
CBE 30356 Transport Phenomena II 
Final Exam 

 
May 2, 2022 

 
Closed Books and Notes (equations which may be useful are at the end) 
 
Problem 1. (20 points) Heat and Mass Transfer in a Stefan Tube.  As you all know, the 
Stefan tube is a useful way to measure the diffusivity of volatile compounds in air by 
determining the rate of liquid evaporation.  In the implementation in Junior Lab, for 
example, a glass capillary is partially filled with diethyl ether.  Air blows across the 
surface of the capillary to yield a mole fraction of zero at the top, while the mole fraction 
at the bottom is equal to the vapor pressure in equilibrium with the liquid divided by 
the atmospheric pressure.  Because the partial pressure is a very strong function of 
temperature, the capillary is placed in a water bath so that the outer surface 
temperature of the capillary is controlled.  So: 
 
a. If the column of air is a height H above the liquid diethyl ether, derive the expression 
for the molar flux of the diethyl ether – the rate of evaporation of the liquid.  Assume 
pseudo steady state. 
 
b. As you also know, evaporation takes energy!  That means that the interface where 
evaporation takes place will be colder than the surroundings, and that will depress the 
vapor pressure at equilibrium (e.g., the “wet bulb” effect we saw for a falling drop of 
water).  If the latent heat of evaporation is L, the thermal conductivity of the glass is k, 
the inner radius is R0 and the outer radius is R1 (enough greater than R0 that you have to 
use cylindrical coordinates), develop an equation for the depression in the temperature 
at the interface.  For purposes of estimation it is reasonable to assume that the energy 
required to vaporize the diethyl ether diffuses in radially via the glass capillary through 
a cylindrical surface of radius R0 and length 2R0. 
 
c. Evaluate the magnitude of this temperature depression for the following properties: 
R0 = 0.05cm, R1 = 0.33cm, H = 1cm, DAB = 0.09cm2/s, k = 0.8 W/m °K = 0.8x105 g cm/s3 

°K, c = 1/24.4x103 mol/cm3, L = 27 kJ/mol = 27x1010 erg/mol, xA0 = 0.7.  Note that the 
effect of temperature on this last (xA0) is the primary source of error arising from the 
temperature depression effect! 

H

2R0

2R1  



Problem 2. (20 points) Convective Heat Transfer:  Consider the geometry depicted 
below.  An upper plate at y = d is moving with a velocity U in the x direction, 
generating a simple shear flow between the two plates.  The fluid is heated for all x>0 
with a constant heat flux q0, and the upper surface is insulated (so the fluid is getting 
hotter with x!).  We are interested in the local Nusselt number for small x (e.g. the 
boundary layer where energy hasn’t had a chance to diffuse very far from the lower 
wall).  
 
a. Scale the equation and boundary conditions in this boundary layer limit, rendering 
the problem dimensionless. 
 
b. From scaling (or from affine stretching) determine how the wall temperature depends 
on x. 
 
c. Recognizing that the bulk temperature in this limit is just T0 (e.g., the boundary layer 
is thin!) determine the local Nu as a function of x to within an O(1) constant.   
 
d. What is the domain of validity (in x) over which this answer is valid (lower and 
upper limits)? 

d
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Problem 3.  (20 points) Conduction and Radiation:  A furnace in deep space is cooled by 
a very long fin of cross-section A, surface area per unit length P (e.g., the perimeter of 
the fin cross-section) and thermal conductivity k via radiation.  The base of the fin is 
maintained at temperature T0 and you may neglect all radiation to the fin from the 
surroundings (deep space is cold!). 
 
a. Neglecting all gradients across the cross-section, write down the equation governing 
the axial temperature distribution in the fin.  If you like, you can derive this by 
averaging the heat transfer equation over the cross-section, or obtain it via a shell 
balance. 
 
b. (most of the points!) Via scaling analysis, determine both a characteristic fin length 
(e.g., the axial length scale over which the temperature fades away), and the 
characteristic heat flux at the base of the fin providing our cooling. 
 
c. Solve the equation in the limit of an infinitely long fin to get the heat flux at the base.  
Note that the equation is non-linear, but can be easily solved by a trick: multiply both 
sides by dT*/dz* and show that both sides can be converted into perfect differentials.  
Integrate, apply the BC at infinity, and you are done!  It is interesting to note that this 
trick works even if you include back radiation and (in an atmosphere) forced convection 
– but the solution would be a lot messier to deal with. 



Problem 4. (20 points) Mass Transfer From a Falling Drop:  A method for removing 
VOCs (volatile organic compounds) from ground water is a simple spray tower.  The 
idea is that you spray the water into the air from some height over a pond and, if the 
drops are small enough, the VOCs will evaporate from the drop before it reaches the 
pond.  In this problem I want you to determine the fraction of the VOCs remaining in 
the drop when it hits the pond. 
 
a. It is proposed to use a spray nozzle which emits 400µm diameter drops.  If the height 
of the tower is 10m, how long does it take for the drops to reach the pond (ignoring 
drop-drop interactions)?  Use the following properties for air: µ = 1.8x10-2 cp, ! = 
1.23x10-3 g/cm3.  Note that the drops are much too large for a significant fraction to 
evaporate over this distance and time. 
 
b. If the Henry’s Law coefficient is high enough that we are completely liquid side 
limited (the usual case for a VOC), the concentration of the pollutant at the surface of 
the drop is essentially zero.  Assuming that there is no circulation in the drop (diffusion 
only!) write down the equation governing the transient concentration distribution and 
the total amount of pollutant remaining.  Render the equations dimensionless and scale 
the problem! 
 
c. At the temperature of the drop (reduced from that of the air due to “wet bulb” 
evaporation effects!) the diffusivity of our VOC is 1x10-5 cm2/s.  For this diffusivity and 
the fall time calculated in part a, what fraction of the pollutant would be remaining in 
the drop when it hits the pond? Note that while you –can- solve all this from scratch 
(and should know how to do so!), I would strongly recommend that you think about 
analogies with heat transfer and look at the equations page… 
 
d. It is decided that this really isn’t enough removal of the pollutant, however your 
colleague argues that while the viscosity of air is small, it isn’t that small, particularly in 
relation to the viscosity of water.  That means that there is likely some circulation inside 
the drop.  Using your knowledge of fluid mechanics (and recalling what quantity 
involving viscosities must be continuous across an interface!) estimate the circulation 
time inside the drop, compare it to the answer in part a, and come up with a revised 
estimate of the fraction of pollutant remaining. 
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