
CBE 30356 Transport II 
Problem Set 2 

Due via Gradescope, 9 PM 2/2/23 
 
1). A hot wire anemometer is a method for measuring air velocity by determining the 
rate of heat transfer and temperature from a heated wire.  The idea is that because of 
electrical dissipation in a very thin wire it gets hot – and the temperature will depend on 
the air flow rate cooling it down.  The temperature is measured from the resistance of 
the wire.  Usually you measure changes in the voltage drop in what is called a 
Wheatstone Bridge circuit, however here we will look at a simpler problem.  Suppose 
your wire is L = 1 cm long and D = 1mm in diameter.  It has a resistance !0 of 1 ohm at 
20°C and a temperature coefficient " of 2.45x10-3 1/°C (assume linearity).  You operate 
the probe at a fixed current of I = 0.5 Amps.  Calculate the following: 
 
a. If we have a wind speed of U = 1m/s, what is the temperature of the probe?  Neglect 
internal resistance (e.g., low Biot number as is appropriate for this problem) and use the 
Whittaker correlation to get the heat transfer coefficient.  Ignore variation of fluid 
properties with temperature (just keep the temperature dependence of the electrical 
resistance!).  Note that the power dissipation goes up a little bit with temperature too. 
 
b. As the temperature and resistance change, so does the voltage drop V.  Using a 
semilog scale, plot the measured voltage across the probe (the current is kept constant) 
as a function of wind speed over the range 1 m/s to 100 m/s. 
 
2). In this problem we will look at an annular energy source as depicted below.  A 
radioactive source is confined to an annulus between an inner radius R0 and an outer 
radius R1, and releases heat at a rate S per unit volume.  The material has a thermal 
conductivity k, and the outside is cooled with a heat transfer coefficient h relative to an 
atmospheric temperature Ta.  Because there is nothing inside the radius R0, the radial 
heat flux at that point is zero. 
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a. Using an energy balance, calculate the temperature T1 at the outer surface R1. 
 
b. Now solve for the temperature T0 at the inner edge of the radioactive source R0.  This 
problem is much easier if you render radius dimensionless with the outer radius! 
 



3). A cooling fin of width 2b is cooling a reactor as depicted below.  The fin is 
sufficiently thin that you can ignore temperature variations across the width, but of 
course it changes along the length due to finite thermal conductivity k.  If the heat 
transfer coefficient between the fin and the surrounding air (temperature Ta) is h (both 
sides), and the heat flux at the base of the fin is q0, we can calculate the temperature at 
the base. 
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a. Write down the equations and boundary conditions for the temperature of the fin 
(averaged across its thin direction). 
 
b. Render the equations dimensionless to determine the temperature scale and the 
characteristic length scale. 
 
c. Assuming that the fin is “long” relative to this length scale, solve the problem and 
determine the temperature at the base. 
 
 
4). A reaction is occurring in a slab of width 2b.  It’s exothermic, and is producing a lot 
of heat which is dissipated by cooling the walls at y = ±b to a temperature T0.  The 
problem is that the reaction rate increases with temperature, and this creates the 
possibility of thermal runaway in the center!  Your job is to figure out what the 
temperature at the centerline is under these conditions. 
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a. While the temperature dependence is often complex, here we shall use the simple 
linear relationship S = S0 + C (T - T0).  If the thermal conductivity is a constant k, write 
down the differential equation and boundary conditions governing the temperature at 
steady-state. 
 



b. Render the equation and boundary conditions dimensionless, determine the 
characteristic temperature rise, and show that the problem depends only on a single 
dimensionless ratio. 
 
c. Now for the fun part: Solve for the temperature distribution as a function of y* and 
plot it up for a few values of the dimensionless ratio you got in part b.  For sufficiently 
large values of C there is no solution (and your reactor just melted down).  What is this 
critical value? 
 
Hint: You should obtain an inhomogeneous linear second order ODE for T*.  Remember 
that you most easily solve this sort of equation by finding the particular solution which 
removes the inhomogeniety.  In this case it is just a constant!  The leftover bit after 
subtracting the particular solution is a homogeneous second order equation which should 
be very familiar.  Apply your boundary conditions to the sum of the particular and 
homogenous solutions and you are done! 
 


