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Closed Books and Notes (equations which may be useful are at the end) 

 
Problem 1. (20 points) Convective Heat & Mass Transfer:  In the midterm you solved for 
the time necessary for a sphere of ice to melt in a stream of air.  In order to avoid mass 
transfer effects we looked at the specific case where the air was at a dew point equal to 
the melting temperature.  Here we explore how mass transfer (e.g., the humidity of the 
air stream) affects the melting process. 
 
a. For this geometry and conditions (water vapor in air) we have the extremely 
convenient result that the Sherwood number and Nusselt number are essentially 
identical (e.g., the ratio is 1 to a good approximation at all Re because for water vapor in 
air Sc = 0.66 and Pr = 0.71, close enough to being equal).  If the latent heat of 
vaporization of water is H, and the mole fraction of water in the air stream is xA∞ and at 
the surface is xA0, determine the ratio of the heat flux to the ice due to mass transfer (e.g., 
condensation or evaporation) to that arising from heat transfer.  Other parameters this 
ratio involves include c (the molar density of air), DAB (the water vapor diffusion 
coefficient), k (the thermal conductivity of air) and !T (the temperature difference 
between the air and the ice).  You don’t need any other parameters because we can take 
Sh/Nu = 1 for this problem. 
 
b. Take the air stream to be at 30°C.  It is observed that the ice melts in 100s when the 
dew point of the air is at 0°C (e.g., the pure heat transfer result).  Note that this time 
would depend on all sorts of parameters such as the latent heat of fusion, the radius, the 
air velocity, etc. as you showed in the midterm!  How long would it take the ice to melt 
if the air stream were instead completely dry (e.g., 0% relative humidity) so that some of 
the melted ice evaporates into the air?  Use the parameter values: psat|0°C = 0.61 kPa, patm 
= 101 kPa, H = 45 kJ/mol, c = 44.6 mol/m3, DAB = 2.19x10-5 m2/s, k = 0.0244 W/m°K. 
 
c. If the air stream is at 30°C (psat|30°C = 4.25 kPa) but is at 80% relative humidity, your 
ice melts significantly faster!  How long would it take to melt now? 
 
 
Problem 2. (20 points) The Thiele Problem. In class we showed how to obtain the Thiele 
Effectiveness Factor (the ratio of the mass flux to that which would occur with no mass 
transfer limitations) for a catalyst.  The effectiveness factor was derived for first order 
reaction kinetics (as the math is simpler!), but as you will learn next fall many reactions 
are not first order!  In this problem we shall determine the effectiveness factor for a 
second order reaction with a pseudo-homogeneous reaction rate RA = -k2a cA

2.  The 
quantity “a” is the active catalyst surface area/volume, so the reaction rate is 
moles/(volume time) as usual. 
 
a. Consider the catalyst layer depicted below.  The layer is of thickness h, the 
concentration at the surface (z = 0) is cA0, and the diffusivity is DA.  We have the pseudo-
homogeneous reaction rate RA = -k2a cA

2 as discussed above.  For simplicity, we shall 



consider the problem to be equimolar counter-diffusion (e.g., 2A -> C + D or similar) so 
that diffusion and reaction do not lead to convection.  Write down the differential 
equation and boundary conditions for the reactant concentration cA with these 
assumptions.  Write down the expression for the molar flux of A at the surface z = 0. 
 

h
z

NAz

RA = -k2a cA2

cA|z=0 = cA0

Effective diffusivity = DA
No flux at z = h

 
 
b. We are primarily interested in the fast reaction (e.g., diffusion limited) case, where 
the appropriate length scale for z is much less than h.  Render the equations 
dimensionless and via scaling determine this length scale and the scale for the molar 
flux at the surface. 
 
c. The effectiveness factor is the ratio of the molar flux to that which would occur if 
there were no diffusional limitations (e.g., where the entire catalyst layer of thickness h 
is exposed to the concentration cA0).  Develop an expression for the effectiveness factor 
in terms of the dimensionless derivative at the surface. 
 
d. 2 points extra credit:  While the differential equation is non-linear, in the limit where 
h/zc >> 1 it is easily solved (Hint: use the trick of multiplying by the derivative to 
convert both terms into perfect differentials!).  For a two points extra credit, determine 
the “number” for the effectiveness factor in this limit. 
 
Problem 3. (20 points) A Cylindrical Cooling Fin:  In class we demonstrated the 
combination of axial conduction and external heat transfer for a cylinder where there 
was a constant temperature at the base.  For certain choices of parameters we can ignore 
radial temperature variations and just work with the temperature averaged over the 
cross-section.  The geometry is depicted below: 
 

z r

L (long!)

2R
T0

qr = h (Ts - Ta)

qz = ???

 
 



a. Steady-state, long cooling rods.  Develop an equation for the axial variation of the 
temperature averaged over the cross-section 

! 

T .  Render this equation dimensionless 
and use it to determine the steady-state heat flux at the base of the rod (z = 0) in the 
limit L/zc >> 1. 
 
b. Your averaged expression required that the local surface temperature 

! 

Ts  be equal to 
the local average temperature 

! 

T , which of course isn’t –quite- true!  From scaling, what 
would be the characteristic magnitude of this temperature difference?  (Hint: think 
about internal and external heat transfer resistances in the radial direction…) 
 
c. It takes time for the temperature distribution and heat flux to reach steady-state.  
How does this time scale with the parameters of the problem? 
 
Problem 4. (20 points) Dimensionless Groups:  A recurring theme in this class has been 
the use of dimensionless groups of parameters to analyze transport problems.  Using 
the parameters given below, determine the dimensionless groups corresponding to the 
following physical mechanisms and state a problem or equation where it would play a 
role. 
 

a. 

! 

Re =
InertialForces
ViscousForces

 

b. 

! 

Nu =
HeatTransfer

ConductiveHeatTransfer
 

c. 

! 

Sh =
MassTransfer

DiffusiveMassTransfer
 

d. 

! 

Bi =
InternalHeatTransferResistance
ExternalHeatTransferResistance

 

e. 

! 

St =
HeatTransfer

ConvectiveHeatTransfer
 

f. 

! 

Pr =
MomentumDiffusivity
ThermalDiffusivity

 

g. 

! 

Sc =
MomentumDiffusivity
MassDiffusivity

 

h. 

! 

Pe =
ConvectiveHeatTransfer
ConductiveHeatTransfer

 

i. 

! 

Fr =
InertialForces

GravitationalForces
 

j. 

! 

Eu =
PressureDifferential
Dynamic Pressure
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