
PROBLEM SET 2                          CBE30355                             DUE 9/10/15 
 
 
1).  Compute the viscosity of air from 100ºK to 500ºK and 1 atm pressure.  The 
Chapman-Enskog equation described in chapter 1 of BS&L and the data in tables E.1 
and E.2 are useful here (note the correlation at the bottom of table E.2)!  Compare your 
result graphically with the data from: 
 
http://www.engineeringtoolbox.com/air-absolute-kinematic-viscosity-d_601.html 
 
2).  The natural log of the viscosity of many liquids is approximately quadratic in the 
inverse of the temperature in ºK (e.g., the equation in chapter 1 of BS&L, with an extra 
term). 
 
a. Using this, and data from the web page: 
 
http://www.engineeringtoolbox.com/dynamic-viscosity-motor-oils-d_1759.html 
 
determine constants for such a model for the different grades of motor oil (plot the 
correlations and the data up using a semilog scale).  Convert the SI units for viscosity 
into poise (cgs system).  Be sure to label your graph! 
 
b. What are the temperature coefficients for the different grades at 40°C?  This is the 
fractional change in viscosity per degree centigrade, and can be calculated from your 
fitting parameters. 
 
c. It is suggested that intermediate grades of motor oil can be regarded as a mixture of 
SAE10 and SAE50 oils.  The viscosity of a mixture of two miscible liquids is roughly the 
volume fraction weighted geometric mean of their individual viscosities (this is a lot 
more shaky than the temperature relationship, but works pretty well for simple fluids 
that don’t have interesting chemical interactions going on).  Using this idea, determine 
the blend ratio of SAE10 and SAE50 necessary to get an oil with the properties of 
SAE30, and graphically compare the expected viscosity of the blend to the data for 
SAE30. 
 
By the way, multigrade motor oils are made not by blending two oils, but rather by 
taking a low viscosity grade and adding a polymer to it.  The polymer has the property 
of reducing the temperature coefficient, improving performance at high temperatures 
while only slightly increasing the viscosity at low temperatures.   
 
3).  Here’s a weird application of hydrostatics: Consider a ball of gas (air) floating in 
space far from any other source of gravity (tidal orbital dynamics would really mess 
this up!).  At the center of the ball, we take the pressure to be 1 atm and the temperature 
to be a balmy 20°C.  As we move outward from the center, the pressure decreases by 
hydrostatics and the temperature drops by adiabatic expansion (e.g., it obeys both the 
ideal gas law and PV! adiabatic expansion).  This is the result for a “well mixed” 
atmosphere, and applies to the earth’s atmosphere (at least below the stratosphere, 
anyway) as well.  Our goal is to determine the mass of the ball of gas. 



 
a. Set up the problem as a pair of equations for total mass inside a particular radius and 
density as a function of position using hydrostatics, the adiabatic gas law, and mass 
conservation.  Don't forget that gravity is a function of position, and that the 
gravitational attraction inside a spherical shell is identically zero!   
 
b. Scale the mass and radius by some unknown values, and then use the equations to 
determine the characteristic mass and radius (e.g., the magnitude of the scaling 
parameters so that the resulting dimensionless equations will be of O(1). 
 
c. Solve the dimensionless problem numerically to determine the final value of the mass 
of gas, and compare it to the mass of the earth.  It’s pretty easy to set the dimensionless 
problem up as a pair of coupled first order non-linear ODE’s. 
 
 
4).  Pool drains can be dangerous things - there was a tragic case a few years ago in this 
area where a child was stuck in a drain on the bottom, plugging it, and drowning as a 
result.  Here we look at a somewhat simpler problem.  Suppose a ball of radius R is 
plugging a drain of diameter D at the bottom of a pool of depth h as depicted above.  
Obviously, R > D/2 or the ball goes down the drain!  Estimate the conditions under 
which the net force on the ball is zero for very small ratios of D/R (you can do the 
precise calculation for arbitrary D/R, but the math gets a little messy!).  Assume that the 
pressure distribution in the drain is just atmospheric pressure, and that in the water is 
governed by the hydrostatic pressure distribution.  If R is 1 ft and D is 3 inches, what is 
the corresponding depth?  You may neglect the weight of the ball (e.g., its density is 
very small compared to water). 
 

 


