:
varxbs=(xbssgall-nbs*xbs*xbs')/(nbs-1)

varxbs =
0.0004 -0.0015 0.0012
-0.0015 0.0069 -0.0063
0.0012 -0.0063 0.0063

%And that generates the matrix, without having to assume anything about the
tmatrix of covariance of b - other than assuming that the data points are
%$independent, of course.

pause

$Let's compare this to the values we obtained using the error propagation
$formula:
var_ratio=varxbs./varx



var_ratio =
1.6126 1.5491 1.5653
1.5491 1.3368 1.3211
1.5653 1.3211 1.3148

§Which is (usually) close to one - it will change every time you run it. If
tyou have a large number of data points it will converge exactly to one, as
$expected, but it takes about a thousand or so.

pause

tWe can also add this to our plot:

bpbs=ap*xbs;

sigbpbs=diag(ap*varxbs*ap').".5;

figure(2)

plot(t,b, o', tp,ap*xexact, 'k',tp,bp,tp, bp+sigbp, ':r',tp,bpbs+sigbpbs,'--g',tp,bp-sic
set(gca, 'FontSize',14)

xlabel{'time')

ylabel('position')

legend('data', 'exact’', 'model’, 'normal error', 'bootstrap error’', 'Location', 'South')

pause

%*The bootstrap is an interesting approach, but it suffers from the problem
¥that you have to solve the problem a fairly large number of times to get a
$reasonable estimate of the variance. Even more than the jacknife, it runs
tinto trouble with small data sets: there is a finite probability that all
tn data points it picks will be the same one, leading to a degenerate
$matrix and lots of warning messages! The variance calculated in this way
%$is usually higher than the "correct" variance because of this effect. 1If
tboth n and nbs are large, however, the variances will be the same.

echo off
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clear

format compact

echo on

$3Undersampling

%In this example, we lock at the technique of undersampling. This is
freally only appropriate for very large data sets. The idea is that you
$break your dataset into many subsets, calculate the parameters for each,
$and then take the mean and standard deviations of these calculated values,
$Because you need a significant number of data points in each set (for any
$reasonable statistics) and a significant number of subsets, the total
$number of data points has to be really large!

$We use the "ball in air" problem again:

t={0:.01:1]"';

tand we generate some "data":

xexact=[0,2,-2]'; %The exact values
a=[ones(size({t)),t,t."2];

noise=0.05; %The amplitude of the noise
b=a*xexact+noise*randn(size(t)); %Our artificial data set.

pause

$%Basic Regression:

$We solve this using the usual regression formula:
k=inv(a'*a)*a';

x=k*h

¥We calculate the error in the usual way:

r=a*x-b;

varb=r'*r/(length(r)-3); $Three degrees of freedom lost

sigb=varb".5

$Which is (usually) close to the value of noise we put in
varx=k*varb*k'

%and in particular we have the 2-sigma confidence intervals of the x
tvalues:

xinterval=[x-2*diag(varx).".5,x+2*diag(varx).~.5]

$which usually contains the exact values:

xexact

¥Where probabilities are governed by the t-distribution:
prob=tcdf(2,length{b)-3)-tcdf(-2,length(b)-3)

$So the 2-sigma probability in the 90% range (depending on n-m).
tNow let's plot this up. We want some smooth plotting:
tp=(0:.01:1)"';

ap=[ones(size(tp)),tp,tp-°2];

bp=ap*x;

sigbp=diag(ap*varx*ap').”~.5;

figure(l)
plot(t,b,'o',tp,ap*xexact,'k’,tp,bp,tp,bp+sigbp, ':r',tp,bp-sigbp, ':r')
set(gca, 'FontSize',14)

xlabel('time')

ylabel ( 'position')

legend( 'data’, 'exact', 'model','Isig confidence interval', 'Location’', 'South')

pause



%%¥Undersampling
$Now we estimate our fitting parameters by undersampling.
[n mj=size(a);
xussqgall=zeros(m,m); %We initialize the array.
xusall=zeros(m,1);
p=10
for i=1:p
ikeep=[i:p:n]; %The indices we keep this time around
a_us=a(ikeep,:);
b_us=b{ikeep);
xus=a_us\b_us;
xusall=xusall+xus;
xussgall=xussgall+xus*xus’;
echo off
end
echo on
iNow we calculate the mean and matrix of covariance of these values:
xus=xusall/p
$And the covariance:
varxus=(xussqall-p*xus*xus')/(p-1)/p
tAnd that generates the matrix, without having to assume anything about the
tmatrix of covariance of b - other than assuming that the data points are
tindependent, of course. Note that we are getting the matrix of covariance
%0f the -mean- of p samples of our dataset.

pause

tLet's compare this to the values we obtained using the error propagation
$formula:
var_ratio=varxus./varx

¥Which is (usually) close to one - it will change every time you run it. If
%you have a large number of data points it will converge exactly to one, as
texpected, but it takes about a thousand or so.

pause

%We can also add this to our plot:

bpus=ap*xus;

sigbpus=diag({ap*varxus*ap').".5;

figure(2)

plot(t,b,'o’',tp,ap*xexact, 'k',tp,bp,tp,bp+sigbp, ' :r’',tp,bpus+sigbpus, '--g',+tp,bp-sic
set(gca, 'FontSize',14)

xlabel('time’)

ylabel{ 'position')

legend( 'data’, 'exact’, 'model’, 'normal error', ‘undersampling error', 'Location', ‘Soutt

pause

¥Undersampling is a very simple way of getting at the variance of
fmeasurements, but it does require a very large number of datapoints. You
%$certainly can't do it with just a few! Like the other resampling methods,
tit works as well for both linear and non-linear regression problems, and
$will also behave well for non-normal residuals (although it is
$questionable whether non-weighted regression is appropriate if your



tresiduals are not uniform). You can also use these techniques to estimate
tthe -distribution- of the fitting parameters: statistics beyond mean and
$variance, as fitting parameters are usually not normally distributed as
fwell.

echo off

$tUndersampling

$In this example, we look at the technique of undersampling. This is
treally only appropriate for very large data sets. The idea is that you
tbreak your dataset into many subsets, calculate the parameters for each,
$and then take the mean and standard deviations of these calculated values.
tBecause you need a significant number of data points in each set (for any
%reasonable statistics) and a significant number of subsets, the total
tnumber of data points has to be really large!

%We use the "ball in air" problem again:

t=[0:.01:1]";

%and we generate some "data":

xexact=[0,2,-2])'; %The exact values

a=[ones(size(t)),t,t."2];

noise=0.05; %The amplitude of the noise

b=a*xexact+noise*randn(size(t)); %Our artificial data set.

pause
$%Basic Regression:

¥We solve this using the usual regression formula:
k=inv{a'*a)*a';

x=k*b
x=
0.0191
1.9202
-1.9315

tWe calculate the error in the usual way:
r=a*x-b;
varb=r'*r/(length(r)-3); %Three degrees of freedom lost
sigb=varb~.5
sigb =

0.0440
$Which is (usually) close to the value of noise we put in
varx=k*varb*k"'
varx =

0.0002 ~-0.0007 0.0005

-0.0007 0.0035 -0.0033

0.0005 ~0.0033 0.0033
%and in particular we have the 2-sigma confidence intervals of the x
tvalues:
xinterval={x-2*diag(varx).".5,x+2*diag(varx).~.5]
xinterval =

~-0.0067 0.0448

1.8013 2.0391

-2.0466 -1.8165
twhich usually contains the exact values:
xexact
xexact =



o

2

-2
$Where probabilities are governed by the t~distribution:
prob=tcdf (2, length(b)-3)-tcdf (-2, length(b)-3)
prob =

0.9517
t50 the 2-sigma probability in the 90% range (depending on n-m).
tNow let's plot this up. We want some smooth plotting:
tp=[0:.01:1)"';
ap=[ones(size(tp}),tp,tp."2];
bp=ap*x;
sigbp=diag{ap*varx*ap').”.5;
figure(l)
plot(t,b,'o',tp,ap*xexact, 'k’ ,tp,bp,tp,bp+sigbp, ':r',tp,bp-sigbp, ':r")
set(gca, 'FontSize', 14)
xlabel({'time"')
ylabel('position')
legend('data’, 'exact', 'model’, '1sig confidence interval', 'Location', 'South’)

pause

t%¥Undersampling
tNow we estimate our fitting parameters by undersampling.
in ml=size(a);
xussqall=zeros(m,m); %We initialize the array.
xusall=zeros(m,1);
p=10
p=
10
for i=1l:p
ikeep=[i:p:n]; %The indices we keep this time around
a_us=a(ikeep,:);
b_us=b{ikeep):
xus=a_us\b_us;
xusall=xusall+xus;
xussgall=xussgall+xus*xus';
echo off
%¥Now we calculate the mean and matrix of covariance of these values:
xus=xusall/p
xus =
0.0160
1.9405
-1.9552
%And the covariance:
varxus={xussgall-p*xus*xus')/(p-1)/p
varxus =
¢.0001 -0.0005 0.0005
-0.0005 0.0031 -0.0032
0.0005 -0.0032 0.0035
$And that generates the matrix, without having to assume anything about the
tmatrix of covariance of b - other than assuming that the data points are
tindependent, of course. Note that we are getting the matrix of covariance
$0f the -mean- of p samples of our dataset.
pause



tlet's compare this to the values we obtained using the error propagation
$formula:

var_ratio=varxus./varx

var_ratio =

0.4948 0.6851 0.8419
0.6851 0.8844 0.9665
0.8419 0.9665 1.0511

tWhich is (usually) close to one - it will change every time you run it. If
tyou have a large number of data points it will converge exactly to one, as
texpected, but it takes about a thousand or so.

pause

tWe can also add this to our plot:

bpus=ap*xus;

sigbpus=diag(ap*varxus*ap').".5;

figure(2)
plot(t,b,'o’,tp,ap*xexact,'k’',tp,bp,tp,bptsigbp,':r',tp,bpus+sigbpus, '-~g',tp, bp-sic
set(gca, 'FontSize',14)

Xlabel('time')

ylabel({'position’)

legend('data', 'exact’, 'model’, 'normal error', 'undersampling error’', 'Location’', 'Soutt

pause

tUndersampling is a very simple way of getting at the variance of
tmeasurements, but it does require a very large number of datapoints. You
tcertainly can't do it with just a few! Like the other resampling methods,
tit works as well for both linear and non-linear regression problems, and
twill also behave well for non-normal residuals (although it is
tquestionable whether non-weighted regression is appropriate if your
tresiduals are not uniform). You can also use these technigques to estimate
tthe -distribution- of the fitting parameters: statistics beyond mean and
tvariance, as fitting parameters are usually not normally distributed as
fwell.

echo off
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clear

format compact

echo on

$¥Monte Carlo Simulation

$In this example, we look at the approach of Monte Carlo simulation for
terror estimation. This method requires knowledge of the residual (error)
%in the data set. If we know this (via calculation or via other
fexperiments) we can create "artificial" data sets with data that has an
tadded error characterized by this residual. We determine the fitting
tparameters for these, average them together, and compute the statistics.

tWe use the "ball in air" problem again:

t=[0:.1:1])';

tand we generate some "data":

xexact=[0,2,-2]'; %The exact values
a=[ones(size(t)),t,t.*2};

noise=0.05; %The amplitude of the noise
b=a*xexact+noise*randn(size(t)); %0Our artificial data set.

pause

%$%Basic Regression:

iWe solve this using the usual regression formula:
k=inv({a'*a)*a';

x=k*b

¥We calculate the error in the usual way:

r=a*x-b;

varb=r'*r/(length(r})-3); %Three degrees of freedom lost

sigb=varb~.5

$Which is (usually) close to the value of noise we put in
varx=k*varb*k'

$and in particular we have the 2-sigma confidence intervals of the x
fvalues:

xinterval=[x-2*diag(varx).".5,x+2*diag(varx).~.5]

$which usually contains the exact values:

Xexact

tWhere probabilities are governed by the t-distribution:
prob=tcdf(2,length(b)-3)-tcdf(-2,length{(b)-3)

$50 the 2-sigma probability in the 90% range (depending on n-m).
tNow let's plot this up. We want some smooth plotting:
tp=[0:.01:1])"';

ap=[ones(size(tp}),tp,tp."2);

bp=ap*x;

sigbp=diag{ap*varx*ap'}.".5;

figure(1l)

plot(t,b,'o',tp,ap*xexact, 'k',tp,bp,tp,bp+sigbp, ':r',tp,bp-sigbp,':xr'}
set(gca, 'FontSize', 14)

xlabel{'time')

ylabel{'position')

legend('data’, 'exact’', ‘model’','lsig confidence interval', 'Location','South'})

pause



$¥Monte Carlo
$Now we estimate our fitting parameters from Monte Carle simulation. We
fwant to use a fair number of samples to get reasonable statistics.
[n m]=size(a};
xmcsgall=zeros(m,m); %We initialize the array.
xmcall=zeros(m,1);
nme=100
for i=l:nmc
bme=b+randn(n,1)*sigb; %We add in noise based on our residuals
¥mec=k*bme; %$We use all the same times, so k doesn’'t change.
xmeall=xmcall+xmec;
xmesgall=xmcsgall+xme*xme’ ;
echo off
end
echo on
¥Now we calculate the mean and matrix of covariance of these values:
xme=xmcall/nmc
$And the covariance:
varxme=(xmcsgall-nmc*xme*xmec')/{nme-1)
3And that generates the matrix.

pause

$Let's compare this to the values we obtained using the error propagation
$formula:
var_ratio=varxmc./varx

$Wwhich is (usually) close to cne - it will change every time you run it.
%You don't need a large number of data points, but you do need to have a
%large number of monte carlo simulation runs!

pause

¥We can also add this to our plot:

bpmc=ap*xmc;

sigbpmc=diag({ap*varxmc*ap'}.*.5;

figure(2)

plot(t,b,'o’,tp,ap*xexact, 'k',tp,bp,tp,bpt+sigbp,':r',tp,bpme+sigbpme,'--g',tp,bp-sic
set(gca, 'FontSize',14)

xlabel('time"')

ylabel('positicn')

legend('data’, 'exact', 'model’, 'normal error', 'monte carlo error', ‘'Location’,'South')

pause

tMonte Carlo Simulation is an easy technigue for estimating the statistics
$of the fitting parameters. Unlike other resampling techniques, however,
$it does reguire knowledge of the residual: exactly the same information
trequired of the normal error propagation formulas. The computational
irequirement is much higher than that of other methods (at least 100
$simulations for decent statistics), and yields the exact same matrix

%of covariance (if the number of simulations is high enough). fThere are
¥two advantages: it does not require taking any gradients (this may be
$significant in non-linear regression, but is irrelevant in linear
fregression), and it can yield the distribution of the fitting parameters
$(more than just the covariance). Of the resampling approaches, it is the



fonly one which is suitable for small data sets.
echo off

%%Monte Carlo Simulation

$In this example, we look at the approach of Monte Carlo simulation for
$error estimation. This method requires knowledge of the residual (error)
%in the data set. If we know this (via calculation or via other
fexperiments) we can create "artificial” data sets with data that has an
$added error characterized by this residual. We determine the fitting
tparameters for these, average them together, and compute the statistics.
$We use the "ball in air" problem again:

t=[0:.1:1]";

$and we generate some "data":

xexact=[0,2,-2]"'; %The exact values

a=[ones(size(t)),t,t.~2];

noise=0.05; $The amplitude of the noise

b=a*xexact+noise*randn(size(t)); %0Our artificial data set.

pause
%%Basic Regression:

¥We solve this using the usual regression formula:
k=inv(a'*a)*a’';

x=k*b
x=
-0.0145
2.07459
-2.0510

¥We calculate the error in the usual way:
r=a*x-b;
varb=r'*r/(length(r)-3); %Three degrees of freedom lost
sigb=varb~.5
sigbh =
0.0382
tWhich is (usually) close to the value of noise we put in
varx=k*varb*k'
varx =
0.0008 -0.0032 0.0026
-0.0032 0.0183 -0.0170
0.0026 -0.0170 0.0170
%and in particular we have the 2-sigma confidence intervals of the x
tvalues:
xinterval=[x-2+*diag(varx).".5,x+2*diag(varx).”.5]
Xinterval =
-0.0728 0.0437
1.8041 2.3458
-2.3119 -1.7901
$which usually contains the exact values:
xexact
Xexact =
0
2
-2
¥Where probabilities are governed by the t-distribution:



prob=tcdf{2,length(b)-3)-tedf(-2,length(b)-3)
prob =
0.9195
$S0 the 2-sigma probability in the 90% range (depending on n-m).
$Now let's plot this up. We want some smooth plotting:
tp=[0:.01:1]";
ap={ones(size(tp)),tp,tp."2];
bp=ap*x;
sigbp=diag(ap*varx*ap').".5;
figure(l)
plot(t,b, 'o',tp,ap*xexact,'k’,tp,bp,tp,bp+sigbp, ':r',tp,bp~sigbp, ':r")
set(gca, 'FontSize',14)
xlabel('time")
ylabel('position')
legend('data’', 'exact’', 'model', 'lsiqg confidence interval', 'Location', 'South’')

pause

$tMonte Carlo
tNow we estimate our fitting parameters from Monte Carlo simulation. We
twant to use a fair number of samples to get reasonable statistics.
[n m]=size{a);
xmcsgall=zeros(m,m); %We initialize the array.
xmcall=zeros(m,1);
nmc=100
nme =
100
for i=1l:nmc
bmc=b+randn(n,l)*sigb; %We add in noise based on our residuals
xmc=k*bme¢; %We use all the same times, so k doesn't change.
xmcall=xmcall+xmec;
xmesgall=xmcsgall+xmec*xme’ ;
echo. off
iNow we calculate the mean and matrix of covariance of these values:
xmc=xmcall/nmc
Xme =
-0.0121
2.0532
-2.0312
$and the covariance:
varxmc=(xmcsgall-nmc*xme*xme ' )/ (nme-1)
varxmec =
¢.0008 ~-0.0026 0.0019
-0.0026 0.0143 -0.0131
0.0019 -0.0131 0.0133
2and that generates the matrix.
pause

tLet's compare this to the values we obtained using the error propagation
$formula:
var_ratio=varxmec./varx
var_ratio =
0.9054 0.7977 0.7268
0.7977 0.7782 0.7676
0.7268 0.7676 0.7792



P

$Which is (usually) close to one - it will change every time you run it.
tYou don't need a large number of data points, but you do need to have a
$large number of monte carlo simulation runs!

pause

tWe can also add this to our plot:

bpmec=ap*xmc;

sigbpmc=diag(ap*varxmc*ap').".5;

figure(2)

plot(t,b, 'o',tp,ap*xexact, 'k’ ,tp,bp,tp,bp+sigbp, ':r',tp,bpmc+sigbpme, '--g', tp, bp-sic
set{gca, 'FontSize',14)

xlabel{'time')

ylabel{'position')

legend('data’, 'exact', 'model’', 'normal error','monte carlo error','Location','South']

pause

tMonte Carlo Simulation is an easy technique for estimating the statistics
tof the fitting parameters. Unlike other resampling techniques, however,
it does require knowledge of the residual: exactly the same information
$required of the normal error propagation formulas. The computational
trequirement is much higher than that of other methods (at least 100
$simulations for decent statistics), and yields the exact same matrix

tof covariance (if the number of simulations is high enough). There are
ttwo advantages: it does not require taking any gradients (this may be
tsignificant in non-linear regression, but is irrelevant in linear
$regression), and it can yield the distribution of the fitting parameters
$(more than just the covariance). Of the resampling approaches, it is the
tonly one which is suitable for small data sets.

echo off
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