
CBE 30356 Transport II 
Problem Set 4 

Due via Gradescope, 11:55 PM 2/16/23 
 
1). The first three problems deal with the heated rod depicted below.  Consider a rod of 
radius a, thermal conductivity k, and volumetric heat capacity !Cp.  Initially the rod is 
at equilibrium with its surroundings at a temperature T0.  At time t = 0 we have a source 
of energy per unit volume S which warms things up.  Heat is lost to the surroundings 
governed by a heat transfer coefficient h.  So: 
 

a
qr = h (T - T0)S, k, !Cp

 
 
a. Write down the differential equation and boundary conditions governing this 
problem. 
 
b. Render them dimensionless and show that the only parameter which appears in the 
dimensionless equations is the Biot number. 
 
c. Solve for the asymptotic solution at long times. 
 
d. Plot up the temperature profile for Bi = 0.1, 2, and ∞ on the same graph.  Note that 
the Bi = ∞ parabola is the same as Poiseuille flow through a tube! 
 
2). OK, now for the transient! For the problem above, solve the transient problem 
numerically and plot up the area average temperature of the rod as a function of time.  
Use a Biot number of 2.  Note that this will require using orthogonality, integration, etc., 
for getting the coefficients, but the example programs will be a lot of help!  This 
problem actually admits an analytic solution (in terms of Bessel functions) but it is 
pretty messy and a whole lot easier to get numerically! 
 
3). Solve problem 2 again, only this time do it using the finite difference marching 
solution described in the notes.  There are a couple of issues here: First, because you are 
in the cylindrical coordinate system your (second derivative) conductive term looks a 
little different.  The notes on how the matrix was set up in slsolve.m will show you 
what to do there.  Second, your boundary condition at r* = 1 now involves both the 
function and the derivative.  Again, examining the code for slsolve.m will show you 
how to deal with that condition.  Solve the problem for a Biot number of 2, calculate the 
average temperature of the rod, and graphically compare it to your answer for question 
2. 



 
4). Consider the rectangular slab (semi-infinite in the x-direction) depicted below.  The 
surface at x = 0 and y = ±b are maintained at a temperature T0.  There is a source of 
energy/volume S in the slab that heats things up. 

x

T = T0   (both sides!)

2b
y

T = T0
S, k, !Cp

 
 
a. Write down the differential equation and boundary conditions that govern this 
problem and render them dimensionless. 
 
b. We are only interested in the asymptotic solution at long times here, so you can 
throw out the transient term!  Solve for this steady state solution when you are far from 
the end x = 0 (e.g., it will just be a function of y, and should be very familiar!). 
 
c. Now for the harder part.  Subtracting off the solution you obtained in part b, solve for 
the temperature distribution as a function of x and y using the same sort of separation 
of variables solution you did in the last homework (there will be different constants, 
though, which you will need to obtain – Wolfram alpha works well there!).  Don’t forget 
to add the large x solution back in! 
 
d. Plot up the depth (y-direction) average temperature as a function of x. 
 
Note: while this problem in heat transfer isn’t all that important, the mathematically 
identical problem for unidirectional flow in a rectangular duct very much is!  It turns 
out that the slowdown of fluid velocity near the side walls (corresponding to the lower 
depth averaged temperature you are plotting in this problem) is -the- dominant source 
of dispersion in a typical microfluidic “Lab on a Chip” system and has large 
implications to chip design. 
 


