Cheg 355 Transport I (1)
This semester we will study fluid mechanics: the motion of fluids (and solids) in response to applied forces such as shear or pressure or body forces ranging from gravity to electrokinetic or magnetic forces.
we will use conservation principles to derive mathematical description of simple $\&$ complex phenomena. such mathematical models can be used to understand and predict phenomena, ane solve problems in engineering.
The first HW is already linked in-
it's just a few practice problems. to review rector calculus.

Texts:

1) Bur \&, Stewart, \& Lightfiot Transport phenomena - the updated version of the clas s text.
This should be available in the bookstore soon, and is a useful ref.
2) The course notes - were still
figuring out the best way of distributing these due to the new copyright regulations. Printed copies will be available soon, but on-line versions are up now!

Check the online version periodically, asxtike notes may be updated during the semester.

Alma aletaits: (2) (2)

- weekly HW (15%)
- 2 hour exams (25% each)
- final exam (35\%)

Weill also have a weetely tutorial:
Mondays 6:00-7:80 PM,
The first tutorial will be a
discussion of index notation
TA's
-
-

The notes, HW, etc, will bepested
to the website:
www.nd.edel/ dtl/cheg 355/cheg355.html

(4)

OK, why should we care about fluids??
\Rightarrow vital to the world aroundus!

- what causes a hurricane \& determines its path? A tornado?
- How do you design a soristeler system so that all areas are. doused equally in case of fire?
- How can you design an artificial heart so that it pumps blood without tearing up blood cells?
- How can you mix fluids in a chip-based HTS system
(5)

All these questions are answered by applying fundamental conservation Laws as well as material frgectios to complex systems!
What is conserved?

- Mass (neither createl nor
destroyed)
- Momentum ($F=m a$)
- Energy (weill get there,
we will apply these conservation laws to fluids, but they apply equally well to solid's (or anything in between!)

What is a fluid?
fluid us. solid
fluid: exhibits continuous deformati \Rightarrow doesn't snap back after stress is removed!
(thermody namics: the state of mat') depends or rate of shear! $)$

Solids: Elastic deformation -
like a rubber band, snaps back after stress is removed!
(thermos : state depends on total deformation)
Virtually every thing lies between these two states!
Examples: metal creep, elastic polymer flue

$$
E=\Delta x^{-d i x p l e c e m e n t} \text { \& }
$$

What are units of E ? \Rightarrow same
as $F / A!$ Usually given as psi, syne/ cm^{2}, etc!
what units to use??-Depends on application, but you should know
all of them! \Rightarrow know how to convert!
Iusually use cos - most approp. for
low Re flow (specialty). Macready would use mks -high Re, Old
systems in English units \Rightarrow all are the same physics!

Or, we fill it with a flu ix (9) what happens? \Rightarrow will get continuous deformation!
Plate will move wy some velocity $U=\frac{Q(\Delta x)}{Q t}$
For a Newtonian Fluid
$\frac{F}{A}=\frac{U}{D} \mu<$ viscosity!
"poise" is short for Poiscuille,
name assoc. W) pipe flow.
$\frac{U}{D}$ is rate of strain \Rightarrow known as shear rate
velocity field is known as plane Couztte flow, simple shear flow
(ii)
(1) Bingham plastic \Rightarrow a linear relation betw. $\tau \& 8$, but there is a yield stress \Rightarrow no motion until critical strain exceeded! Ex: frozen OJ, mayo
(2) Dilatant $\Rightarrow \mu$ increasssway Notseen as often - some clay suspensions Q_{0} this
(3) Newtonian
(4) Psendoplastic $\Rightarrow \mu$ decreases wy: Also cutter shear thinning - very
common in polymer melts!
May be musth more complicated than this! μ may be time dep., may

You should get to know the $\sqrt{10}$ argon!
What are the viscosities of some
smite fluids?
water シ 1 cp (centipoise, 10^{-2} poise)
taro Syrup $\cong 30 \mathrm{p}$ (temp. Seep,)
Air $\cong 0.02 \mathrm{cp}$
All these are Newtonian fluids!
What are ex. of non - Newtonian fluids.
\Rightarrow One feature is stress-strain
relation is not linear Cor may not bee.
乡/A

exhibit combination of plan.

Example: liquid chocolate - exhibits yield stress \& shear thinning! Imp. if fabricating chocolate figurines! other examples: by to logical fluid:

indeterminate shear rate for applied shear stress! Lents to complex patterns in cytological streaming!
Normal stresses $\Rightarrow \mu$ may not be a scalar! \Rightarrow If you shear fluid one way, may get stress in a different direction: Arises is fluids wy structure.
other froferties:
speed of sound V_{s}-important in jet aircraft, high speed machinery
Related to compressibility of fluid: sound is a pressure wave travelling thru a fluid

$$
\begin{aligned}
& \text { re a fluid } \\
& V_{s}=\left(\frac{\partial P}{\partial \rho}\right)_{T}^{1 / 2}
\end{aligned}
$$

For an ideal gas $P=\frac{f}{M} R T$
Thus $\left(\frac{\partial F}{\partial \rho}\right)_{T}=\frac{R T}{M}=\frac{\left(8.3 \times 10^{7 \frac{\mathrm{erg}}{} \mathrm{mog} \mathrm{g}}\right)\left(300^{\circ} \mathrm{K}\right.}{(29 \mathrm{~g} / \mathrm{mol})}$

$$
=8.6 \times 10^{8} \mathrm{~cm}^{2} / \mathrm{s}^{2}
$$

Thus $V_{s}=2.9 \times 10^{4} \mathrm{~cm} / \mathrm{s}$

$$
=655 \mathrm{mph}
$$

(6)

Result is a "tension" along the surface \rightarrow higher pressure within concave side of bubble like inside of a balloon! $\Delta P \sim \frac{\sigma}{R}$ (inverse to radius)
surfactants (soap) are a material that liters both fluids, thus reduces σ
Coefficient of thermal expansion:

$$
\beta=-\frac{1}{\rho}\left(\frac{\partial \rho}{\partial T}\right)_{p}=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{p}=\frac{1}{T}
$$

for an ideal ias.

Important in natural convection problems, such as draft off windowwill look at this in Sr e Lab.

When $U / V_{s} \sim 1$ flow is compressible
\Rightarrow this means that fluid density is affected by fluid motion. Importance guaged by Mach \#
$M=U / V_{s}$
For liquids $\left(\frac{\partial P}{\partial g}\right)_{T}$ is very large
\& U is us wally smaller, so flow
can be regarded as incompressible
Surface Tension: usually denoted
by σ (sometimes γ)
$\sigma \Rightarrow \begin{gathered}\text { energy required to create } \\ \text { interfacial surface area }\end{gathered}$ interfacial surface area
units $=4 \frac{4}{4} / \mathrm{cm}^{2}$
This causes bubbles to be spheres!
(Minimize suiface/volume)

Ok, what types of flows ate there?

Compressible vs. Incomp,

- Depends on $M=U / V_{s}$
- even in air, most flows are in compressible! Usually study
compressible flows in Aero.
Laminar vs. Turbulent
- Flow is laminar if layers of fluid slip smoothly over each other
- Laminar flow may be steady (unchanging in time) or unsteady \Rightarrow look at flow from tap. At low flows, looks tithe a glassy, steady Stream.

Suspensions \Rightarrow area of research at
ND. Example - wet $\operatorname{san} \mathcal{Q}$ - if you step on it, it dries out!

Study of stress-strain relationship is rhedogy
2 nd property: Density
\Rightarrow we are interested in transport of momentum which is velocity x ma
\therefore density is important!
Density of Water $=19 / \mathrm{cm}^{3}$

$$
\text { air }=1.2 \times 10^{-3} 9 / \mathrm{cm}^{3}
$$

$$
\mathrm{Hg}=18.6 \mathrm{~g} / \mathrm{cm}^{3}
$$

Actually, we are interested in

What Qa these numbers mean?
Determine time to approach
steady -state!
Thought exp't \Rightarrow take metal
poker, stick one end infare-
eventually, your hand gets fried!
How long? Controlled by diffusivity
Remember: $[x]=\frac{L^{2}}{T}$
Thus $T \sim \frac{L^{2}}{\alpha}$
for a metal, $x \sim 0.11 \mathrm{~cm}^{2} / \mathrm{s}$ (steel) Thus if poker is 2 ft long $(60 \mathrm{~cm})$ it takes $O(10) \mathrm{hr}$ for your end to get hot! Actually, more complicated as loses heat to air all along shaft
momentum diffusivity (14)
(better known as kinematic visor
$\nu \equiv \frac{\mu}{s}$-units $\frac{L^{2}}{T}$ in cos $1 \frac{\mathrm{~cm}^{2}}{\mathrm{~s}}=1$ stokes
(name associated w/ flowers)
Units of ν same as molecular
diff. $D_{A B}$, thermal diff. $\alpha \Rightarrow$ governs rate wy which mom. diffuses

material	ν
water	165
air	15 cs
Hg	0.5 cs
Karo syrup	25 stakes

$$
\begin{aligned}
& \text { What about fluids? Wick at } \\
& \text { diff th of momentum } \Rightarrow \text { same } \\
& \text { thought exp }{ }^{2} \text { : } \\
& h \hat{W} \sqrt{\text { momentum diffuses }} \text { How long till lower plate feels } \\
& \text { motion? }
\end{aligned}
$$

$$
T \sim \frac{h^{2}}{\nu}
$$

$$
\text { If } h=1 \mathrm{~cm}
$$

$$
\begin{aligned}
T & =O(1005) \text { in water } \\
& =O(2005) \text { in } \mathrm{Hg} \\
& =O(0.04 \mathrm{~s}) \text { in karo syrup! }
\end{aligned}
$$

Actually, this is only order of magnitude \Rightarrow sols of transient problem shows $\sim 4 x$ faster than these values.
(21)

What happens if we increase flow rate? \Rightarrow becomes rough, unsteady \rightarrow transition to turbuleur Turbulence is chaotic, time dep $\&$ very Qifficult to describe mathematically w/ precision -still) it occurs most of the time! Both laminar \& turbulent flow may occur in the same geometry \Rightarrow famous exp't in pipe flow by Osbourne Reynolds. Found transition from laminar to turbulent flow giver. by dimensionless parameter Re:
$R_{e}=\frac{\text { inertial forces }}{\text { viscous forces }}=\frac{U D}{D} \approx 21 a$ well look at this in detail later!

Continues rypothes. 5
we want to develop a mathematical descer of fluid flow: this requires taking fluid to be a continuum. Is this continuo hypothesis reasonable? \Rightarrow sometimes!
$\Rightarrow f l u i d$ is made up of molecules bouncing into each other. In a gas phase, molecules may go sig. \&ist. before hitting each other! Not
a continuum on this length scale!
Suppose we have probe of arb. size - what wouldit see??

We would take value be $\frac{23}{\frac{t}{6} \text { ween }}$ "microscopic variation" length scale
an \&"macroscopie variation" scale
to be "local" density \Rightarrow same
for "local" velocity, pressure, temp,
atc!! This may not work!
\Rightarrow minimum length for continuum
hyp. to hold is mean free path

- length - Distance molecule travels before hitting another. In
agas $\lambda \sim \frac{1}{\sqrt{2} \pi \alpha^{2} n}$
.... Where Q is molecule diu. \& n is number density (motecules/vol)
$A t 70 \mathrm{mi}, \lambda \sim 10 \mathrm{~cm}$, so will affect f low in boundary layer of a rocket, for ex.

24
At 1 atm \& room temp, we have λ is just a few R. For liquids it's even smaller! Non-continuum effects are imp. peen in liquids, though \Rightarrow the most imp. ex. is Brownian motion \rightarrow In a liquid small parties art kicked around by molecules, thus they execute a random walk - gives rise to diffusion - usually imp. for particles 1 um or less in bia.
We will assume continuumbyp.
to apply, also leads to no-slip
condition \Rightarrow at a solid surface
in contact w/ fluid, velocity
is continuous:
(25)

Fluid layer adjacent to solid surface paves w velocity of surface
If $\lambda>Q$ (char length of flow), way not be in contact i, so would get a "slip" condition modifies aerodynamics of returning. shuttle, or flow in a vacuum pump. Also get breate down of continua hyp. in composite media (suss)not valid on length scales af order particle size \Rightarrow leads to wall slip as well, makes working with. suspensions tricky!

When we will describe motion, ρ, - μ, etc. at a "point, really mean some avg over a volume large wire. λ or molecule (particle) size!

Examples:
Gravity: $F=\rho g Q V$ differential
Electric Fie ll: volume!

$$
\mathcal{F}=E q d v
$$

$\eta \quad$ charge/votime electric field $(v o l t / \mathrm{cm})$
\Rightarrow this force is critical in electroosmosis \& electrophoresis. We use this effect to separate proteins in our laboratory!
Magnetic field:
\Rightarrow Important in plosmadynamies (fusion reactors), field of MHD

Forces on a Fluid Element
We need to apply $F=m a t_{0}$ a fluid \Rightarrow what are the forces?

Consider an arbitrary element:

What are the forces on the molecules in D ? Divide into Surface Forces and Body Fores!

What is a body force? \Rightarrow They act on each molecule in D.

Ok 28
Ok, what about surface Forces?
We divide these into shear forces and normal forces
\Rightarrow Surface forces act on the surface of ∂D
\Rightarrow shear forces act tangential to $\partial D!$ The F / A in simple shear flow is a shear force!
\Rightarrow normal forces act normal to the surface
Let the F/A of surface
force be f - a vector. We resolve into tangential \& normal components:

If the unit normal to a patch of surface QA is n
Then $f_{n}=(f \cdot n) n$
well look at f_{t} later, now focus on normal forces!
\Rightarrow Consider an element at rest If it's at rest, shear forces should be zero. Inst have normal forces:

Similarly,

$$
\begin{equation*}
\frac{\Delta F_{s}}{\Delta z \Delta S}=-\sigma_{\varepsilon S} \tag{31}
\end{equation*}
$$

These are normal stresses
They rep. diagonal elements of the stress tensor!

* Stress tensor 三 momentum flux
$\sigma_{i j} \equiv$ Force/Area exerted by fluid of greater i fluid of lesser i in j direction!
- lesser x

Thus $\sigma_{x x}$ is
negative in compression

Let's no a force balance
\Rightarrow Since element is at rest, the
net force in each direction must be zero!

The force balance in the x-direction:
$\sum F_{x}=\Delta F_{x}-\Delta F_{s} \sin \theta=0$
\rightarrow component to ΔF_{s} in x-air
Now $\sin \theta=\frac{\Delta y}{45}$
Thus $\Delta F_{x}-\Delta F_{s} \frac{\Delta y}{\Delta s}=0$
or, dividing by $\Delta z \Delta y$:

$$
\frac{\Delta F_{x}}{\Delta z \Delta y}=\frac{\Delta F_{s}}{\Delta z \Delta S \leftrightarrow \text { areaof }}
$$

\rightarrow area of \times face
Define

$$
\left.\frac{\Delta F_{x}}{\Delta \partial \Delta y}=-\sigma_{x x} \quad \begin{array}{c}
\text { (normal } \\
\text { stress }
\end{array}\right)
$$

Note: $B \leq \& L$ defines $\frac{32}{}$ back wards (ch 2) \Rightarrow Qoesn't change the physics, just the sign! Well use the conventional (most common, anyway) definition in this class!

Ok, now look at y-direction:

$$
\begin{aligned}
& \sum F_{y}=\Delta F_{y}-\Delta F_{s} \cos \theta-\rho \rho \frac{\Delta x \Delta y \Delta z}{2} \\
&=0 \\
&=\text { weight of } \\
& \text { fluid! }
\end{aligned}
$$

Recall $\cos \theta=\frac{\Delta x}{\Delta S}$
Thus (dividing thru):

$$
\left\{\begin{array}{l}
\frac{\Delta F_{y}}{\Delta x \Delta z}-\frac{\Delta F_{s}}{\Delta s \Delta z}=\frac{s g \Delta y}{2} \\
\left\{\begin{array}{l}
\text { vanishes ss } \\
-\sigma_{y y} \\
\Delta y \rightarrow 0!
\end{array}, \frac{\sigma_{s s}}{\Delta y} \quad\right.
\end{array}\right.
$$

Thus
How Ques p vary in a fluid

$$
\sigma_{x x}=\sigma_{y y}=\sigma_{s s}
$$ at rest??

* In a fluid at rest, normal stress is isotropic: same ix all Directions. This normal stress is just $\underset{\text { neg sign! }}{\underset{P}{P}}$

$$
P=-\sigma_{x x}=-\sigma_{y y}=-\sigma_{z z}
$$

When not at rest, normal stress is, ingeneral, not isotropic!
we define

$$
p=-\frac{1}{3}\left(\sigma_{x x}+\sigma_{y y}+\sigma_{z z}\right)
$$

average of the normal stresses! equiv: $p=-\frac{1}{3} \operatorname{tr}(\underset{\sim}{\sigma})$ \rightarrow trace

Or, in limit $A x \rightarrow 0$:

$$
-\frac{\partial p}{\partial x}+\rho g_{x}=0
$$

Similarly, $\frac{\partial p}{\partial y}=\rho g_{y} ; \quad \frac{\partial \rho}{\partial z}=\rho g_{z}$
Which yield 3 equs!
In vector form:

$$
\nabla P=9 g
$$

Last deriv. was \&one using shed balances. If you're good at vector notation, there's an easier (better) way!
consider arbitrary fluid element:

Let's do a force balance in the x-dir:

$$
\left.P\right|_{x} \Delta y \Delta z-\left.p\right|_{x+\Delta x} \Delta y \Delta z+\rho g_{x} \Delta x \Delta y \Delta z=0
$$

Divide through:

$$
-\frac{\left.P\right|_{x+a x}-\left.P\right|_{x}}{\Delta x}+\rho g_{x}=0
$$

What are the forces acting mit?
Surface force. $\int_{\partial D}^{-P n} \underbrace{}_{\pi} \delta A$ frise on each patch
Body Force:

$$
\int_{0}^{\rho g Q v}
$$ of surface force oo peck

fluid bit
So: $E F=0$
Thus $\int_{\partial \Delta}-P_{n} Q A+\int_{D} \rho_{\sim}^{g} Q Q=0$
We now use the Divergence Theorem

$$
\int_{\partial D} f \sim \alpha A \equiv \int_{D} \nabla f Q v
$$

converts surface int. to vol. int!

$$
\begin{aligned}
& \text { So: } \int_{D}\{D p-39\} Q V=0 \\
& \text { Now since } D \text { was completely }
\end{aligned}
$$

arbitrary, it must be true at every point in fluid!
Thus

$$
\underset{\sim}{\nabla} P-\rho g=0
$$

$$
\text { or } Q P=\rho 9
$$

It will be plot easier to derive things this way when we get to fluids in motion!

(39)

So $z=\frac{1 \mathrm{~atm}}{99} 1.01325$
Now $1 \mathrm{~atm}=1.01 \times 10^{6} \frac{\text { dyne }}{\mathrm{cm}^{2}}$ $\rho=1 \mathrm{~g} / \mathrm{cm}^{3}$ (fresh water) $g=980 \xrightarrow{\stackrel{\mathrm{~cm} / \mathrm{s}^{2}}{ } \rightarrow 380.665}$, no air!
$\therefore z=1033 \mathrm{~cm}=10.3 \mathrm{~m} \approx 33.9 \mathrm{ft}$
A bit less in salt water!

© membrane

Let's Integrate!
$p=-9 g z+c s t$
$\left.P\right|_{z=h}=P_{0}$
Thus $p=P_{0}+\rho g(h-z)$
This is just as true in an open body
of water (diving):
How deep do you have to go to
reach I atm gage (egg above
the atmospheric pressure)?

(40)

If the ΔP across the membrane exceeds the osmotic pressure water will flow through the membrane!
How deep must the pipe be to
(1) get water into the pipe
(2) get the lighter fresh water all the way to the surface?
(1) $g \rho_{S W} h_{1}=\Delta P_{O S M}$
$\rho_{s w}=1.04 \mathrm{~g} / \mathrm{cm}^{3}, \Delta P_{\text {SM }}=28 \mathrm{AtM}$
$\therefore h_{1}=275 \mathrm{~m}!$
(2) $g \rho_{S W} h_{2}-g f_{\mathrm{H}_{2} \mathrm{O}} h_{2}=\Delta P_{D S M}$
$\therefore h_{2}=\frac{\Delta P_{0 S m}}{g\left(\rho_{\text {SW }}-\rho_{\text {tho }}\right)}=7 \mathrm{~km}$!

How about n e more practical $\operatorname{example} ? ?_{\operatorname{tank}} \Rightarrow$ Manometer on a

What is the pressure in the tank
at $p t$?

$$
\begin{aligned}
P_{A}= & \rho_{0}+(D-C) \rho_{2} g-(A-B) \rho_{1} g \\
& (\text { no pressure differential between } \\
& \text { pt } B \& C!)
\end{aligned}
$$

Manometers are a simple \& useful way to meas sure ap of of (atm) (H_{g} - $\mathrm{not}^{\mathrm{H}} \mathrm{H}_{2} \mathrm{O}!$) or $\mathrm{O}\left(1 \mathrm{psi}\right.$) ($\mathrm{H}_{2} \mathrm{O}$) provided you don't blow them out! use electronic or mechanical (spring based) sensors in industry!
or, let's apply this:

$$
\begin{aligned}
& \text { What fraction of an iceberg } \\
& \text { is submerged? }
\end{aligned}
$$

$$
\therefore \frac{v_{s}}{v}=\frac{\rho_{i}}{\rho_{w}}=\frac{0.917}{1.04}=0.88
$$

$$
\text { So only about } 12 \% \text { is exposed! }
$$

Question: If a glass with ice is filled to brim w/ water \& ice projects over rim? will it spill when ice
melts? \Rightarrow Nope!
will if spill if we fill it walt water? Yep, as water has
a lower densify!

Another example: Buoyancy What is the force exerted by fluid on a submerged object?

$$
F=-\int_{D D} P \sim Q A
$$

The pressure distrib in the fluid is the same as if the object
Were absent if it is at rest!

$$
\text { So: } \quad \text { if object absent }
$$

$$
\underset{\sim}{F}=-\int_{\partial D} P \underset{\sim}{n} Q A=-\int_{D} \underset{\sim}{\nabla} P Q V
$$

$$
=-\int_{p} \rho_{f} g Q V=-\rho_{p}{\underset{\sim}{g}}^{g} V_{f}
$$

So fluid exerts a force equal
to the weight of Displaced volume! (Archimedes, 3-d cent. B.C.)

Fluids in Motion
(44)

Now that we've dealt wy hydrostatics
'let's look at fluids in motion
What sort of questions?? \Rightarrow
If you have a fire hose w/ some
pressure, what floor will it reach?
If you have viscous flow thru
tube, what is the velocity profile:
If you have flow over a wing, what
is the lift? drag?
To answer these questions, we invoke
Conservation Laws
What is conserved??
Mass: What goes in - What goesout

$$
=\text { accumulation! }
$$

Momentum: Newton's 2" (Taw

$$
(F=m a) \text { of motion! }
$$

Energy: First law of Therme!
Well use these conservation laws to derive eqns that govern fluid motion, then apply to problems!

To Qu this, need a mathematical framework to describe motion. Two approaches: Lagrangian \& Eutherian

1) Lagrangian: follow a fluid
element as it moves thru flow:

$$
\underset{\sim}{\underset{\sim}{u}} \underset{\substack{u \\ \text { initial position } \\ \text { mfotouisist }}}{((a, b, c) ; t) \equiv \underset{\sim}{u}\left(x_{0} ; t\right)}
$$

2. Eulerian Approach: $u=\underset{\sim}{u}(\underset{\sim}{x}, t)$

Track velocity field at an instani of time relative to defined coors system.
Ex: If you tater a snapshot of a highway at time t, you could determine the velocity of all the cars, but you would $2 n^{\prime}+$ tenow where they came from or where they wind up.
Both Eulerian \& Lagrangian descr. can provide a complete descr. of the flow, but for most fluid problems fulerian is mare convenient well focus on it!
other useful concepts:
streamline, pathline, streateline

Also

$$
\begin{aligned}
x & =\underset{\sim}{x}\left(x_{0} ; t\right) \\
& ={\underset{\sim}{x}}_{0}+\int_{0}^{u}\left(\underset{\sim}{x} ; t^{\prime}\right) d t^{\prime}
\end{aligned}
$$

which tracks the position of the fluid element startingat x_{\sim} at $t=0$ for all time!

Lagrangian description isn't used much in fluids - a bit au kward! When would it be used? \Rightarrow celestial mechanics! Descr. positions of todies (Qiscrete) as $f^{n}(t)$
Also - study of suspensions (simulation) - tract all the particles in a suspension!
\Rightarrow Also important in pasteurization/related processes

Streamline: curve every where tangent to velocity vector at a given instant \Rightarrow a snapshot of the flow pattern!
\rightarrow this is what you get from Eulerian analysis

Pathline: Actual path traversed by a given fluid element-Lagrangian description!
\Rightarrow What you would get from timelapsed photograph of a marker in
Streakline: Locus of particles passing thru a given point
\Rightarrow What is usually produced in flow visualization experiments; smoker is released continuously at a point epattern is photographed later!

For S.S. flow, all areidentical!
(49)

Some unsteady flows may be made
steady by shifting cords Example: falling sphere in viscous fluid. It's moving wir.t. laboratory reference frame, so flow is unsteady.
If we shift coord system so it travels with sphere, if's steady \Rightarrow much more convenient mathematics as we eliminate time!
\Rightarrow Note: we must use a constant velocity coord system! If we accelerate word system, leads to non-inertial ref. frame \Rightarrow adds a term to the equations!
\Rightarrow Also, flow past sphere may still be unsteady at higher Re due to vortex shedding, turbulence.
ore, now we derive equns:

1) Conservation of mass
(continuity eqin)
we consider a fluid element (cube) as depicted below:

where $\underset{\sim}{u} \neq 0$!
We have the basic conservation law: $\left\{\begin{array}{c}\text { Rate of accumulation } \\ \text { of mass }\end{array}\right\}=\left\{\begin{array}{l}\text { Rate in } \\ \text { by convection }\end{array}\right\}$ since it can't be created!
since $u \neq 0$, fluid (\& mass) may come in (or out) thru each face!

Another concept Control volume
\Rightarrow You used this in 255, etc.

- useful for deriving equations:
\Rightarrow treat it as a "blate box", keeping tracts of what goes in \& what goes
For example: what is the force
on a pipe elbow??

Exerts force diagonal to elbowWhy elbows need bracing!

What is flux thru face $\frac{(52)}{x=x_{0}}$?

Volumetric flux $\equiv \underset{\sim}{u} \Rightarrow \frac{v_{0} l}{\text { Area' Time }}$ Mass flux $\equiv \rho u \underset{\sim}{u} \Rightarrow \frac{\text { mass }}{\text { Area. Time }}$
Mass flux they surface is proportion e to component of pu (a. vector) normal to the surface!

So mass flow in thru these fares
is.

$$
\left.\left.\left(\rho u_{x}\right)\right|_{x} ^{\Delta y \Delta z-\left(\rho u_{x}\right)}\right|_{x+\Delta x} \Delta y \Delta z
$$

And if we combine this with the other faces:
Mass into cube $=\left[\left.\left(\rho u_{x}\right)\right|_{x}-\left.\left(\rho u_{x}\right)\right|_{x+\Delta x}\right] \Delta y \Delta z$

$$
+\left[\left.\left(\rho u_{y}\right)\right|_{y}-\left.\left(\rho u_{y}\right)\right|_{y+\Delta y}\right] \Delta x \Delta z
$$

$$
+\left[\left.\left(\rho u_{z}\right)\right|_{z}-\left.\left(\rho u_{z}\right)\right|_{z+\Delta z}\right] \Delta x \Delta y
$$

$$
=\frac{Q}{Q t}(\Delta x \Delta y \Delta z \rho)
$$

\rightarrow total mass!
Dividing by $\Delta x \Delta y \Delta z$ \& taking the limit as they go to zero yields:

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}=-\left(\frac{\partial\left(u_{x}\right)}{\partial x}+\frac{\partial\left(\rho u_{y}\right)}{\partial y}+\frac{\left(\rho u_{z}\right)}{\partial z}\right) \tag{55}
\end{equation*}
$$

Remember the Lagrangian description? $\frac{D \phi}{D t}$ is the time rate of change of any property \& experienced by a fluid element!
It has two components:

1) $\frac{\partial \phi}{\partial t} \Rightarrow$ local Deriv. w.r.t. time
2) $u \cdot \nabla \phi \Rightarrow$ change due to convection thru a field where ϕ varies with position

If a fluid is incompressible we have $\rho=c s t$

$$
\text { Thus } \frac{D S}{D t} \equiv 0
$$

an Q thus $\nabla \cdot \underset{\sim}{u}=0$
or,

$$
\frac{\partial s}{\partial t}=-\nabla \cdot(s \underset{\sim}{u})
$$

In words: The time rate of change of the density is the negative if the divergence of themass Flux vector!

We can rearrange this:

$$
\frac{\partial \rho}{\partial t}=-\rho \nabla \cdot u / u \cdot \nabla \rho
$$

or $\frac{\partial \rho}{\partial t}+u \cdot \nabla \rho=-\rho \nabla \cdot u$
This is known as the material
derivative

$$
\frac{D \phi}{D t} \equiv \frac{\partial \phi}{\partial t}+u \cdot \nabla \phi
$$

for any \varnothing !
An alternate derivation may be made using vector calculu: Consider an arbitrary control volume D :

What is the change in the total Mass in D ?

$$
\frac{Q M}{\partial t}=\frac{Q}{\partial t} \int_{D} \rho Q V \equiv \int_{D} \frac{\partial \rho}{\partial t} Q V
$$

$$
=\int_{D} \underbrace{-\mu \mu}_{\square} \cdot n d A
$$

\longrightarrow mass flux in thru
each patch of surface!
(57) An example:

Thus:

$$
\int_{D} \frac{\partial \xi}{\partial t} Q v+\int_{\partial D} s u \cdot n Q A=0
$$

Apply divergence theorem:

$$
\int_{D} \frac{\partial \rho}{\partial t} Q V+\int_{D} D \cdot(\rho \underline{u}) Q V=0
$$

or $\frac{\partial s}{\partial t}+\nabla \cdot(s \underline{\sim})=0$
Let's look at a hydraulic jack.
This is an example of how a small pump can raiseabig car!

Which is the same equation!
In index notation:

$$
\frac{\partial \rho}{\partial t}+\frac{\partial\left(\rho u_{i}\right)}{\partial x_{i}}=0
$$

To get the flow rate we $\frac{59}{45}$ the CE:

$$
\frac{\partial s}{\partial t}+\nabla \cdot(\rho \underset{\sim}{u})=0
$$

We tate the fluid to be incompressible, so the density iss

$$
\therefore \quad \nabla \cdot u=0
$$

Ne draw a control volume:

$$
\begin{aligned}
& \int_{V_{c}} \nabla \cdot \underset{\sim}{u} Q v=\int_{\partial V_{c}}^{u} \cdot \underset{\sim}{u} d A=0 \\
& \text { E1.O = El..O a... }
\end{aligned}
$$

urn $n=0$ only in exit pipe face kat piston face!
Let A_{e} be exit pipe, A_{p} bepistion

$$
\int_{A_{p}} u \cdot n d A+\int_{A_{e}} \underset{\sim}{u} \cdot n d A=0
$$

Now flow out through piston is - Ap up (urn is negative here)

Flow out through exit pipe is

$$
+A_{e}\left\langle u_{e}\right\rangle
$$

(we Refine average velocity

$$
\left\langle u_{e}\right\rangle=\frac{1}{A_{e}} \int_{A_{e}} u_{e} \cdot n d A
$$

Thus the average velocity:

$$
\left\langle u_{e}\right\rangle=\frac{A_{\rho}}{A_{e}} u_{p}
$$

(61) $P_{e}=P_{0}+P_{\text {atm }} \div \operatorname{sgh}$

So the ratio of the average what is the force required to inlet velocity to the average raise the p iston? outlet velocity is inverse of the ratios of the areas! Note: the CE tells you about the average velocity normal to the exit, it doesn't tell you about the velocity distribution

If there's no flow, what is the pressure at the exit?

(63)

Let's extend the CE to multicomponent systems
Suppose we have in species, (e.g., salt sol'n $\mathrm{H}_{2} \mathrm{O}, \mathrm{NaCl}: m=2$) we can do a balance on each species

Let velocity of species i be given by u_{i} (ok, not index notation were - subscript represents which species were tallying about)
Note: $\underset{\sim}{u} i \quad w_{i} l l$, in general, be different from mass avg. velocity $\underset{\sim}{u}$ Que to diffusion!
Let density of species i (mass/rol) be $\rho_{i} \Rightarrow$ Note this is not the

$$
\begin{aligned}
F & =\left(P_{e}-P_{a t m}\right) A_{e} \\
& =\left(\frac{m g}{\pi r_{0}^{2}}+\rho g h\right) \pi r_{e}^{2} \\
& =m g \underbrace{\frac{r_{e}^{2}}{r_{0}^{2}}}_{\text {C ratio }}+\underbrace{\pi r_{e}^{2} \rho g h}_{\text {small (usually) }}
\end{aligned}
$$

force!

This is how hydraulics work!
Examples: Car brakes, wing elevators, by Qraulic jacks, etc.
Note: energy expended to raise car is unchanged, but force is reduced!
the density of salt (say) but rather the mass/volume of salt in the solution! or, we still have conservation for each species

$$
\begin{aligned}
& \frac{d}{d t} \int_{D} \rho_{i} Q V=-\int_{\partial D} \rho_{i} u_{i} \cdot n Q A \\
& +\int_{D} R_{i} Q V
\end{aligned}
$$

$R_{i} \Rightarrow$ mass rate of production per unit volume of species i Que to reaction! We can apply divergence theorem to this:

$$
\begin{array}{r}
\int_{D} \frac{\partial \rho_{i}}{\partial t} d V+\int_{D} \nabla \cdot\left(\rho_{i} u_{i}\right) d V \\
=\int_{D} R_{i} d V
\end{array}
$$

or the microscopic $e^{D} q_{n}$:

$$
\frac{\partial \rho_{i}}{\partial t}+\underset{\sim}{\nabla} \cdot\left(\rho_{i} u_{i}\right)=R_{i}
$$

The total density is just the sum of si

$$
\rho=\sum \rho_{i}
$$

\& mass avg velocity:

$$
\rho \leadsto=\sum \rho_{i} u_{i}
$$

Thus summing the equation over all species:

Suppose we have a well-mixed (stirred) tank:

We have a mass flow rate Q $Q^{(i)} \Rightarrow$ inlet mass flow
$Q^{(e)} \Rightarrow$ exit mass flow
$M=$ mass in tank $=\int_{0} \rho d V$
$\rho \equiv$ total density
$S \equiv$ salt in tank e $=\int_{0} e_{s} Q V$
$s_{c} \equiv$ density of salt
$\frac{\partial}{\partial t} \sum \beta_{i}+\nabla \cdot\left(\sum \xi_{i} \mu_{i}\right)=\sum R_{i}$
or:

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \underset{\sim}{u})=\sum R_{i}
$$

Note that $\Sigma R_{i}=0$ since mass is conserved in reacting systems!
Next semester you will combine this equation with Fiche's law to get the equation governing mass. transfer!

Ok, let's work another example: Conservation of mass in a CSTR (Continuously stirred Tank Reactor)
We wish to determine the fluid level \& salt concentration as a function of time!

$$
\{\text { mass in }\}-\{\text { massout }\}=\{\text { Accum }\}
$$

Thus:

$$
\begin{aligned}
\frac{Q M}{Q t} & =-\int_{\partial D} \rho(\underset{\sim}{u} \cdot \underset{\sim}{n}) Q A \\
& =Q^{(i)}-Q^{(e)}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{Q S}{d t}=-\int_{\partial D} \rho_{S}(\underset{\sim}{u} \cdot \underset{\sim}{n}) Q A \\
& =Q^{(i)} \frac{\rho^{(i)}}{\rho^{(i)}}-Q^{(e)} \frac{\rho_{s}^{(e)}}{\rho^{(e)}} \\
& \omega_{s}^{(i)} \Rightarrow \text { mass fraction } \\
& \text { at inlet }
\end{aligned}
$$

Now for a CSTR,

$$
\frac{\rho_{s}^{(e)}}{\rho^{(e)}}=\frac{s}{M}(\underset{m i x e d}{\operatorname{tank}}(\underset{\text { is }}{ }(\underset{y}{ }
$$

Hence

$$
\begin{align*}
& \frac{Q S}{Q t}=Q^{(i)} \omega_{5}^{(i)}-\left(\frac{S}{M}\right) Q^{(} \tag{e}\\
& \frac{Q M}{Q t}=Q^{(i)}-Q^{(e)}=\Delta Q
\end{align*}
$$

Solution Solve for M first, then solve for S !
$M=M_{0}+\Delta Q t \quad$ (linear change in time)

$$
\frac{Q S}{Q t}=\frac{-Q^{(e)}}{M_{0}+\Delta Q t} S+Q^{(i)} w_{s}^{(i)}
$$

$$
p(x) \equiv \frac{Q^{(e)}}{M_{0}+\Delta Q t}
$$

or

$$
\begin{aligned}
& \frac{\partial S}{\partial t}+\left\{\frac{Q^{(e)}}{M_{0}+\Delta Q t}\right\} S=Q^{(i)} \omega_{s}^{(i)} \\
& w / \text { IC. }\left.S\right|_{t=0}=S_{0}
\end{aligned}
$$

This is a first order linear ODE We have the general solution.

$$
\frac{Q y}{Q x}+p(x) y=f(x)
$$

Then:
$y(x)=e^{-\int p(x)} d x\left[\int\left[f(x) e^{\int p\left(x^{\prime}\right) d x^{\prime}}\right] d x+K\right]$
where K is determined from I.C.!
Let's apply this:

$$
\begin{align*}
& x \equiv t, f(x) \equiv Q^{(i)} \omega_{s}^{(i)}=c s t \\
& =Q^{(i)} \omega_{s}^{(i)} \frac{\left(\frac{\mu_{0}}{\Delta Q}+t\right)}{\left(\frac{Q^{(e)}}{\Delta Q}+1\right)}+k\left(\frac{M_{0}}{\Delta Q}+t\right)^{-\frac{Q^{(e)}}{\Delta Q}} \tag{71}
\end{align*}
$$

We determine K from the I, C.

$$
\left.S\right|_{t=0}=S_{0}
$$

$$
\begin{align*}
& \text { Thus: } \\
& S_{0}=Q^{(i)} \omega_{s}^{(i)} \frac{\frac{M_{0}}{\Delta Q}}{\left(\frac{Q^{(e)}}{\Delta Q}+1\right)}+k\left(\frac{M_{0}}{\Delta Q}\right)^{\frac{-Q^{(e)}}{\Delta Q}} \tag{2}\\
& S_{0} k=S_{0}\left(\frac{M_{0}}{\Delta Q}\right)^{\frac{Q^{(e)}}{\Delta Q}}-Q^{(i)} \omega_{s}^{(i)} \frac{\left.\left(\frac{M_{0}}{\Delta Q Q}\right)^{\frac{Q^{(t)}}{\Delta Q}}\right)}{\left(\frac{Q^{(P)}}{\Delta Q}+1\right)}
\end{align*}
$$

Which yields:

$$
\begin{aligned}
& S=S_{0}\left(\frac{\frac{M_{0}}{A Q}}{\frac{M_{0}}{A Q}+t}\right)^{\frac{Q^{(e)}}{\Delta Q}}+\frac{Q^{(i)} \omega_{s}^{(i)}}{\left(\frac{Q^{(Q)}}{\Delta Q}+1\right)} \times \\
& {\left[\left(\frac{M_{0}}{A Q}+t\right)-\left(\frac{M_{0}}{A Q}+t\right)^{-\frac{Q^{(e)}}{\Delta Q}}\left(\frac{M_{0}}{\Delta Q}\right)^{\left(\frac{Q^{(P)}}{A Q}+1\right)}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& =S_{0}\left(\frac{M_{0}}{M_{0}+\Delta Q t}\right)^{\frac{Q^{(Q)}}{\Delta Q}}+\frac{Q^{(i)} \omega_{s}^{(7)}}{\left(\frac{Q^{(i)}}{\Delta Q}+1\right)} x \\
& \left(\frac{M_{0}}{\Delta Q}+t\right)\left[1-\left(\frac{\frac{M_{0}}{\Delta Q}}{\frac{M_{0}}{\Delta Q}+t}\right)^{\left(\frac{Q^{(t)}}{\Delta Q}+1\right)}\right]
\end{aligned}
$$

Note: $\frac{Q^{(e)}}{\Delta Q}+1=\frac{1}{\Delta Q}\left(Q^{(e)}+Q^{(i)}-Q^{(e)}\right)$

$$
=\frac{Q(i)}{\Delta Q}
$$

So:

$$
S=S_{0}\left(\frac{M_{0}}{M_{0}+\Delta Q t}\right)^{\frac{Q^{(e)}}{\Delta Q}}
$$

$$
\begin{aligned}
& S=S_{0}\left(\overline{M_{0}+\Delta Q t}\right) \\
& +\omega_{s}^{(i)}\left(M_{0}+\Delta Q t\right)\left(1-\left(\frac{M_{0}}{M_{0}+\Delta Q t}\right)^{\frac{Q(i)}{\Delta Q}}\right)
\end{aligned}
$$

The first term results from the loss of the salt initially present in the tanto. The second results from that added to the tanto.

Conservation of Momentum
Jest as was the case for mass, momentum is also conserved.
For mass we ha:
$\left\{\begin{array}{l}\text { accum of } \\ \text { mass }\end{array}\right\}=-\left\{\begin{array}{l}\text { net rate out } \\ \text { by convection }\end{array}\right\}$

$$
\int_{D} \frac{\partial \rho}{\partial t} Q v=-\int_{\partial D} \rho \leadsto \cdot n d A
$$

For momentum it's a bit messier:

$$
\left\{\begin{array}{l}
\text { a cum of } \\
\text { momentum }
\end{array}\right\}=-\left\{\begin{array}{l}
\text { net rate momentum } \\
\text { out by convection }
\end{array}\right\}
$$

$$
+\left\{\begin{array}{l}
\text { Sum of forces on } \\
D \text { by surroundings }
\end{array}\right\}
$$

Force aQQs momentum via

$$
F=m \underset{\sim}{a} \text { (rate of increase }
$$ of momeritums

We can simplify a bit further if we recall:

$$
M=M_{0}+\Delta Q t
$$

$$
\begin{aligned}
& \text { Thus } \\
& \begin{aligned}
S=S_{0} & \left(\frac{M_{0}}{M}\right)^{\frac{Q^{(Q)}}{\Delta Q}} \\
& +\omega_{S}^{(i)} M\left(1-\left(\frac{M_{0}}{M}\right)^{\frac{Q^{(i)}}{\Delta Q}}\right)
\end{aligned}
\end{aligned}
$$

It is interesting to note that in the limit $\Delta Q \rightarrow 0 \quad\left(e . g ., Q^{(e)}=Q^{(i)}\right)$
the power law form given here collapses to a pure exponential:

$$
\begin{aligned}
& M=M_{0} \quad Q=Q^{(e)}=Q^{(i)} \\
& S=M_{0} \omega_{s}^{(i)}+\left(S_{0}-M_{0} \omega_{s}^{(i)}\right) e^{-Q} t
\end{aligned}
$$

The quantity $M O$ is known as the Residence Time of the vessel!
(76)

What do these terms looklite?
gu \equiv momentum fer unit volume

Thus:
$\left\{\begin{array}{l}\text { Rate momentum out } \\ \text { by convection }\end{array}\right\} \equiv \int_{\partial D}(\rho u) u \cdot n Q A$
momentum x volumetric flux volume \times normal to surface
$=$ momentum flux!
What is the total momentum in D ?
ρ_{n} = momentum/volume
Thus accumulation is:

$$
\int_{D} \frac{\partial}{\partial t}(\rho u) Q v
$$

Combining these terms:

$$
\int_{0} \frac{\partial(\rho \underset{\sim}{u})}{\partial t} d v+\int_{\partial 0}(\rho u) u \sim n Q A
$$

$$
=\sum F \text { (sum of forces }
$$

on Contro(Volume)
ok, what are the forces? we looked at these before!
Body forces (eng., gravity)

$$
F_{g}=\int_{0} \rho g Q V
$$

Surface Forces
These include normal forces (e.g. pressure) and shear forces
The latter results from "dragging" along (tangential to) a surface!

$$
\begin{align*}
& \int_{D} \frac{\partial(\rho d)}{\partial t} Q V+\int_{\partial D}(\beta \underset{\sim}{p}) \underset{\sim}{u} \cdot n Q A= \tag{i}\\
& \int_{D} \rho g Q V+\int_{\partial D} \underset{\sim}{f} Q A
\end{align*}
$$

How can we use this? \Rightarrow We can calculate the force on an elbow!
 inlet \& outlet pressures as well as the flow rate. We want to know the force exerted by the fluid on the bend (section of pipe) which is (-) force exerted by bend on fluid!

Let f be all surface forces at a point.
Thus:

$$
\sum F=\int_{D} \rho g d v+\int_{\partial D} f Q A
$$

$$
f \equiv \frac{\text { force }}{\text { area }} \equiv \text { surface stress }
$$

Recall from our earlier exambation of hydrostatics that:

$$
\underline{\sim}=\sigma \cdot n
$$

where σ is the stress tensor well use this in a bit.
For now we have:
(80)

We have the momentum balance:

$$
\begin{aligned}
& \int_{D} \rho g Q V+\int_{\partial 0} f \& A=\int_{\partial D}(\rho u) d \cdot n Q A \\
& \text { We assume we are at }
\end{aligned}
$$ Steady State, thus $\frac{\partial}{\partial t} \equiv 0$

If the fluid is incompressible

$$
\int_{D} \rho g Q V=\rho g V_{D} \equiv \begin{gathered}
\text { weight of } \\
\text { water }
\end{gathered}
$$

Now for the surface integrals:
We divide up $D \Delta$ into. A_{i}, A_{e}, A_{p}, e.9,

(81)

Let's look at the convection term:

$$
\begin{aligned}
& \int_{\partial D}(\rho \underset{\sim}{u}) \underset{\sim}{u} \cdot n Q A=\int_{A_{i}}(\rho \underline{u}) \underset{\sim}{u} \cdot n d A \\
& +\int_{A_{p}}(\rho \underset{\sim}{u}) \underset{\sim}{u} \cdot n Q A+\int_{A_{e}}(\rho u) \underset{\sim}{u} \cdot n Q A
\end{aligned}
$$

Over the pipe itself (A_{p}) $\quad \underset{\sim}{u} n=0$
(no flow through the pipe), thus we just get integrals over inlet \hat{l} exit! \Rightarrow Unlike mass conservation, we can't evaluate integrals exactly without knowing the velocity profile ($u(w)$) across the pipe in addition to the to tail flow rate Q
This is because the integral is non-linear in u!

This is because non-uniformities in $\underset{\sim}{u}$ increase the momentum flux over a uniform velocity! \Rightarrow The average of the square is always greater than or equal to the square of the average!

Let $\langle u\rangle=\frac{1}{A} \int_{A} u Q A$
Let $\Delta u=u-\langle u\rangle$
So: $\int_{A} u^{2} Q A=\int_{A}(\Delta u+\langle u\rangle)^{2} d A$
$=\int_{A}\langle u\rangle^{2} Q A+\int_{A}(\Delta u)^{2} Q A$

$$
+2\langle u\rangle \int_{L^{1 / A}}^{A} \not A u d A
$$

To estimate the farce we shall assume we have uniform flow Let's take $\left.u\right|_{A_{i}} \approx \frac{Q}{A_{i}} \hat{e}_{x}$ Now at the inlet $\left.\quad n\right|_{A_{i}}=-\hat{e}_{x}$ Thus:

$$
\int_{A_{i}}(\rho \underset{\sim}{u}) \underset{\sim}{u} \eta A \xlongequal[\sim]{\sim} \int_{A_{i}}\left(\frac{Q}{A_{i}} e_{x}\right)\left(\frac{Q}{A_{i}} \hat{e}_{x}\left(-\hat{e}_{x}\right)\right)
$$

$$
\hat{e}_{x} \cdot\left(-\hat{e}_{x}\right)=-1
$$

Soweget:
$=-\rho \frac{Q^{2}}{A_{i}} \hat{e}_{x} \quad$ which is negative because momentum is going into CU!
Note that this underestimates the momentum flux (ingeneral).

Since $\int_{A}(\Delta u)^{2} d A \geq 0$
we have:

$$
\int_{A} \rho u^{2} Q A \geq \int_{A} \rho\left(\frac{Q}{A}\right)^{2} Q A
$$

So we underestimate the momentum flux. For high Re (turbulence) the profile is nearly flat (uniform) soit's not a bigerrar!
Over the exit we have the same integral:

$$
\sim_{A_{e}} \stackrel{Q}{\underline{A}} \hat{A}_{e} \hat{e}_{\theta}, \quad \hat{e}_{\theta}=\cos \theta \hat{E}_{x}+\sin \theta \hat{e}_{y}
$$

The unit normal: $\left.n\right|_{A_{e}}=\hat{e}_{\theta}$
So:

$$
\int_{A e} f_{\sim}^{u}(u, n) Q A=\rho \frac{Q^{2}}{A_{e}} \hat{e}_{0}
$$

Putting the se together:

$$
\int_{\partial 0}(\rho \underline{\sim})(\underline{\sim} \cdot \Omega) Q A \approx \rho Q^{2}\left(-\frac{\hat{e}_{x}}{A_{i}}+\frac{\hat{e}_{\theta}}{A_{e}}\right)
$$

Note that since $\hat{e}_{x} \neq \hat{e}_{\theta}$ the force will be non-zero even if $A_{i} \not \not A_{c}$ A force is required to deflect a stream!
Ok, now we look at the surface forces:

$$
\int_{\partial D} f Q A \equiv \int_{A_{i}}^{f} \underset{\sim}{f} Q A+\int_{A_{e}}^{f} d A+\int_{A_{p}}^{f} Q A
$$

The last one is what were after! Let's Qu the first term:

$$
\begin{aligned}
& \int_{A_{i}} f \otimes A \equiv \text { Force exerted by fluid } \\
\text { outside CV or } & \text { cV }
\end{aligned}
$$

integrated over A_{i}
Putting it all together:

$$
\begin{align*}
& \frac{Q}{d t} \int_{D} \rho \underset{\sim}{u} Q v+\int_{\partial \Delta}(\rho \underset{\sim}{u}) \underset{\sim}{u} \cdot \underset{\sim}{n} d A \tag{87}\\
& =\int_{0} \rho \underset{\sim}{g} Q v+\int_{\partial D} \underset{d}{f} d A
\end{align*}
$$

$$
\begin{aligned}
& \rho Q^{2}\left(\frac{-\hat{e}_{x}}{A_{i}}+\frac{\hat{e}_{\theta}}{A_{e}}\right)=-\rho g V_{D} \hat{e}_{\sim}^{\hat{e}_{y}} \\
& +P_{i} A_{i}{\underset{\sim}{e}}_{x}-P_{e} A_{e}{\underset{\sim}{\hat{e}}}_{e}+{\underset{\sim}{P}}_{P}
\end{aligned}
$$

or, rearranging,

$$
\begin{aligned}
{\underset{\sim}{P}}= & \rho Q^{2}\left(\frac{\cdot \hat{e}_{x}}{\hat{A}_{i}}+\frac{\hat{e}_{\theta}}{A_{e}}\right)+\rho g V_{0}{\underset{e}{y}}_{\hat{e}_{y}} \\
& -P_{i} A_{i} \hat{e}_{x}+P_{e} A_{e} \hat{e}_{\theta}
\end{aligned}
$$

This is a vector equation: We can look at the x component:

This force is complex, but $\frac{86}{t}$ we will approximate it by assuming t's just the normal force:

$$
\left.\stackrel{f}{\sim}\right|_{A_{i}} \approx p_{i} \hat{e}_{x}
$$

30 :

$$
\int \underset{A_{i}}{f} Q A \cong P_{i} A_{i} \hat{e}_{x}
$$

$\int_{A_{e}} f \& A \cong-P_{e} A_{e} \hat{e}_{\sim} \quad$ (force is in - E. direction)

Finally, $\int_{A_{p}} f Q A \equiv F_{P}$, force exerted by the pipe on the fluid!

$$
\begin{align*}
& \left(F_{p}\right)_{x}=F_{\sim} p_{i} \cdot \hat{e}_{x}=\rho G^{2}\left(\frac{-1}{A_{i}}+\frac{\cos \theta}{A_{e}}\right) \tag{88}\\
& -P_{i} A_{i}+P_{e} A_{e} \cos \theta
\end{align*}
$$

or the y-component:

$$
\begin{aligned}
\left(\underline{F}_{p}\right)_{y}= & F_{p} \cdot \hat{\varepsilon}_{y}=\rho Q^{2}\left(-\frac{\sin \theta}{A_{e}}\right) \\
& +\rho g V_{D}-F_{e} A_{e} \sin \theta
\end{aligned}
$$

These forces could be used to determine the required bracing, for example!

Let's work through another example: water jet pushing a car. Suppose we have a car with a plate sticking up as below:

A jet of water of diameter D \& velocity U_{j} impinges on the plate, What is the force on the plate as a function of U ? What is the velocity of the car as a function of time?

To solve, look at problem in
a reference frame incurve with the plate!

Thus:

$$
F_{x}=A\left(\rho\left(u_{j}-U\right)\right)\left(\begin{array}{c}
\text { A } \\
\text { A } \\
\text { negative } \\
\text { because fluid }
\end{array}\right.
$$

So the force on the fluid is entering
is just

$$
F_{x}=-A_{\rho}\left(U_{j}-U\right)^{2}
$$

The force on the car is the negative of this!
Now since $F=M \frac{Q U}{Q t}$
we have:

$$
\frac{Q U}{d t}=\frac{A S}{M}\left(U-U_{j}\right)^{2}
$$

we can solve this:
$\frac{1}{\left(U-U_{j}\right)^{2}} \frac{Q U}{d t}=\frac{A \rho}{M}$

(90)

Water velocity in this frame is now $\left(U_{j}-U\right)$, not U_{j} !
We draw the CV as depicted.
we have

$$
\Sigma F=\int_{\partial \Delta}(\rho u) u \cdot n d A
$$

We are interested in the x-component of this force. Since the fluid leaves ∂D with a velocity only in the y-direction, we just worry about the inlet

$$
\begin{align*}
& \begin{array}{l}
\frac{Q}{d t}\left(\frac{1}{U-U_{j}}\right)=-\frac{A \rho}{M} \\
\frac{1}{U-U_{j}}=-\frac{A \rho}{M} t+C \\
\text { Let }\left.U\right|_{t=0}=0 \\
\therefore C=-\frac{1}{U_{j}} \\
\text { So } \frac{1}{U-U_{j}}=-\frac{A \rho t}{M}-\frac{1}{U_{j}} \\
\frac{U}{U_{j}}=\frac{1-\frac{1 \rho U_{j} t}{M}}{\frac{A \rho U_{j} t+1}{1+\frac{A \rho U_{j} t}{M}}} \\
\text { So U asymptotically approaches } U_{j} \\
\text { as we would expect. }
\end{array} \tag{92}
\end{align*}
$$

We canget a much higher force \& acceleration if we modify the plate so it sends water bate out in the reverse Question

In the moving reference frame we still have:

$$
\sum F=\int_{\infty}(\underline{\sim}) u n n_{n} Q
$$

but now u_{x} is reversed for the fluid leaving ∂D rather than just zero. This Roubles the momentum transfer!

Let's anally zee the Alton Wheel:

we wish to determine the torque on The wheel, and the rate of work (Power) transfer \hat{Q} to it!

- First for the torque:

$$
\mathscr{N}=E \times B
$$

The farce is just the change in momention 'of the stream: Fo get this, we need the - exit velocity Oe. Wis have the two.. cases for different vanes: flat plate \& reflection:

$$
F_{x}=-2 A g\left(U_{j}-U\right)^{2}
$$

(force on fluid)
So:

$$
\frac{Q U}{d t}=2 \frac{A \rho}{M}(U-U j)^{2}
$$

or

$$
\frac{U}{U_{j}}=\frac{2 \frac{A \rho U_{j} t}{M}}{1+2 \frac{A \rho U_{j} t}{M}}
$$

The asymptotic velocity is still U_{j},
it just gets there twice as fast!
This effect is why inf elton wheel (a type of turbine) the buckets are curved - more efficient momentum S energy transfer

$$
\begin{equation*}
\therefore F_{x}=Q\left[\left(\rho (\mathcal { N } _ { 1 } - \rho U _ { e }) \left(-\hat{e}_{x}\right.\right.\right. \tag{AB}
\end{equation*}
$$

1 1 vol flow rate
metravivilin
force on vane (neg of force on -fluid)
Only the x-component of the force
contributes to the torque t (ers to R)
On, for the flat plate we have:

$$
-\frac{U_{J}}{\square} \rightarrow U_{b} \quad U_{e}=\left.U_{x}\right|_{x}=\left.(\Omega \times R)\right|_{x}
$$

Thus for this case

$$
F_{x}=Q\left[\left(\rho U_{j}-\rho \sqrt{ } R\right)\right]
$$

The torque is . $F_{*} R$. What about the pouter?

$$
\begin{aligned}
& P=M \cdot \Omega 2 F_{x} R \Omega \\
& \left.M R \Omega\left(\rho U_{j}-\rho \Omega R\right)\right]
\end{aligned}
$$

Note that the torque is maxed
When $\Omega=0$ but the power is zero
What is the value of $\sqrt{2}$ for which
the power is max
$\frac{\partial P}{\partial \Omega}=0=Q R\left[\rho U_{j}-2 \rho \Omega_{\mu} R\right]$
$\therefore \quad \therefore U_{j}=2 \rho \Omega_{m} R$
or $\Omega_{m} R=\frac{U_{i}}{2}$
so the vanes move with half the velocity
$\therefore P_{m}=Q \frac{U_{i}}{2}\left[\left(\rho U_{i}-\frac{T}{2} \rho U_{j}\right)\right]$
$\because \quad=\frac{1}{2} Q\left(\frac{1}{2} \beta U_{j}^{2}\right)$ which is half the
total kinetic energy of the stream!
Now for curved buckets:

$\Leftrightarrow U_{e}=U_{b}-\left(u_{j}-U_{b}\right)$
Microscopic Momentum Balances
So far we've done our calculations by assuming velocity profiles were flat (Uniform). This, in general, is not correct! To get it right, we need to calculate the velocity profile. We need to develop the equation which governs the velocity every where in the fluid.

To do this, we need to reexamine the stress tenser $\underset{\sim}{\sigma}$
Look at the flow between parallel plates:

This yields a force:
$F_{x}=Q\left[\left(\rho U_{j}-\rho U_{e}\right)\right]$
$T=Q\left[\rho U_{j}+\rho U_{j}-2 \rho U_{t}\right]$
$\cdots=2\left[\rho U_{j}-\rho \Omega R\right]$
Whish is twice the force (and torque
and power) of the flat vanes.
At the of timum (same) rotation sate, we lave:
$\therefore P_{m}=Q\left(\frac{1}{2} \rho U_{j}^{2}\right)$
or all the kinetic energy of the jet
is extracted. A real water whee would
Tie between these values.

Fluid resists deformation so a force F is required to keep the plate in motion!
The magnitude of the force is proportional to the Area, thus we loot at $F / A \Rightarrow$ shear stress at the wall

Shear stress is transmitted through the fluid to the lower plate! Shear stress \equiv momentum flux
For this geometry each layer of fluid exerts the same force on the layer below it! The shear stress is constant, otherwise momentum would accumulate in the interior!

Recall the definition of $\frac{97}{\sigma_{i j}}$;
$\sigma_{i j} \equiv F / A$ exerted by fluid of greater i on fluid of lesser i in j direction!

In this case we have

$$
\sigma_{y x}=F / A
$$

Which, for this geometry, is constant: What are the properties of $\sigma_{i j}$?
\Rightarrow The stress tensor is symmetric!

$$
\sigma_{i j}=\sigma_{j i}
$$

or

$$
\underset{\approx}{\sigma}=\sigma^{T}
$$

This is really counter intuitive!
In this flow

(99)?

$$
\begin{aligned}
& \underset{\sim}{M}=\sum \sim x \underset{\sim}{\sim}=-\frac{\Delta y}{2} \sigma_{y x}(\Delta z \Delta x) \hat{e}_{z} \\
& -\frac{\Delta y}{2} \sigma_{y x}(\Delta z \Delta x) \hat{e}_{z}+\frac{\Delta x}{2} \sigma_{x y}(\Delta x \Delta y) \hat{e}_{\sim} \\
& +\frac{\Delta x}{2} \sigma_{x y} \Delta z \Delta y \hat{e}_{z} \\
& =\Delta x \Delta y \Delta z \hat{e}_{z}\left(\sigma_{x y}-\sigma_{y x}\right)
\end{aligned}
$$

We have, just like $F=m a$, a relation for the angular acceleration of any object:

$$
\begin{aligned}
& \quad \frac{Q \sqrt{2}}{d t}=\frac{\sim}{I} \sim \text { moment of inertia } \\
& I=\int_{0} \rho s^{2} Q V=\frac{\Delta x \Delta y \Delta z}{12} \rho\left(\Delta x^{2}+\Delta y^{2}\right) \\
& \text { distance from } \\
& \text { axis of rotation }
\end{aligned}
$$

$$
\sigma_{y x}=\sigma_{x y} ? ?
$$

Let's prove this! Consider a fluid element:

$$
\begin{aligned}
& \underset{\sim}{{\underset{\sim}{1}}} \equiv \sigma_{y x}(\Delta z \Delta x) \hat{e}_{x} \\
& {\underset{\sim}{z}}_{2} \equiv-\sigma_{y x}(\Delta z \Delta x) \hat{e}_{x} \\
& \underset{\sim}{F_{3}} \equiv-\sigma_{x y}(\Delta z \Delta y) \hat{e}_{y} \\
& {\underset{\sim}{F}}_{y} \equiv \sigma_{x y}(\Delta z \Delta y) \hat{e}_{y}
\end{aligned}
$$

Now we have $\Sigma \underset{\sim}{F}=0$ because element isn't accelerating
(IC)
Thus:

$$
\frac{\partial \Omega}{\partial t}=\frac{\tilde{\sim}}{I}=\frac{12 \hat{e}_{z}}{\rho} \frac{\left(\sigma_{x y}-\sigma_{y x}\right)}{\left(\Delta x^{2}+\Delta y^{2}\right)}
$$

as $\Delta x, \Delta y \rightarrow 0$ any angular acceleration must be finite, thus we conclude $\sigma_{x y}=\sigma_{7 x}$!

There is an ex caption to this: For very weird systemesyou can get a body torque i torque applied uniformly through a fluid. This would make the stress tensor a ssymetric! How can you do this? If you have an $E R$ (electro-heological) fluid in a rotation wiabunch + dipoles. fluid in a rotating electric or magnetic field you get this effect. Don't Worry About It: For all
normal by stems, the stress tensor is symmetric!!
Another useful property:

For any surface w/ normal $\underset{\sim}{n}$, the stress (force/area) exerted by surroundings on fluid is just:

$$
\underset{\sim}{f}=\underset{\sim}{\sigma}
$$

We can use this in our momentum balance equation! Recall:

$\left\{\begin{array}{l}\text { net momentum put } \\ \text { by convection }\end{array}\right\}+\{$ Accumulation $\}$
$=\{$ body forces $\}+\{$ surfacefores $\}$
103
we can simplify this by differentiation
by parts:

$$
\nabla \cdot(\rho \underset{\sim}{u} u) \equiv \rho \underline{u} \cdot \nabla \underset{\sim}{u}+\underset{\sim}{u} \nabla \cdot(\rho \underline{w})
$$

$$
\frac{\partial(\rho \mu)}{\partial t}=u \frac{\partial \rho}{\partial t}+\rho \frac{\partial u}{\partial t}
$$

Substituting in:

$$
\begin{aligned}
& \rho \frac{\partial u}{\partial t}+\rho \underset{\sim}{u} \cdot \nabla u+u\left[\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho u)\right] \\
& =\nabla \cdot \underset{\sim}{\sigma}+\rho \underline{\sim}
\end{aligned}
$$

Now from conservation of mass:

$$
\frac{\partial \rho}{\partial t}=-\nabla \cdot(\rho q)!
$$

thus the term in brackets is zero
So: $\rho\left[\frac{\partial \mu}{\partial \underline{t}}+\underset{\sim}{u} \cdot \dot{\sim} \dot{\sim}\right]=\underset{\sim}{\nabla} \cdot \tilde{\sim}+\rho g$
or $\rho \frac{D \mu}{D t}=\underset{\sim}{\nabla} \cdot \underset{\sim}{\sigma}+\rho \underline{\sim}$

So:
102
$\int_{\partial D} \rho \underline{\sim}(\underline{u} \cdot n) d A+\int_{D} \frac{\partial}{\partial t}(\rho \underline{u}) d V$
$=\int_{D} \rho \underset{\sim}{ } d V+\int_{\partial D} \underset{\sim}{\sigma} \cdot n d A$
We apply the divergence theorem:
$\int_{D} \underset{\sim}{v}(\rho \underset{\sim}{u} u) d v+\int_{D} \frac{\partial(\rho u)}{\partial t} d V$
$=\int_{D} \tau q d V+\int_{D}^{D} \underset{\sim}{\sigma} d V$
or, since D is arbitrary:

$$
\begin{gathered}
\nabla \cdot(\rho \underset{\sim}{u} \underset{\sim}{u})+\frac{\partial(\rho u)}{\partial t} \\
\quad=\rho \underline{\sim}+\nabla \cdot \underset{\sim}{\sigma}
\end{gathered}
$$

We can also write this in index notation.

$$
\rho\left(\frac{\partial u_{i}}{\partial t}+u_{j} \frac{\partial u_{i}}{\partial x_{j}}\right)=\frac{\partial \sigma_{i j}}{\partial x_{j}}+\rho g_{i}
$$

Note that each term has only
one unrepealed index, and that
they are all the same!
To proceed, we look at the total stress $\sigma_{i j}$, we
define

$$
\sigma_{i j}=-p \delta_{i j}+\tau_{i j}
$$

where $p=-\frac{1}{3}\left(\sigma_{11}+\sigma_{22}+\sigma_{53}\right)$
is the procurers. - the average of the normal stress in the thee e or thogomal directions (well) the negative of this ans way)

Other ways of saying this: 005

$$
p=-\frac{1}{3} \sigma_{i j} \sigma_{i j}=-\frac{1}{3} \sigma_{i i}
$$

where $\sigma_{i i} \equiv$ trace $(\underset{\sim}{\sigma})$
$\tau_{i j}$ is known as the deviatoric
stress and arises Que to
fluidmolion. It is identically
zero for isotropic fluids at
rest (egg., hydrostatics)
What are the properties of $\tau_{i j} ?$?
\Rightarrow since $\sigma_{i j}$ is symmetric, so
is ria
\Rightarrow By definition $z_{i j}$ is traceless
4.9.)

$$
\begin{aligned}
& \tau_{i j}=\sigma_{i j}+j \delta_{i j} \\
& r_{i j} \delta_{i j}=\sigma_{i j} \delta_{i j}+p \delta_{i j} \delta_{i j} \\
& \tau_{i i}=\sigma_{i i}+3 p=0
\end{aligned}
$$

we cangeneralize this obit!
Remember that τ is symmetric!
Thus $r_{y x}=\tau_{x y}=\mu\left(\frac{\partial u_{x}}{\partial y}+\frac{\partial u_{y}}{\partial x}\right)$
Actually, we san generalize this still further. If $z_{i j}$ is propor tionial to the rate of strain tensor $\frac{\partial u_{i}}{\partial x_{j}}$, we have the general relation:

$$
\tau_{i j}=A_{i \text { ike }} \frac{\partial u_{k}}{\partial x_{k}}
$$

where $A_{i j k e}$ is a fourth order tensor. We have three restrictions on Aijke. First, if the fluid is isotropic, then $A_{i j k e}$ must also be isotropic (it's a material property).
$\Rightarrow \gamma_{i j}$ arises from the deformation of a fluid!

As an example, consider flow
between two parallel plates:

In this geometry, $\tau_{y x}=F / A$ Experimentally, we find:

$$
F / A=\mu \frac{U}{h}
$$

where μ is the fluid viscosity!
Now we also have:

$$
\frac{U}{h}=\frac{Q u x}{D y} \text { (inca rprofile) }
$$

Thus we get Newton's Law of Viscosity:

$$
\tau_{y x}=\mu \frac{d u_{x}}{d y}
$$

Thus:

(108)

$A_{i j k \ell}=\lambda_{1} \delta_{i j} \delta_{k \ell}+\lambda_{2} \delta_{i k} \delta_{j \ell}$

$$
+\lambda_{3} \delta_{i k} \delta_{j k}
$$

secund we know that $\underset{\approx}{Z}$ is
symmetric, egg. that $\tau_{i j}=\tau_{\text {si }}$
This requires $A_{i j k l}=A_{j i k e}$ or that $\lambda_{2}=\lambda_{3}$
Finally, we know that $\underset{\sim}{\mathcal{Y}}$ is
traceless, e.g. that $\tau_{i j} \delta_{i j}=0$
This requires $\delta_{i j} A_{i j k e}=0$
Plugging this in, we get $\lambda_{1}=-\frac{2}{3} \lambda_{2}$ Thus:
$A_{i j k l} \equiv \lambda_{2}\left[\delta_{i k} \delta_{j \ell}+\delta_{i \ell} \delta_{j k}-\frac{2}{3} \delta_{i j} \delta_{k l}\right]$
or, asit's usually written:
(109)
$\tau_{i j}=\mu\left(\frac{\partial u_{i}}{\partial x_{i}}+\frac{\partial u_{j}}{\partial x_{i}}-\frac{2}{3} \delta_{i j} \underset{\sim}{\nabla \cdot u}\right)$
So we see that this complex expression for the shear stress arises naturally from the assumptions of linearity, isotropy, and the definition of the pressure ($z_{i i}=0$).

For more complex fluids the stressstrain relation is aloft messier! The study of such relations is the field of rheology.

For an incompressible fluid $\nabla \cdot 40$, thus

$$
\tau_{i j}=\mu\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)
$$

we can plug this in:
in compressible Newtonian (III) Fluids with constant viscosity (o rat least not a function of position!). If any of these assumptions are not valid, the equations need to be modified! Fortunately, they woke for most chem, eng. problems! Let's look at the equation term by term:
$\rho \frac{\partial u}{\partial t} \Rightarrow$ time dependent accumulation $\rho u \cdot \nabla u \Rightarrow$ convection of momentum $-\nabla P \Rightarrow$ Gradients in the pressure act as a source or singe of momention $\mu \nabla \nabla_{\sim}^{2} \Rightarrow$ viscous Diffusion of momentum

$$
\begin{aligned}
& \rho\left(\frac{\partial u_{i}}{\partial t}+u_{j} \frac{\partial u_{i}}{\partial x_{j}}\right)=\frac{\partial \sigma_{i j}}{\partial x_{j}}+\rho g_{i} \\
& \sigma_{i j}=-p \delta_{i j}+\gamma_{i j} \\
& \text { Thus: } \\
& \rho\left(\frac{\partial u_{i}}{\partial t}+u_{j} \frac{\partial u_{i}}{\partial x_{j}}\right)=-\frac{\partial p}{\partial x_{i}}+\frac{\partial x_{i j}}{\partial x_{j}}+\rho g_{i}
\end{aligned}
$$

but: (for mempressitle fluids)
$\frac{\partial \tau_{i j}}{\partial x_{j}}=\mu \frac{\partial}{\partial x_{j}}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)$

So
$s\left(\frac{\partial u_{i}}{\partial t}+u_{j} \frac{\partial u_{i}}{\partial x_{j}}\right)=-\frac{\partial P}{\partial x_{i}}+\mu^{\frac{\partial^{2}}{} u_{i}} \partial x_{j}^{2}+\rho g_{i}$
$\rho\left(\frac{\partial u}{\partial t}+u \cdot \underset{\sim}{\nabla} \underset{\sim}{u}\right)=-\nabla P+\mu \nabla^{2} \underset{\sim}{u}+\rho \underline{\sim}$ which are known as the Navier-Stotars equations. They are valid for
(112)
$\begin{aligned} & \rho g \Rightarrow \text { Gravitational (body force) } \\ & \text { source of momentum }\end{aligned}$
Try to build up a physical picture
of earth of the physical mechanisms
behind these terms! such an understanding will help you determine which terms are important in any physical problems!
$=$ OF, now let's apply the se equations to the simplest flow problem:

Plane Counts Flow

We assume an incompressible, Newtonian Fluid with constant viscosity, thus
we have the equations
$\underset{\sim}{\nabla} \cdot \underset{\sim}{u}=0$
$\rho\left(\frac{\partial u}{\partial t}+\underset{\sim}{u} \cdot \nabla \underset{\sim}{u}\right)=-\nabla P P+\mu \nabla^{2} \underset{\sim}{u}+\rho g$
We also need boundary conditions
$\left.u\right|_{y=0}=0 \quad$ (all 3 components)
$\left.\underset{\sim}{u}\right|_{y=h}=U_{0}{\underset{\sim}{e}}_{x} \quad \begin{gathered}y \& z \text { components } \\ \text { are zero })\end{gathered}$
Now we start throwing out terns.
we anticipate that the flow
is only in the x-direction, thus
$u_{y}=u_{z}=0$
From continuity:

$$
\frac{\partial u_{x}}{\partial x}+\frac{\partial u_{y}}{\partial y}+\frac{\partial u_{t}}{\partial / z}=0
$$

(115)
we take $\underline{g}=-9 \underline{e} y$
(not in x-direction)
We assume flow is at steady.
state, so $\frac{\partial}{\partial E}=0$
Otc, what's left??

$$
\begin{aligned}
& \text { C.E. } \frac{\partial u_{x}}{\partial x}+\frac{\partial u_{y}}{\partial y}+\frac{\partial u_{z}}{\partial z}=0 \\
& \text { so } \frac{\partial u_{x}}{\partial x}=0 \\
& z-\operatorname{mom} t \operatorname{tum} \\
& \rho\left(\frac{\partial u_{z}}{\partial t}+u_{x} \frac{\partial u_{z}}{\partial x}+u_{y} \frac{\partial u_{z}}{\partial y}+u_{z} \frac{\partial u_{z}^{\prime}}{\partial z}\right)^{0} \\
& =-\frac{\partial p}{\partial z}+\mu \nabla_{t}^{2} u_{z}+s y_{z}
\end{aligned}
$$

So $\frac{\partial P}{\partial z}=0$ (nopressuregradient in \vec{z}-direction)

Thus $\frac{\partial u_{x}}{\partial x}=0$
\Rightarrow There is no change in the
velocity in the flow direction
for unidirectrodel flow.
\Rightarrow The converse: If the velocity'
changes in the flow direction,
then it cannot be uni-divectional!
(e.g., if $\frac{\partial u_{x}}{\partial x} \neq 0$ then u_{y} or
u_{z} must be now-zero somewhere)
we assume that the flowis
2-D (no change in z-direction)
thus $\frac{\partial}{\partial z}=0$
We assume that there are no
applied pressure gradients,

$$
\text { thus } \quad \frac{\partial P}{\partial x}=0
$$

$=-\frac{\partial P}{\partial y}+\mu \nabla^{2} \psi_{y}^{\prime}+\rho g_{y}$
So $\frac{\partial p}{\partial y}=s q_{y} \equiv-\$ 9$
Hence $\begin{aligned} P= & f(x)-s 9 y \\ & \rightarrow \text { actually, will be } \\ & \text { a cst since no gradient } \\ & \text { is applied in } x \text { - direction }\end{aligned}$
Just ha drostatic pressure variation!
Now for x-momentum (thesis the
important cree, because the flow is in the x-direction!)
$S\left[\frac{\partial u_{x}}{\partial t}+u_{x} \frac{\partial u_{x}}{\partial x}+u_{y} \frac{\partial u_{x}}{\partial y}+u_{z} \frac{\partial u_{x}}{\partial z}\right]$
$=-\frac{\partial P}{\partial x}+\mu\left[\frac{\partial^{2} u_{x}}{\partial x^{2}}+\frac{\partial^{2} u_{x}}{\partial y^{2}}+\frac{\partial^{2} u_{x}}{\partial z^{2}}\right]+\rho g_{x}$
what survives? $u_{y} \& u_{z}=0$,
so those convective terms are.
zero!
System at 5.5 , so $\frac{\partial u_{x}}{\partial t}=0$
From $C E, \frac{\partial u_{x}}{\partial x}=0$, so $u_{x} \frac{\partial u_{x}}{\partial x}=0$,
lite wise $\frac{-\frac{u_{x}}{\partial x^{2}}}{}=0$ (mRHS)
No variation in z-direction, $=0$

$$
\frac{\partial^{2} u_{x}}{\partial z^{2}}=0
$$

No gravity in x-direction, so

$$
s 9_{x}=0
$$

This is called simple shear flow or plane couette flow. It's used to study the rheo ology of fluids, and is usually produce l in the narrow gap between concentric rotating cylinders:

By rotating the outer cylinder you deform the fluid in the gap and exert a torque on the inner cylinder. This torque is used to calculate the viscosity!

No pressure gradient (applied)
in x-direction, so
$-\frac{\partial P}{\partial x}=0$
What's left?

$$
\begin{aligned}
\frac{\partial^{2} u_{x}}{\partial y^{2}}=0,\left.\quad u_{x}\right|_{y}=0 \\
y=0 \\
\left.u_{x}\right|_{y}=h
\end{aligned}
$$

This is easily solved - just integrate. twice!

$$
\begin{gathered}
u_{x}=A y+B \\
\left.u_{x}\right|_{y=0}=0 \therefore B=0 \\
\left.u_{x}\right|_{y=h}=U_{0} \quad \therefore A=\frac{U_{0}}{h} \\
0.0 \quad u_{x}=U_{0} \frac{y}{h}
\end{gathered}
$$

What's this relationship??
\Rightarrow if $A B_{R} \ll 1$ we can ignore
curvature effects:
$\xrightarrow[\text { This } u_{x} \approx U_{0} \frac{y}{\Delta R}]{ } U_{0} \approx \Omega_{R}$
The stress on the inner cylimeter
is: $\tau_{y x}=\mu \frac{\partial u_{x}}{\partial y} \cong \frac{\mu U_{0}}{\Delta R}$
The torque is:

$$
M \cong\left(z_{y x}\right)(R)(2 \pi R H)
$$

where H is the height in the z-Qirection. Thus:

$$
M \cong \mu 2 \pi \frac{\Omega R^{3} H}{\Delta R} \text { for } \Delta R \ll 1
$$

which can be used to estimate μ

Another example: flow down an inclines plane

If the fluid is viscous it will rapidly rearh some constant thickuess δ, and some steady velocity profile. What is the relationstip between $Q / w, u, \delta, \rho, \mu, g$, and θ ?? Justapply the NavierStokes equations!

First we choose a coordinate system aligned with the geometry! important, crossing out those you expect to be zero. If you can satisfy all B, C.'s with the simplified equation, you got it right! This is strictly true only for linear problems, as non-linear equations often have multiple solutions! Even there, it's a gooQ way to start.
tnow Each Term Plysically
Ok, we expect unidirection al flow.
Thus:

$$
\begin{aligned}
& 0=-\frac{\partial p}{\partial y}+\rho g_{y} \\
& 0=-\frac{\partial p}{\partial x}+\mu \nabla^{2} u_{x}+\rho g_{x}
\end{aligned}
$$

Let x be the divection along the plate, and y be normal to the plate w $y=0$ at the plate:

Thus $g=-g \cos \theta \hat{e}_{2}+g \sin \theta \hat{e}_{x}$ Again, we have unidirectional flow in the x - binection. We expect there will be no flow in the y-Qrection - just a hydrostatic pressure variation

Note : to solve these sorts of problems, look at it physically \& keep those terms which appear to
Recall that for thin Qiveintronal
incompressible flow

$$
\frac{\partial u_{x}}{\partial x}=0
$$

There is ne variation in the z \&irection (2-Dflow); thus

$$
\nabla^{2} u_{x}=\frac{\partial^{2} u_{x}}{\partial y^{2}}
$$

Now to solve: First we get the pressure distribution.

$$
\begin{gathered}
g_{y}=-g \cos \theta \\
\therefore \quad f=f(x)-\rho g y \cos \theta \\
\text { but }\left.P\right|_{y}=p_{0} \text { (atrospheric) } \\
\text { Thus } P=P_{0}+\rho g(\delta-y) \cos \theta
\end{gathered}
$$

Note that $\frac{\partial p}{\partial x}=0$ s. $\frac{125}{2}$
Disappears from the x-momentum equation!

$$
0=-\frac{\partial V}{\partial x}+\mu \frac{\partial^{2} u_{x}}{\partial y^{2}}+\rho g \sin \theta
$$

$$
\text { so } \frac{Q^{2} u_{x}}{\partial y^{2}}=-\frac{s 9}{\mu} \sin \theta
$$

Integration g:

$$
u_{x}=-\frac{1}{2} y^{2} \frac{\rho g}{\mu} \sin \theta+A_{y}+B
$$

We now determine the unknown constant's from the B, C.'s What are they?

1) No-slip condition at $y=0$!
plate isn't moving at $y=0$, so
neither is the fluid!.
we also want to look at the to al flow rate?

$$
\begin{aligned}
Q & =\int_{A} u \cdot n d A \\
& =w \int_{0}^{\delta} u_{x} d y \\
& =\frac{w \rho g \delta^{3}}{\mu} \sin \theta\left[\frac{1}{2}-\frac{1}{6}\right] \\
& =\frac{1}{3} \frac{w \rho g \delta^{3}}{\mu} \sin \theta
\end{aligned}
$$

So Q varies as δ^{3}. If we knew Q (or $Q / w)$, this relation would Q give us δ.

This equation will not hold if s is too large (or μ too small). What happens is the flow field becomes unstable and ripples form!
$\left.u_{x}\right|_{y=0}=0$
Thus $B \equiv 0$
2) at $y=\delta$ the shear stress
is zero! The gas (air) over
the fluid doesn't exert any stress
on it, so
$\left.\tau_{y x}\right|_{y=\delta}=\left.\mu \frac{\partial u_{x}}{\partial y}\right|_{y=\delta}=0$
So $A=+\frac{99 \delta}{\mu} \sin \theta$
Thus:

$$
u_{x}=\frac{\rho g \delta^{2}}{\mu} \sin \theta\left(\frac{y}{\delta}-\frac{1}{2}\left(\frac{y}{\delta}\right)^{2}\right)
$$

From this we see that u_{x} varies as δ^{2}, and at $y=\delta$ we have a maxim um $\left(u_{x}\right)_{\text {max }}=\frac{1}{2} \frac{99 \delta^{2}}{\mu} \sin \theta$
This is an example of the leffect of non-linearities! There hare multiple solutions to the full equations where $u_{y} \neq 0$, and where u_{x} and un are functions of time. Such waves have been extensively studied over the past 30 years! In our department Chang is perhaps the leading expert on falling films, while MaCready is the leading expert on instabilities in cocurrent gas-liguil flows where the gas exerts some stress on the interface $\left(\left.\tau_{y x}\right|_{\delta} \neq 0\right)$. These two areas are important in coating flews land pipeline flows.

Another example: Flow through apipe!

Suppose we have an axial pressure gradient (egg., $\frac{\partial P}{\partial z} \neq 0$)
What is the flow profile?
For a given $\mu, \frac{\Delta p}{L}, R$ what
is the flow rate? Again we choose a coordinate system aligned with the boundary: cylindrical coordinates!
Lets solve this: We begin with
the C.E.
$\nabla \cdot \mu=0 \equiv \frac{1}{r} \frac{\partial}{\partial r}\left(r u_{r}\right)+\frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta}+\frac{\partial u_{z}}{\partial z}=0$

So:

$$
\mu \frac{1}{r} \frac{\partial}{\partial r}\left(w \frac{\partial u_{z}}{\partial r}\right)=\frac{\partial p}{\partial z}-\rho g_{z}
$$

Note that there are two possible sources for momentum: pressure gradients or gravity. Both act in exactly the same way! Both (if constant) are uniform sources (or sinks) of momentum in the fluid! Here we take $g_{z}=o_{\text {and }}$ look at the pressure gradient

$$
\text { Let } \left.\frac{\partial P}{\partial Z}=\frac{\Delta P}{L} \quad \begin{array}{c}
\text { (pressure frop/lengl) } \\
\text { (note this is negative }
\end{array}\right)
$$

$$
\text { So } \frac{1}{r} \frac{Q}{Q r}\left(r \frac{Q u_{z}}{Q r}\right)=\frac{1}{\mu} \frac{\Delta P}{L} \equiv s t
$$

We integrate once:

For uni-drectional flow in the
z - direction, $u_{r}=u_{\theta}=0$
Thus $\frac{\partial u_{z}}{\partial z}=0$
The assumption of unidirectional
flow will limit the applicability of our solution! well see how
this works later!
ok, now we solve for the velocity distribution. We forms on the z -
momentum eq'n in cylindrical cord:

$$
\begin{aligned}
& \rho\left(\frac{\partial u_{z}}{\partial t}+y_{r} \frac{\partial u_{z}}{\partial r}+\frac{\mu_{\theta}}{r} \frac{\partial u_{z}}{\partial \theta}+u_{z} \frac{\partial \mu_{t}}{\partial z}\right) \\
& O(s s){ }_{0} \\
& =-\frac{\partial p}{\partial z}+\mu\left[\frac{1}{r} \frac{\partial}{\partial r}\left(\frac{\partial u_{z}}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} \varphi_{z}(c E)}{\partial \theta^{2}}+\frac{\partial^{2} u_{z}}{\partial z^{2}}\right] \\
& \quad+\rho g_{z}
\end{aligned}
$$

(cult. both sides by r before $\frac{(132}{x}+y_{y}$):

$$
r \frac{Q u_{z}}{d r^{r}}=\frac{1}{2} r^{2} \frac{1}{\mu} \frac{A P}{L}+A
$$

$$
\frac{d u_{z}}{d r}=\frac{1}{2} r \frac{1}{\mu} \frac{\Delta P}{L}+\frac{A}{r}
$$

$$
u_{z}=\frac{1}{4} r^{2} \frac{1}{\mu} \frac{\Delta P}{L}+A \ln r+B
$$

Now at $\mu=0 \quad u_{z}$ must be finite
thus: $A \equiv 0$
At $r=R u_{z}=0 \quad$ (no-stip),
thus:
$\begin{aligned} B & =-\frac{1}{4} R^{2} \frac{1}{\mu} \frac{\Delta P}{L} \\ \text { or } u_{z} & =-\frac{1}{4} \frac{R^{2}}{\mu} \frac{\Delta P}{L}\left(1-\frac{N^{2}}{R^{2}}\right)\end{aligned}$
which is a parabola again!
Gravity would yield the same result, just replace $\frac{-\Delta p}{L}$ with ρg_{z} !

What is the total flow rate
$Q=\int_{A} u_{z} d A=\int_{0}^{R} 2 \pi u_{z} r d r$
since it's not a $f^{n}(\theta)$
Integrating:
$Q=2 \pi\left(-\frac{1}{4} \frac{\Delta P}{L} \frac{R^{2}}{\mu}\right) R^{2} \int_{0}^{1}\left(1-r^{*^{2}}\right) r^{*} d r^{*}$
where $r^{*} \equiv r / R$
So:

$$
Q=-\frac{\pi}{8} \frac{\Delta P}{L} \frac{R^{4}}{\mu}
$$

which is known as Poiseuille's Law \& Flow thru a tube is also called Poisenille flow.
ok, what is it good for? It is the basis of the capillary viscometer

$$
\mu=\left(-\frac{\Delta P}{L}\right) \frac{\pi}{8} \frac{R^{4}}{Q}
$$

Physically, this represents $\frac{135}{\text { the ratio }}$ of inertial forces to viscous forces \Rightarrow An alternative interpretation is in terms of characteristic times:
Recall that momentum can move either by convection or diffusion (e.g., the teinematic viscosity). Then

Re is the ratio of the diffusion time to the convection tires:

$$
\operatorname{Re}=\frac{\left(D^{2} / 2\right)}{(D / U)}=\frac{U D}{23}
$$

Reynolds found flow to be unstable for $\frac{U D}{D} \geq 2100$ for tubes. You get different values of Rear for different geometries.

Usually, the Δp is provided by hydrostatic pressure variation: just measure time for fluid to fall beturen two lines! It's an easily calibrated instrument.

What are the limitations on Posenille'r Law? \Rightarrow Assumptive of unidirectional flow!
There are two ways this is violated:
entrance effects $\&$ turbulence
Look at turbulence first: If
flow is too fast, becomes unstable!
Reynolds showed that for a tube the transition is governed by a
Dimensionless Number

$$
R_{e}=\frac{U D}{\nu}
$$

Ok, what about entrance length
effects? \Rightarrow Initially, entering flow profile is (move or less) flat, Q must evolve to parabolic shape. How far down the tube does this take?

The flow evolves due to diffusion

$$
\begin{aligned}
& \text { of momentum, so: } \\
& \qquad t_{D} \sim \frac{R^{2}}{\nu} \begin{array}{c}
\text { distance ovicher } \\
\text { takfusion place }
\end{array}
\end{aligned}
$$

How far does it move during t_{Δ} ?

$$
L \sim t_{\Delta} U \sim \frac{U R^{2}}{\nu} \equiv \frac{1}{4} D \frac{U D}{\nu}
$$

Actually, the entrance length is usually
given as: $L_{e}=0.035 D \frac{U D}{\nu}$
which is just a bit numerically smaller!

Let's look at another problem in Cylindrical Coordinates: Colette flow!

we again use the r, θ, z cord. system. This time, however, the velocity is in the Θ Qirection!
$\nabla \cdot \sim=0=\frac{1}{N} \frac{\partial}{\partial v}\left(N u_{N}\right)+\frac{1}{w} \frac{\partial u_{\theta}}{\partial \theta}+\frac{\partial u_{z}}{\partial Z}$
Thus if $u_{r}=u_{z}=0$ then $\frac{\partial u_{\theta}}{\partial \theta}=0$
(no variation in θ direction)
Now for the momentum equations:
\Rightarrow we looked at z-momentum last time, now look at $r \& \theta$ components!

Ok, let's look at the component (where the action is!)
$\rho\left(\frac{\partial u_{\theta}}{\partial t}+u_{r} \frac{\partial u_{\theta}}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial u_{\theta}}{\partial \theta}+\frac{u_{r} u_{\theta}}{r}+u_{z} \frac{\partial u_{\theta}}{\partial t}\right)$
$=-\frac{1}{r} \frac{\partial p}{\partial \theta}+\rho g_{\theta}+\mu\left[\frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial}{\partial r^{r}}\left(r u_{\theta}\right)\right)\right.$
$\left.+\frac{1}{r^{2}} \frac{\partial^{2} u_{\theta}}{\partial \theta^{2}}+\frac{2}{r^{2}} \frac{\partial u_{\theta}}{\partial \theta}+\frac{\partial^{2} u_{\theta}}{\partial z^{2}}\right]$
OK, most of these terms are zero too! Let's loot z at one that pops up due to the coordinate transformation:

$$
\rho \frac{u_{r} u_{\theta}}{v}
$$

This is the coriolis force. It is very important in large scale (eeg., high Re) rotating systems! The most important example is the weather! It's why the wind direction

$$
\begin{aligned}
& r \text {-momentum: } \\
& \rho\left(\frac{\partial u_{r}}{\partial t}+u_{r} \frac{\partial u_{r}}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial u_{r}}{\partial \theta}-\frac{u_{\theta}^{2}}{r}+u_{z} \frac{\partial u_{r}}{\partial z}\right) \\
& =-\frac{\partial P}{\partial r}+\rho q_{r}+\mu\left[\frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial}{\partial r}\left(r u_{r}\right)\right)\right. \\
& \left.+\frac{1}{r^{2}} \frac{\partial^{2} u_{r}}{\partial \theta^{2}}-\frac{2}{r^{2}} \frac{\partial u_{\theta}}{\partial \theta}+\frac{\partial^{2} u_{r}}{\partial z^{2}}\right]
\end{aligned}
$$

Now if $g_{r}=0, u_{r}=u_{z}=0$ and $\frac{\partial \overrightarrow{u_{\theta}}}{\partial \theta}=0$ were left with:
$-\rho \frac{u_{\theta}^{2}}{r}=-\frac{\partial P}{\partial r}$

\uparrow 个

centrifugal force term! It is a "pseudo force" which arises from the coordinate transformation!

Thus $P=f(\theta, z)+\int \rho \frac{u_{\theta}^{2}}{w} d w$ Which can be integrated if you know $u_{6}(r)!$
is perpendicular to pressure gradients!

To see why this occurs, consider a Risk undergoing solid body rotation:

Now $u_{\theta}=\sqrt{2 r}$ for solid body rotation, The local angular velocity is constant. If fluid is displaced inwards, then if u_{θ} is conserved (say, conservation of thinetic energy) the local rate of rotation $\Omega^{\prime}=\frac{U_{\theta}}{n-\Delta r}>\Omega$. In the rotating reference frame, it looks like it's going faster!

On the earth, rotational velocities are much higher than wind velocities, at least on large length seales, thus the coriolis force is dominant

$$
\Omega R \sim \frac{2 \pi}{24 \mathrm{hr}} \cdot 4,000 \mathrm{~m}: \sim 10^{3 \mathrm{mph}}!
$$

On lab length scales it's small Lat least due to earth rotation) \Rightarrow the bath tub vortex is Que to some initial swirling motion!

Ore, how about Couette flow? $u_{r}=0$ so coriolis force Qoesn't matter!
$\frac{\partial P}{\partial \theta}=0$ from symmetry, so:

$$
0=\mu \frac{\partial}{\partial r}\left(\frac{1}{\mu} \frac{\partial}{\partial r}\left(r u_{\theta}\right)\right)
$$

torque on the inner cylinder we have:

$$
\underset{\sim}{M}=\underset{\sim}{r} X \underset{\sim}{F}
$$

Now the force F; s just the shear stress $\tau_{r o}$ times the area of the cylinder. Recall $Z_{r o} \equiv F / A$ exerted by fluid of greater r on fluid of lesser r in the θ Qirection!
S_{0} :
leverarm

$$
\underset{\sim}{M}=\stackrel{\sigma}{r} \cdot \frac{2 \pi r h}{\text { Area }} \quad_{r \theta} \hat{e}_{z}
$$

In cylindrical coordinates:

$$
\tau_{\mu \theta}=\mu\left[\mu \frac{\partial}{\partial r}\left(\frac{u_{\theta}}{r}\right)+\frac{1}{r} \frac{\partial u_{r}}{\partial \theta}\right]
$$

We integrate this once:

$$
\frac{1}{r} \frac{Q}{d r}\left(r u_{\theta}\right)=c_{1}
$$

And a second time:

$$
r u_{0}=\frac{1}{2} c_{1} w^{2}+c_{2}
$$

or: $u_{\theta}=\frac{1}{2} c_{1} r+\frac{c_{2}}{r}$
We have the no-slip β CI's:

$$
u_{\theta}=\left\{\begin{array}{cc}
0 & r=R_{0} \\
\Omega R_{1} & r=R_{1}
\end{array}\right.
$$

Thus:

$$
\begin{aligned}
& \frac{1}{2} C_{1} R_{0}+\frac{C_{2}}{R_{0}}=0 \\
& \frac{1}{2} C_{1} R_{1}+\frac{C_{2}}{R_{1}}=\Omega 2 R_{1}
\end{aligned}
$$

So: $C_{1}=-\frac{2 c_{2}}{R_{0}^{2}} ; c_{2}=-\Omega\left(\frac{R_{1}^{2} R_{D}^{2}}{R_{1}^{2}-R_{0}^{2}}\right)$
and: $U_{\theta}=\Omega R_{1}\left(\frac{R_{1} R_{0}}{R_{1}^{2}-R_{0}^{2}}\right)\left(\frac{r^{2}-R_{0}^{2}}{R_{0} w}\right)$
Now $u_{r}=0$ and u_{θ} is given by: $\frac{U_{\theta}}{V^{r}}=\frac{\Omega R_{1}^{2}}{R_{1}^{2}-R_{0}^{2}}\left(1-\frac{R_{0}^{2}}{r^{2}}\right)$
So:

$$
\tau_{W_{\theta}}=2 \mu \frac{\Omega R_{i}^{2}}{R_{1}^{2}-R_{0}^{2}} \frac{R_{0}^{2}}{r^{2}}
$$

and hence the torque:

$$
M=4 \pi \mu h \Omega \frac{R_{1}^{2} R_{0}^{2}}{R_{1}^{2}-R_{0}^{2}} \hat{e}_{z}
$$

Note that this is independent of w ? This makes sense: the torque exerted by the outer cylinder is the same as that exerted on d the inner cylinder and every cylindrical surface in between. Otherwise the flow would be accelerating (not at steady-state))

Of, what about the thin-gap approximation? Just as the earth looks flat when viewed on a human length scale, so fluid mechanics problems may be simplified when characteristic lengths (eng. the gap width between cylinders) is much smaller than the radius of curvature!
We take $\frac{R_{1}-R_{0}}{k_{1}} \ll 1$
Locally, we define coordinates:

The force F is approximately:

$$
F \approx r_{y x} \cdot 2 \pi R_{0} h
$$

rotation rates the flow $\frac{(47)}{\text { ecomes }}$ unstable, yielding what are called Taylor-Couettevortices.

To see why, remember the centrifugal force term in the $r-$ momentum $e_{E} n_{n} \rho \frac{\mathcal{C e}_{s}^{2}}{W}$ Because u_{θ} is higher inside n (swale rv) than outside (larger r), the fluid inside "wants" to flow out while that outside "wants" to flow in. This produces the vortex pattern:

where: $\tau_{y x} \approx \mu \frac{\Omega R_{1}}{R_{1}-R_{0}}$
So:

$$
(M)_{\text {approx }}=\mu \frac{\Omega R_{1}}{R_{1}-R_{0}} R_{0} 2 \pi R_{0} h \hat{e}_{z}
$$

We can compare this to the exact result:

$$
\frac{(M)_{a p p r o x}}{(M)_{\text {exact }}}=\frac{1}{2} \frac{R_{1}^{2}-R_{0}^{2}}{R_{i}\left(R_{j}-R_{0}\right)}=1-\frac{1}{2} \frac{R_{1}-R_{0}}{R_{1}}
$$

So if R_{0} is $1^{\prime \prime}$ and $R_{1}-R_{0}=0.02^{\prime \prime}$ (about $500 \mu \mathrm{~m}$), then the error is only around 1% !

In this derivation we have assumed that $u_{r}=u_{z}=0$. This will be valid provide t the rotation rate is sufficiently small. At higher

The critical rotation speed at Which vertices appear is given by:

$$
T a_{c r}=\frac{V r_{r}^{2} \bar{R} \Delta R^{3}}{\nu^{2}}=1712 \quad \text { for } \frac{A R}{R} \ll 1
$$

This phenomenon was first demonstrated by G.I. Taylor in 1923.

Note that if $u 2$ is further increased, these vortices will themselves become unstable to other secondary flows - they become. wavy in the θ directions. Eventually the entire flow becomes turbulent.

Taylor-Couette flow is still actively studied to dey!

Dimensional Analysis (149)
Now that were familiar w/ the Navies - Stokes equations, let's use them to look at a more complex, general problem \therefore Uniforms flow past an arbitrary shape:
 (far away)
What is the drag (force) on the object??
The force exerted by the fluid on the object is:

$$
F=\int_{\partial D} \underset{\sim}{\sigma} \cdot n Q A
$$

"Mechanical computer"- if $\frac{151}{t h e}$ assumptions used in deriving the equations are valid, the experiment should match the solution to the N-S eqñs!

To work with a scale model (\& interpret the results), we have to render the problem dimensionless w/ appropriate length \& time scales. * All dimensionless variables should be $O(1)$ in the region of interest!

Ok, let's see how this works: We have the continuity En \& the $N-S$ eqins:
where

$$
\sigma_{i j} \equiv-p \delta_{i j}+\mu\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)
$$

for an incompressible Newtonian fluid!

Thus, to calculate the force, we need the stress, and to get that we need u and p ! We thus have to solve the $N-s$ egins, which is very difficult for a complex geometry!
\Rightarrow Suppose that, instead, we wish to Lo it experimentally, using a scale model system. How would this work? Effectively we are "solving" the equations using a
$\underset{\sim}{\nabla} \cdot u=0 \quad$ (incompressible)
$\rho\left[\frac{\partial u}{\partial t}+\underset{\sim}{u} \cdot \nabla \underset{\sim}{u}\right]=-\nabla p+\mu \nabla \nabla_{\sim}^{2} \underset{\sim}{u}+\rho$
(Newtonian fluid)
Let's choose U as the velocity scaling, $\&$ as the length scale, I/U as the time scale, and ΔP_{c} as the pressure scale (to be determined)
Thus:

$$
\begin{aligned}
& {\underset{u}{u}}^{*}=\frac{u}{u}, \quad{\underset{\sim}{x}}^{*}=\frac{x}{2},{\underset{\sim}{\nabla}}^{*}=\ell \underset{\sim}{\nabla}, \\
& P^{*}=\frac{P-P_{0}}{\Delta P_{c}}<\begin{array}{c}
\text { subtract off far-fiel } \\
\text { pressure }
\end{array} \\
& g^{*}=\frac{g}{g} \text { (vector in gravity direction) }
\end{aligned}
$$

Or, now we render this problem dimensionless:

$$
\frac{u}{2} \nabla^{*} \cdot \mu^{*}=0
$$

$$
\therefore \nabla^{*} \cdot u^{*}=0 \text { (unchanged) }
$$

$$
\begin{aligned}
& \rho\left[\frac{U}{l / u} \frac{\partial u^{*}}{\partial t^{*}}+\frac{u^{2}}{l} u^{*} \cdot \nabla^{*} u^{*}\right] \\
& =-\frac{\Delta R_{c}}{l} \nabla^{*} p^{*}+\mu \frac{U}{l^{2}} \nabla^{*} \underline{u}^{*}+\rho g \underline{g}^{*}
\end{aligned}
$$

Now we divide through by one of these terms to make the problem dimensionkss. Which one? Pick a term representing a physical mechanism yeu're pretty sure is important!
\Rightarrow At high velocities the inertial terms arelituely to be important so:
of the dimensionless terms they multiply and the corresponding physical mechanisms!

What are they?

$$
\frac{\mu}{\rho U l} \equiv \frac{1}{R_{e}}=\frac{\text { viscous for res }}{\text { inertialtorces }}
$$

If $R e \gg 1$ then viscous forces are unimportant on a length scale I comparable to the size of the body! Well see later that they are important in boundary layers next to the body of thickness δ because. without viscosity, you can't satisfy the no-slip condition!

Divide by $\frac{\rho u^{2}}{2}$:

$$
\begin{aligned}
& \frac{\partial u^{*}}{\partial t^{*}}+{\underset{\sim}{u}}^{*} \cdot \nabla^{*} \tilde{u}^{*}=-\frac{\Delta P_{c}}{\rho U^{2}} \nabla^{*} p^{*} \\
& \quad+\frac{\mu}{\rho U l} \nabla^{*} \underline{u}^{*}+\frac{\rho l}{v^{2}} q^{*}
\end{aligned}
$$

At high velocities pressure gradients arise from inertial effects (ecg., cmuection of momentiva), so we choose:

$$
\frac{\Delta P_{c}}{\rho U^{2}}=1
$$

or $\Delta P_{c}=\rho U^{2}$ as the characteristic pressure differential!

Note that we have two Qumensioness groups of parameters in the equations! The magnitude of these groups determine the relative importance

$$
\begin{align*}
& \frac{g l}{U^{2}}=\frac{1}{F_{r}} \tag{156}\\
& \text { Fr } \equiv \text { Froude }=\frac{\text { Inertia }}{\text { Gravity }}
\end{align*}
$$

This plays a role in free surface flows, such as the wake behind a ship (or a bow wave).

We also render the boundary conditions dimensionless:

$$
\begin{aligned}
& \left.\underset{\sim}{u}\right|_{|\underset{\sim}{x}| \rightarrow \infty}=U{\underset{\sim}{e}}_{\hat{e}_{x}} \\
& \text { so }\left.{\underset{\sim}{u}}^{*}\right|_{\left|x^{*}\right| \rightarrow \infty}=\hat{e}_{x}^{n} \\
& \left.\underset{\sim}{u}\right|_{\underset{\sim}{x} \varepsilon \partial D}=0 \text { so }\left.{\underset{\sim}{u}}^{u^{*}}\right|_{x^{*} \varepsilon \partial D^{*}}=0
\end{aligned}
$$

Sometimes you get a QQitional 157 dimensionless groups from B.C.'s, say if object is rotating.

Here there are only two dimensionless groups which contain all the dimensional information! If these are held constant between the made! \& the full size system, the dimensionless flow will be exactly the same!!

This is known as dynamic e similarity!

Ok, how could we use this?
Suppose we want to model a submarine with a $1 / 100$ scale model, preserving Dynamic similarity.
the model up to this speed fit still wouldn't achieve similarity! Our assumptions breatz down because $U_{2} U_{s}<1$ (e.g., the Mach 4 rsn't small) and so the fluid is compressible.

It can wart well, however suppose we want to look at the flow patterns in a big tank of karo syrup. We model this with a small tate of water.

$$
\begin{array}{ll}
\nu_{1}=25 \text { stokes } & \nu_{2}=0.01 \text { stokes } \\
L_{1}=20 \mathrm{ft} & L_{2}=2
\end{array}
$$

ore, what's U_{2} ?

$$
U_{2}=\frac{\partial_{2}}{\nu_{1}} \frac{L_{1}}{L_{2}} U_{1}=\left(\frac{0,01}{25}\right)\left(\frac{240}{2}\right) U_{1}
$$

If there's no free surface, fr Qoesn't matter, so we just have to keep Re cst. Let $L_{1}=$ length of sub, $L_{2}=$ length of model For Dynamic similarity, $R e_{1}=R e_{2}$ So: $\frac{U_{1} L_{1}}{\nu_{1}}=\frac{U_{2} L_{2}}{\nu_{2}}$
Il both experiments are in water, then $\nu_{1}=\nu_{2}$

So: $\frac{U_{2}}{U_{1}}=\frac{L_{1}}{L_{2}}$
or $U_{2}=U_{1}\left(\frac{L_{1}}{L_{2}}\right) \equiv U_{1}\left(\frac{100}{1}\right)$
Note that this is really hard! if $\mathrm{U}_{1}=40 \mathrm{mph}, U_{2}=4,080 \mathrm{mph}!$ Note that even if we could get

50

$$
\begin{equation*}
U_{2}=0.048 \quad U_{1} \tag{160}
\end{equation*}
$$

if $U_{1}=1 \mathrm{ft} / \mathrm{s}, U_{2}=1.46^{\mathrm{cm} / \mathrm{s}}$ Which is a reasonable value!

If there is a free surface we have to preserve both $\operatorname{Re} \& F$ Fr! As an example, consider a vortex in an agitated tank:

To preserve dynamic similarity we require:

$$
R e_{1}=R e_{2} ; \quad F_{r_{1}}=F_{r_{2}}
$$

where $R e=\frac{U l}{2}, F_{r}=\frac{U^{2}}{l g}$
Note: U~J Ω since all geometric ratios must be preserved as well So:

$$
\begin{aligned}
& \frac{\Omega_{1} l_{1}^{2}}{2}=\frac{\Omega_{2} l_{2}^{2}}{\nu_{2}} \\
& \frac{\Omega_{1}^{2} l_{1}}{9}=\frac{\Omega_{2}^{2} l_{2}}{9}
\end{aligned}
$$

Suppose we are modeling a tanta of glycerin w one of water. This fixes the ratio $\mathrm{N}_{1} / \mathrm{N}_{2}$
So:

$$
\frac{\Omega_{1}^{2}}{\Omega_{2}^{2}}=\frac{l_{2}}{l_{1}} ; \frac{\Omega_{1} l_{1}^{2}}{\Omega_{2} l_{2}^{2}}=\frac{\nu_{1}}{\nu_{2}}
$$

$\sim \Omega^{3} l^{5} \rho f\left(R e_{j} F_{r}\right)$
But if $R e$ fro are constant between model system and original, feRe, fr!. (untenown Re \& Fr dependence) will also be constant!

Thus:

$$
\begin{aligned}
& \frac{(\text { Power })_{1}}{(\text { Power })_{2}}=\frac{\Omega_{1}^{3} l_{1}^{5} \rho_{1}}{\Omega_{2}^{3} l_{2}^{5} \rho_{2}} \\
& =\left(\frac{\partial_{2}}{\nu_{1}}\right)\left(\frac{\nu_{1}}{\nu_{2}}\right)^{10 / 3} \frac{\rho_{1}}{\rho_{2}} \\
& =\left(\frac{\nu_{1}}{\nu_{2}}\right)^{7 / 3} \frac{\rho_{1}}{\rho_{2}}
\end{aligned}
$$

which allows us to estimate the power requirements of the fullscale system!

So $\left(\frac{l_{1}}{l_{2}}\right)^{3 / 2}=\frac{\nu_{1}}{\nu_{2}}$
or $l_{2}=\ell_{1}\left(\frac{\nu_{2}}{\nu_{1}}\right)^{2 / 3}$
If $\nu_{1} / \nu_{2}=1000$ (about right)
weget $l_{2}=\frac{l_{1}}{100}$
The angular velocity of the impeller is increased:

$$
\Omega_{2}=\Omega_{1}\left(\frac{l_{1}}{l_{2}}\right)^{1 / 2}=\Omega_{1}\left(\frac{\nu_{1}}{\nu_{2}}\right)^{1 / 3}
$$

What would be the power input?
Power $\sim \Omega \cdot\left((\Omega Q)^{2} \rho \cdot \ell^{2} \cdot \ell\right) \cdot f\left(R_{2}\right.$ in product
cieverarm
velocity
angular velocity
\sim (ang.velocity). (Pressure)(Area)(lever am)

While strict Dynamic similarity is often very $Q_{\text {difficult (or impossible) }}$ t e achieve, a more approximate form is much easier and more practical. An excellent example is in hull design for surface ships.
Strict similarity requires both Re QFr to be preserved between. model and full scale, which isn't really possible. If $R e$ is "high" for both ship \& model, however, we may be at some "high Re I imit" where viscous effects are unimportant. That would mean that only Fo would have to be rept constant much easier!
(165)

Let's see how this works: We wish to model the behavior of the Enterprise (CVN 65) with a 1/100 scale model. In this case $U_{1} \approx$ $40 \mathrm{mph}=1,800 \mathrm{~cm} / \mathrm{s}, L_{1} \xlongequal{\underline{n}} 1000 \mathrm{ft}$ $=3.0 \times 10^{4} \mathrm{~cm}, \nu_{1}=0.01$ stokers Thus: $R e_{1}=5.4 \times 10^{9}, F_{v_{1}}=0.11$ we give up on Re, but try to match Fr:

$$
\frac{U_{1}^{2}}{L_{1} g}=\frac{U_{2}^{2}}{L_{2} g} \quad \therefore U_{2}=U_{1}\left(\frac{L_{2}}{L_{1}}\right)^{1 / 2}
$$

or, since $L_{2} / L_{1}=\frac{1}{100}$,

$$
U_{2}=\frac{1}{10} U_{1}=4 \mathrm{mph}-n_{0}+b a d!
$$

We also have:

$$
R e_{2}=\frac{U_{2} L_{2}}{\nu_{2}}=10^{-3} R e_{1}=5.4 \times 10^{6}
$$

So for weave scaled the $\frac{167}{N-S}$
equations using the inertial terms (convection of momentum).
This is appropriate for $R_{r} \gg 1$. What about low Re?? Here we use the viscous scaling!
Recall:

$$
\begin{aligned}
& \rho \frac{u^{2}}{l}\left[\frac{\partial u^{*}}{\partial t^{*}}+u^{*} \cdot \nabla^{*}{\underset{u}{u}}^{*}\right]=-\frac{\Delta p_{c}}{l} \nabla^{*} p^{*} \\
& +\frac{\mu U}{l^{2}} \nabla^{*^{2}}{\underset{\sim}{u}}^{*}+\rho 9 g^{*}
\end{aligned}
$$

This time we divide thru by viscous scaling $\frac{\mu U}{l^{2}}$:

$$
\begin{aligned}
& \left(\frac{\rho U l}{\mu}\right)\left[\frac{\partial{\underset{\sim}{*}}^{*}}{\partial t^{*}}+{\underset{\sim}{u}}^{*} \cdot \sim_{\sim}^{*}{\underset{\sim}{*}}^{*}\right]=-\left(\frac{\Delta P_{c} l}{U \mu}\right) \nabla_{\nabla^{*} p}^{*} \\
& \quad+\nabla^{*^{2}}{\underset{\sim}{u}}^{*}+\frac{\rho g l^{2}}{\mu v} g^{*}
\end{aligned}
$$

Which is still pretty large!
(166)

What about the relation between the force on the model and the force on the ship? If viscosity is unimportant we get:
$\frac{F_{1}}{\rho_{1} U_{1}^{2} L_{1}^{2}} \cong \frac{F_{2}}{\rho_{2} U_{2}^{2} L_{2}^{2}}$
or $\frac{F_{1}}{F_{2}} \approx \frac{U_{1}^{2} L_{1}^{2}}{U_{2}^{2} L_{2}^{2}}=10^{6}$
Provided that Re_{2} is large enough that the flow around the model is fully. turbulent ($\mathrm{Re}_{2} \gg 10^{5}$ or 50) this actually works pretty well! This has been the basis for testing ship designs over the past century!

Now we choose ΔP_{c} sit.

$$
\frac{\Delta P_{c} \ell}{U \mu}=1
$$

or $\left.\quad \Delta P_{c}=\mu \frac{U}{l} \quad \begin{array}{l}\text { (scaling for } \\ \text { shear stress) }\end{array}\right)$
Thus:
$\left\{\begin{array}{l}\operatorname{Re}\left[\frac{\partial u^{*}}{\partial t^{*}}+{\underset{u}{*}}^{*} \cdot{\underset{\sim}{\nabla}}^{*}{\underset{\sim}{u}}^{*}\right]=-\nabla^{*} P^{*} \\ \\ \quad+\nabla^{*^{2}} u^{*}+\frac{R e}{F r} g^{*} \\ \text { Now if } R e \ll 1 \text { we neglect terms }\end{array}\right.$ which are of $O(R e)$:
$-\nabla^{*} P^{*}+\nabla^{*^{2}}{\underset{u}{ }}^{*}=O\left(R_{e}, \frac{R_{e}}{f_{j}}\right)$
or $\nabla^{* 2} u^{*} \cong \nabla^{*} P^{*}$
and the $C E: \nabla^{*} \cdot u^{*}=0$
These are the Creeping Flow Eqins:
starting pint for low Re flow!
$\frac{169}{169}$
So far we've used our knowledge of the flow equations to determine conditions where flows will be Dynamically similar. This wasn't really necessary \Rightarrow all that we really had to know was what physical parameters a problem depends on! This is to nowt as Dimensional
Analysis
The key is that Nature knows No Units: A "fort" or a "meter" has no physical significance. Thus, any physical relationship must be expressible as a relationship between dimensionless quantities!

Rank $=$ dimension of largest submatrix w/ non-zero determinant! \Rightarrow In this case, we take the first three columns:

$$
\left|\left[\begin{array}{ccc}
1 & 0 & 1 \\
1 & 1 & -3 \\
-2 & 0 & 0
\end{array}\right]\right|=2 \neq 0 \text { so rank }=3
$$

By the π theorem:
$*$ Dimensionless groups $=5-3=2$ and that

$$
\pi_{1}=f\left(\pi_{2}\right)
$$

Let's see how this worksConsider drag on a sphere:

The force is a function of U, a, μ, ρ, but all these are Dimensional quantities. How many Dimensionless groups can be formed?
Buckingham π theorem:

* Dimensionless groups $=$ parameters
- ranks of dimensional matrix (this is the number of independent fundamental units involved in the problem)
we may choose $\pi_{1} \& \pi_{2} \frac{172}{}$ way we wish provided they are 1) dimensionless and 2) independent (this means that if there are N T groups, the Nth canst be formed by any combination of the other N-1 groups!)

We usually choose groups so that one involves the dependent parameter of interest, and all the others involve combinations of the independent parameters.
one choice:

$$
\frac{F}{\rho U^{2} a^{2}}=f^{n}\left(\frac{U a g}{\mu}\right) \equiv f^{n}(R e)
$$

or, in words, the Qimenstinless Qrag is only a function of the Reynolds Number! This is exactly what we got from scaling the N-S ens!
often we can strengthen results if we have additional physical insight. Suppose we have $R e \ll 1$. In this case we expect inertia (\& hence 3) is unimportant:

Again, there are $5-3=2$ dimensionless groups:

$$
\frac{F / L}{\rho U^{2} a}=f^{n}\left(\frac{U a \rho}{\mu L}\right)
$$

so this works fine! What about low Re?? We anticipate that ρ (inertia) doesn't matter, so we have:

$$
\frac{E}{L}=f^{n}(0, a, \mu)
$$

or $4-3=1$ Qmensionless groups.
Thus:

$$
\frac{F / L}{U \mu}=c s t
$$

But this suggests that the drag is independent of a ! This can't be correct! This reflects the

This is the strongest possible result:

$$
\frac{F}{\mu v a}=c s t=6 \pi
$$

Where the constant is determined by solving stokes flow eq'ins (or from one experiment).

It is extremely impotent to have a complete list of the applicable parameters. Otherwise the result will be in correct. As an example, look at flow past an infinitely long cylinder of radius a:

$$
F / L=f^{n}(u, a, \mu, \rho)
$$

\uparrow
force/length

Fact that inertia is always important: there is no solution to the stokes $E_{q}{ }^{\prime} n s$ for 2-D flow past a cylinder! This is Known as Stokes' Paradox

An approximate solution for $R_{e} \ll 1$ is given by Lamb:

$$
\frac{F}{L} \approx 4 \pi \frac{U \mu}{\ln \left(4 / R_{e}\right)-\gamma+\frac{1}{2}}
$$

which depends on Re even as Re $\rightarrow 0$!
The complete reduction of a problem to a single dimensionless group sometimes happens even for functions. The best example of this is the
l expanding shock wave Que to a 'point source explosion studied by GI Taylor during wWII. The radius R of the shock will be 'a function of time t, the density lof the gas (before the explosion) ρ_{0}, the energy E, the adiabatic exponent $\gamma=7 / 5$ for a diatomic gas, and the initial atmospheric pressure P_{0}.

Thus:
$R=f^{n}(t ;$
S_{0}
0

'Thus $6-3=3$ groups!
, One is obviously γ, but this won't change if we keep using air!

Thus we have:

$$
\begin{equation*}
R=f^{n}\left(t ; \rho_{0}, t, \gamma\right) \tag{179}
\end{equation*}
$$

or $5-3=2$ groups!
since one is still γ, the other is: $\frac{R}{\left(\frac{E t^{2}}{\rho_{0}}\right)^{y_{5}}}=f(\gamma)=\frac{\operatorname{cst} t}{\text { diatomic gases! }}$
It turns out that this constant is 1.033 from solution of the flow equations! Thus $R \sim t^{2 / 5}$ and with knowlenge of $R \& t$ you can calculate E. This was done by Taylor from images of the NM atom bomb tests - while the yields were still classified Top secret!

We can construct a referencelength and time:

$$
\frac{R}{\left(E / P_{0}\right)^{1 / 3}}=f^{n}\left(\frac{t}{\left(\frac{E^{2} \rho_{0}^{3}}{P_{0}^{5}}\right)^{1 / 6}}, \gamma\right)
$$

Which isn't particularly useful. still, we could plug this in to the shock eq'ns \& try to solve the problem.

Instead we look at the case of strong explosions such that

$$
\frac{P_{0} B^{3}}{E} \ll 1
$$

In this case the pressure inside the shock is far greater than that due to the atmosphere P_{0}. Thus, we shall assume that Po doesn't matter!

As a last point, while indep. fudamental units $=*$ fundamental units, this isn't always true. As an example, consider the deflection produced by a ball sitting on an elastic solid (e.g. a ball bearing on a block of rubber):

$$
h=f^{h}(F, a, E)
$$

these involve $M, L, \& T$, so we might expect $4-3=1$ dimensionless groups! Thus $h=$ cst ??

181
This cant be correct, since elasticity must mather!
The problem is in the rants of the dimensional matrix!
$h=f^{n}(F, a, E)$

M| M | 1 | 0 | 1 |
| :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | -1 |
| 0 | -2 | 0 | -2 |,$~$

There exists no 3×3 matrix wy nonzero determinant, thus rank $=2$ So:

$$
\frac{h}{a}=f^{*}\left(\frac{F}{\varepsilon a^{2}}\right)
$$

Which makes more sense!
Dimensional Analysis is powerfully, but be careful and always check to see if your results mate sense!

The flow in the narrow gap $H / R \ll 1$ will resist the upward motion of the disk. We want to calculate this force. The flow is three dimensional, but $u_{\theta}=0$ \& we can neglect θ derivatives! Let's start with the C, E.:

$$
\frac{1}{v} \frac{\partial}{\partial r}\left(w u_{r}\right)+\frac{1}{w} \frac{\partial u_{0}}{\partial_{0}}+\frac{\partial u_{z}}{\partial z}=0
$$

Because $H / R \ll 1$ we expect that $u_{r} \& u_{z}$ will need different scales! Let $u_{z}^{*}=\frac{u_{z}}{v}, u_{p}^{*}=\frac{u_{\mu}}{v}$

Lubrication Flows
An important problem in fluid
mechanics is lubrication s theory:
the study of the flow in thin films, where hydrodynamic forces keep solid surfaces out of contact, reducing wear. These problems are actually quite simple to solve due to a separation of length scales (one Dimension \gg another) which leads to the quass; parallel flow approximation.
Let's see how this works.

Suppose we look at the squeeze flow between a disk and a plane:
we also take:
(184)

$$
w^{*}=m / R, \quad z^{*}=\frac{z}{H}
$$

So: $\frac{U}{R} \frac{1}{r^{*}} \frac{\partial}{\partial r^{*}}\left(r^{*} u_{r}^{*}\right)+\frac{v}{H} \frac{\partial u_{z}^{*}}{\partial z^{*}}=0$ or, dividing through:

$$
\frac{1}{w^{*}} \frac{\partial}{\partial w^{*}}\left(r^{*} u_{N}^{*}\right)+\frac{R v}{U H} \frac{\partial u_{z}^{*}}{\partial z^{*}}=0
$$

Both terms of the $C E$ must be of the same order for any 2-D problem! Thus we tate:

$$
\frac{R V}{U H}=1 \text { or } U=\frac{R}{H} V>V
$$

Thus the velocity along the gap is
much higher (by $O(B / H)$) than the velocity perpendicular to the gap!
This means we have quaisi-parallel flow in the radial direction

Now for the momentum equations:
Let $t^{*}=\frac{V t}{H}, \quad P^{*}=\frac{P-P_{0}}{\Delta P_{c}}$
\rightarrow char, time scale $=\frac{H}{V}$
r-morsentum:

$$
\begin{aligned}
& \rho\left(\frac{\partial u_{r}}{\partial t}+u_{r} \frac{\partial u_{r}}{\partial r}+u_{z} \frac{\partial u_{r}}{\partial z}\right)=-\frac{\partial p}{\partial r} \\
& +\mu\left[\frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial}{\partial r}\left(\mu u_{N}\right)\right)+\frac{\partial^{2} u_{r}}{\partial z^{2}}\right]
\end{aligned}
$$

where we have ignored θ terms scaling:

$$
\rho \frac{u^{2}}{R}\left(\frac{\partial u_{r}^{*}}{\partial t^{*}}+u_{r}^{*} \frac{\partial u_{r}^{*}}{\partial u^{*}}+u_{z}^{*} \frac{\partial u_{r}^{*}}{\partial z^{*}}\right)
$$

$!-\frac{\Delta P_{c}}{R} \frac{\partial P^{*}}{\partial r^{*}}+\mu \frac{U}{H^{2}}\left[\frac{H^{2}}{R^{2}} \frac{\partial}{\partial \mu^{*}}\left(\frac{1}{\mu^{*}} \frac{\partial}{\partial \mu^{*}}\left(r^{*} u_{i}^{*}\right)\right)\right.$

$$
\left.+\frac{\partial^{2} u_{k}^{*}}{\partial z^{* 2}}\right]
$$

In lubrication flows we expect viscous terms to Dominate, so

Provided that $\frac{H}{R} \ll 1$ wean neglect the r-Qiffusionterms, and provide $\quad\left(\frac{\rho V H}{\mu}\right) \ll 1$ we can ignore the inertial terms.

$$
\text { Thus: } \quad \frac{\partial^{2} u_{r}^{*}}{\partial z^{* z}}=\frac{\partial P^{*}}{\partial r^{*}}
$$

Which is just channel flow! $\left(P^{*} \neq f^{\prime}\left(t^{*}\right)\right.$), with boundary conditions:

$$
\begin{aligned}
& \left.u_{r}^{*}\right|_{z^{*}=0,1}=0 \quad \text { we get: } \\
& u_{r}^{*}=\frac{-\partial p^{*}}{\partial r^{*}} \frac{1}{2} z^{*}\left(1-z^{*}\right)
\end{aligned}
$$

Now we still need to figure out the pressure gradient. We Q_{0} this from a mass balance
divide through by $\mu \frac{U}{H z} \frac{186}{(l e a d i n g}$ term;

$$
\begin{aligned}
& \left(\frac{\partial \mu}{\mu}\right)\left(\frac{H}{R}\right)\left(\frac{\partial u_{r}^{*}}{\partial t^{*}}+u_{r}^{*} \frac{\partial u_{r}^{*}}{\partial \mu^{*}}+u_{z}^{*} \frac{\partial u_{r}^{*}}{\partial z^{*}}\right) \\
& =-\left(\frac{\Delta P_{c} H^{2}}{R \mu^{\prime}}\right) \frac{\partial P^{*}}{\partial r^{*}}+\frac{\mu^{2}}{R^{2}} \frac{\partial}{\partial r^{*}}\left(\frac{1}{\mu^{*}} \frac{\partial}{\partial \mu^{*}}\left(\mu^{*} u_{r}^{*}\right)\right) \\
& \quad+\frac{\partial^{2} u_{r}^{*}}{\partial z^{*}} 2
\end{aligned}
$$

We choose the viscous scaling for the pressure:

$$
\left(\frac{\Delta P_{c} H^{2}}{R \mu U}\right)=1 \quad \therefore \quad \Delta P_{c}=\frac{R \mu U}{H^{2}}
$$

and thus, putting all terms of $O(1)$ one the LHS:

$$
\begin{aligned}
& \frac{\partial^{2} u_{r}^{*}}{\partial z^{* 2}}-\frac{\partial p^{*}}{\partial r^{*}}=-\frac{\mu^{2}}{R^{2}} \frac{\partial}{\partial r^{*}}\left(\frac{1}{w^{*}} \frac{\partial}{\partial r^{*}}\left(u^{*} u_{r}^{*}\right)\right) \\
& +\left(\frac{\rho v}{\mu t}\right)\left(\frac{\partial u_{r}^{*}}{\partial t^{*}}+u_{r}^{*} \frac{\partial u_{r}^{*}}{\partial r^{*}}+u_{z}^{*} \frac{\partial u_{r}^{*}}{\partial z^{*}}\right)
\end{aligned}
$$

Flow out thru top $=V \pi r^{2}$
Flow in thru sides $=-2 \pi r \int_{0}^{+} u_{r} Q_{z}$
Those Must balance!

$$
V \pi r^{2}=-2 \pi r \int_{0}^{H} u_{r} d z
$$

or $\int_{0}^{1} u_{\mu}^{*} Q z^{*}=-\frac{1}{2} r^{*}$
So:

$$
\begin{aligned}
& \int_{0}^{1}-\frac{1}{2} \frac{\partial p^{*}}{\partial r^{*}} z^{*}\left(1-z^{*}\right) d z^{*}=-\frac{1}{2} r^{*} \\
& \frac{\partial p^{*}}{\partial r^{*}}=\frac{r^{*}}{\int_{0}^{1} z^{*}\left(1-z^{*}\right) d z^{*}}=6 r^{*}
\end{aligned}
$$

Now since $\left.p^{*}\right|_{w^{*}=1}=0$, we get

$$
p^{*}=-3\left(1-r^{* 2}\right)!_{0}
$$

The force is just the mitegral of the pressure (normal force)

$$
\begin{aligned}
F & =\int_{0}^{R} P 2 \pi \mu d r=\Delta P_{C} R^{2} 2 \pi \int_{D}^{1} P^{*} Q_{0}^{*} \\
& =-\frac{3 \pi}{2}\left(\frac{R \mu U}{H^{2}}\right) R^{2}
\end{aligned}
$$

or, since $U=V \frac{R}{H}$,

$$
F=-\frac{3 \pi}{2} \frac{\mu V R^{4}}{H H^{3}}
$$

Note the force blows up as $H \rightarrow 0$!
This is characteristic of lubrication flows:

How long Does it take to Qetatik From the plane? It spends all the time travelling the firstliftle bit!

For a constant force F :
An important problem in imbrication theory is the sliding blocte:

If $H \equiv Q_{1} \ll L$ we can use lubrication theory to calculate the upward force on the block for some U, Q_{1}, Q_{2}, L, etc.

We have the equations:

$$
\begin{gathered}
\rho\left(\frac{\partial u}{\partial t}+\underset{\sim}{u} \cdot \nabla \underset{\sim}{u}\right)=-\nabla p+\mu \nabla^{2} \underset{\sim}{u} \\
\nabla \cdot \underset{\sim}{u}=0
\end{gathered}
$$

The flow is two-Qimensional, so we take $u \equiv u_{x}, v=u_{y}$ and $u_{z}=\frac{\partial}{\partial z}=0$ (no z-dependence)

$$
\begin{align*}
& F=+\frac{3 \pi}{2} \frac{\mu R^{4}}{H^{3}} \frac{Q H}{d t} \tag{190}\\
& \uparrow \\
& \text { applied force-balaces }=V \\
& r e s i s t a n c e \\
& \therefore \quad F=-\frac{3 \pi}{4} \mu R^{4} \frac{d\left(H^{-2}\right)}{d t}
\end{align*}
$$

So $H^{-2}=H_{0}^{-2}+\frac{-4}{3 \pi} \frac{F}{\mu R^{4}} t$ initial separation
Thus we have fallen away when $H^{-2} \xlongequal[=]{N} 0$! This occurs when:

$$
t_{\infty}=\frac{3 \pi}{4} \frac{\mu R^{4}}{H_{0}^{2}} \frac{1}{F}
$$

Which approaches infinity as $H_{0} \rightarrow 0$
I developed a technique basel on this "fall time" concept to measure the roughness of spheres. Basically, the surface imperfections control the initial separation.

We have the C.E.:

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0
$$

As before, we scale uw/O; $x \omega L$; and yo/ y :

$$
x^{*}=\frac{x}{L}, \quad y^{*}=\frac{Y}{H}, \quad u^{*}=\frac{u}{U}
$$

where all ${ }^{*>2}$ variables are $O(1)$ in the region of interest. To preserve both terms in the CE. we require:

$$
V^{*}=\frac{V}{U \frac{H}{L}}
$$

Thus $\frac{\partial u^{*}}{\partial x^{*}}+\frac{\partial v^{*}}{\partial y^{*}}=0$
We shall define $\varepsilon \equiv \frac{H}{L} \ll 1$
Thus V is $O(\varepsilon \cup)$.
Ok now for x-momentum:
(193)

$$
\rho\left(\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}\right)=-\frac{\partial p}{\partial x}+\mu\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial u}{\partial y^{2}}\right)
$$

Let $t^{*}=\frac{U t}{L} \quad\left(e, g,, t_{c} \equiv \frac{L}{U}\right)$ and $P^{*}=\frac{P-P_{0}}{\Delta P_{C}}$
Plugging ion,

$$
\begin{aligned}
& \rho \frac{U^{2}}{L}\left(\frac{\partial u^{*}}{\partial t^{*}}+u^{*} \frac{\partial u^{*}}{\partial x^{*}}+v^{*} \frac{\partial u^{*}}{\partial y^{*}}\right)= \\
& -\frac{\Delta p_{c}}{L} \frac{\partial p^{*}}{\partial x^{*}}+\mu\left(\frac{U}{L^{2}} \frac{\partial^{2} u^{*}}{\partial x^{* 2}}+\frac{U}{H^{2}} \frac{\partial^{2} u^{*}}{\partial y^{* 2}}\right)
\end{aligned}
$$

We anticipate that the dominant mechanism for momentum transport is viscous shear stresses in the narrow gap. Thus we divide by $\mu \frac{U}{H^{2}}$, its scaling!
(195)

Note that we can determine the scale of the force on the block with no further work! The upward force is just:

$$
\begin{aligned}
\frac{F}{W} & =\int_{0}^{L}\left(P-P_{0}\right) d x \\
\text { or } \frac{E}{W} & =\Delta P_{c} L \int_{0}^{1} p^{*} d x^{*} \\
\text { so } F & =\frac{U a L^{2} W}{H^{2}} \cdot \operatorname{cst}
\end{aligned}
$$

where toget the cst we have to solve the problem!

Now for the y-momentum eq^{2} :

$$
\begin{array}{r}
\rho\left(\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}\right)=-\frac{\partial P}{\partial y} \\
+\mu\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right)
\end{array}
$$

So:

$$
\begin{aligned}
& \left(\frac{\partial U H}{\mu}\right)(H)\left(\frac{\partial u^{*}}{\partial t^{*}}+u^{*} \frac{\partial u^{*}}{\partial x^{*}}+v^{*} \frac{\partial u^{*}}{\partial y^{*}}\right)= \\
& -\frac{\Delta P_{c}}{\left(\frac{U \mu L}{H^{2}}\right)} \frac{\partial P^{*}}{\partial x^{*}}+\frac{\partial^{2} u^{*}}{\partial y^{*}}+\frac{\pi^{2}}{L^{2}} \frac{\partial^{2} u^{*}}{\partial x^{* 2}}
\end{aligned}
$$

Thus we have the pressure scale

$$
\Delta P_{C}=\frac{U \mu L}{H^{2}}
$$

$a_{n} Q$:

$$
\begin{aligned}
\frac{\partial^{2} u^{*}}{\partial y^{* 2}} & =\frac{\partial p^{*}}{\partial x^{*}}-\varepsilon^{2} \frac{\partial^{2} u^{*}}{\partial x^{* z}}+\varepsilon \operatorname{Re}\left(\frac{\partial u^{*}}{\partial t^{*}}\right. \\
& \left.+u^{*} \frac{\partial u^{*}}{\partial x^{*}}+v^{*} \frac{\partial u^{*}}{\partial y^{*}}\right)
\end{aligned}
$$

We shall ignore terms of $O\left(\varepsilon^{2}\right)$ and $O(\varepsilon R e)$. Thus:

$$
\frac{\partial^{2} u^{*}}{\partial y^{*^{2}}}=\frac{\partial p^{*}}{\partial x^{*}}
$$

Plugging in our scaling we (196)

$$
\begin{aligned}
& \frac{\partial p^{*}}{\partial y^{*}}=\varepsilon^{2} \frac{\partial^{2} v^{*}}{\partial y^{* 2}}+\varepsilon^{4} \frac{\partial^{2} v^{*}}{\partial x^{* 2}} \\
& +\varepsilon^{3} \operatorname{Re}\left(\frac{\partial v^{*}}{\partial t^{*}}+u^{*} \frac{\partial v^{*}}{\partial x^{*}}+v^{*} \frac{\partial v^{*}}{\partial y^{*}}\right)
\end{aligned}
$$

Thus, if we ignore terms of $O\left(\varepsilon^{2}, \varepsilon^{4}, \varepsilon^{3} R e\right)$ we get:

$$
\frac{\partial P^{*}}{\partial y^{*}}=0!
$$

This is generically true for problems with separations of length scales $H / L \ll 1$, which also occurs in boundary layer flows well study later. Basically, you don't get variations in pressure across the thin limansion, in this case the gap!

OK, we have the scaled $\frac{197}{2}$?

$$
\begin{aligned}
& \frac{\partial u^{*}}{\partial x^{*}}+\frac{\partial v^{*}}{\partial y^{*}}=0 \\
& \frac{\partial^{2} u^{*}}{\partial y^{* 2}}=\frac{\partial p^{*}}{\partial x^{*}} ; \quad \frac{\partial p^{*}}{\partial y^{*}}=0
\end{aligned}
$$

Now for the $B, C.\rangle_{5}$:

$$
\left.u^{*}\right|_{y^{*}=0}=\left.v^{*}\right|_{y^{*}=0}=0 \quad\left(\begin{array}{l}
y^{*}=0 \text { surface } \\
\text { is stationary })
\end{array}\right.
$$

and for the moving surface:

$$
h^{*}=h / H
$$

Let $\left.u^{*}\right|_{y^{*}=h^{*}}=U^{*}=\frac{U(x, t)}{U}$
In our case $U^{*}=1$ (uniform velocity, but in general it could be a function of both $\times \& t$.
Likewise: $\left.v^{*}\right|_{y^{*}=h^{*}}=V^{*}=\frac{V(x, t)}{\varepsilon U}$
We still need an equation for P^{*}. To get it we look at the C.E.:

$$
\frac{\partial v^{*}}{\partial y^{*}}=-\frac{\partial u^{*}}{\partial x^{*}}
$$

We can integrate this to get V^{*} :

$$
V^{*}=\int_{0}^{y^{*}}\left(-\frac{\partial u^{*}}{\partial x^{*}}\right) d y^{*}
$$

The lower limit is zero to satisfy the 「3.C. $\left.V^{*}\right|_{y^{*}=0}=0$
We can evaluate this at $y^{*}=h^{*}$:

$$
\left.V^{*}\right|_{y^{*}=h^{*}}=T T^{*}=\int_{0}^{h^{*}}\left(-\frac{\partial u^{*}}{\partial x^{*}}\right) d y^{*}
$$

This gives us an equation for the pressure gradient!

For our example problem $V=\frac{198}{=6}$
To solve this problem we integrate the x-momentum on over y! We can do this because p^{*} is n't a function of y ! (egg., $\frac{\partial p^{*}}{\partial y^{*}}=0$)
Sol

$$
u^{*}=\frac{1}{2}\left(\frac{\partial p^{*}}{\partial x^{*}}\right) y^{*^{2}}+C_{1}(x, t) y^{*}+C_{2}(x, t)
$$

If we apply B.C. at $y^{\mu}=0$ we get $C_{2}(x, t)=0$

Applying B.C. at $y^{*}=h^{*}$ gives:

$$
u^{*}=\frac{\frac{1}{2}\left(\frac{\partial p^{*}}{\partial x^{*}}\right) y^{*}\left(y^{*}-h^{*}\right)}{\text { Channel flow }}+U_{\substack{* \\ \text { Shale } \\ \text { Shear }}}^{h^{*}}
$$

So u^{*} is just the sum of channel \& shear flow!

$$
\begin{aligned}
V^{*} & =\frac{1}{12} \frac{Q^{2} P^{*}}{Q x^{*}} h^{* 3}+\frac{1}{4} \frac{Q P^{*}}{\partial x^{*}} h^{* 2} \frac{Q h^{*}}{\delta x^{*}} \\
& -\frac{1}{2} \frac{Q U^{*}}{Q x^{*}} h^{*}+\frac{1}{2} U^{*} \frac{Q h^{*}}{\delta x^{*}}
\end{aligned}
$$

We can rearrange this:

$$
\frac{Q}{Q x^{*}}\left(h^{* 3} \frac{Q P^{*}}{Q x^{*}}\right)=6\left[h^{*} \frac{Q 0^{*}}{Q x^{*}}-U^{*} \frac{Q h^{*}}{\partial x^{*}}+2 V i\right.
$$

This is known as the Reynolds Lubrication Equation. Together ut the B.C. S $\left.P^{*}\right|_{x^{*}=0}=\left.P^{k}\right|_{x^{k}=1}=0$ we can calculate the pressure! OK, let's apply this:

$$
H \equiv Q_{1}>\quad h=\frac{d_{2}-Q_{1}}{L} x+Q_{1}
$$

In Qimensionless form,

$$
h^{*}=1+\frac{Q_{2}-Q_{1}}{Q_{1}} x^{*}
$$

We also have: \quad let $Q_{2}-Q_{1}=\Delta Q$

$$
\begin{aligned}
& U^{*}=1, \quad V^{*}=0 \\
& \frac{Q}{Q x^{*}}\left(h^{* 3} \frac{Q P^{*}}{Q x^{*}}\right)=-6 \frac{\Delta Q}{Q_{1}}
\end{aligned}
$$

Integrating once:

$$
h^{*^{3}} \frac{Q B^{*}}{Q x^{*}}=-6 \frac{\Delta Q}{Q_{1}} x^{*}+C_{1}
$$

Dividing by $h^{* 3}$ and integrating

$$
\begin{aligned}
p^{*} & =-6 \frac{\Delta Q}{\frac{\Delta Q}{Q_{1}}} \int_{0}^{x^{*}} \frac{x^{*}}{\left(1+\frac{\Delta Q}{Q_{1}} x^{*}\right)^{3}} d x^{*} \\
& +c_{1} \int_{0}^{x^{*}} \frac{2 x^{*}}{\left(1+\frac{\Delta d}{\alpha_{1}} x^{*}\right)^{3}} d x^{*}
\end{aligned}
$$

where the second constant of

Which looks pretty complex?
In the limit $48,<1$, however, we get:

$$
F^{*}=\frac{1}{2} \frac{\Delta Q}{Q_{1}}+O\left(\left(\frac{\Delta Q}{Q_{1}}\right)^{2}\right)
$$

Which is a pretty simple result! Note that every thing except the numerical value of the coefficient could have been obtained without solving the equations! This is the importance of knowing how to scale the equations!
integration vanishes because $\left.p^{x}\right|_{x^{*}=0}=0$.
Evaluating this at $x^{*}=1$ and applying the $\left.P^{*}\right|_{x^{*}=1}=0$ B.C. yid $\|_{d}$

$$
C_{1}=\frac{6 \frac{\Delta d}{Q_{1}} \int_{0}^{1} \frac{x d x}{h^{3}}}{\int_{0}^{1} \frac{2 x}{h^{3}}}=6\left(\frac{\Delta d}{d_{1}+d_{2}}\right)
$$

So:

$$
P^{*}=6\left(\frac{\Delta Q}{Q_{1}+Q_{2}}\right) \frac{x^{*}-x^{* 2}}{\left(1+\frac{\Delta Q}{Q_{1}} x^{*}\right)^{2}}
$$

The force is just the integral of this:

$$
\begin{align*}
& F^{*} \equiv \frac{F}{\frac{U \mu L^{2} W}{H^{2}}}=\int_{0}^{1} P^{*} Q x^{*} \\
= & 6\left(\frac{Q_{1}}{\Delta Q}\right)\left[\left(\frac{Q_{1}}{\Delta Q}\right) \ln \left(1+\frac{\Delta Q}{Q_{1}}\right)-\frac{1}{1+\frac{1}{2} \frac{\Delta d}{Q_{1}}}\right] \tag{204}
\end{align*}
$$

The Stream Function
Lubrication flows were an example of quaisi-parallel flows: flows where the characteristic length sales were sufficiently different that the 2-D flow was essentially 1-D.

Toff the length scales are not different, a $2-D$ flow remains 2-D \& we must use a different approach!

Suppose we have an income. 2-D flow:

We have the O.E:

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0
$$

If we define the scalar function $\psi(x, y)$ by:

$$
u=\frac{\partial \psi}{\partial y}, \quad v=-\frac{\partial \psi}{\partial x}
$$

this has the property that the CE is satisfied automatically:

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y} \equiv \frac{\partial^{2} \psi}{\partial x \partial y}-\frac{\partial^{2} \psi}{\partial y \partial x}=0
$$

Basically, by doing this stream function substitution we are reducing the number of dependent variables (eng. u, v to ψ) while increasing the order of the differential equation
of fluid elements! That why 4 is called the stream function!

Another property: suppose we want to calculate the flow rate through any segment of the flow:

$$
\frac{Q}{W}=\int_{\Gamma}(u \cdot n) \ell s
$$

extension in
path integral
$3^{\text {rd }}$ erection
We can evaluate this for any M connecting $A \& B$ using the stream function!

The stream function has many useful properties! First, it is constant along a streamline.

Remember the material Qerivative?

$$
\frac{D \phi}{D t} \equiv \frac{\partial \phi}{\partial t}+\ddot{u} \cdot \nabla \phi
$$

the 2 ne term is the change in the direction of motion! For the stream $f(\underset{\sim}{u}$ u $\nabla \psi=0$ We can prove this:

$$
\begin{aligned}
& u \cdot \nabla \psi \equiv u \frac{\partial \psi}{\partial x}+v \frac{\partial \psi}{\partial y} \\
& =\frac{\partial \psi}{\partial y} \frac{\partial \psi}{\partial x}-\frac{\partial \psi}{\partial x} \frac{\partial \psi}{\partial y}=0
\end{aligned}
$$

So curves of constant ψ are stream lines: they follow the motion

For a unit normal: 208

$$
\underset{\sim}{n}=\left(n_{x}, n_{y}\right)
$$

the tangent is $\left(-n_{y}, n_{x}\right)$

$$
\text { So: } \left.\begin{array}{rl}
& Q \\
\omega
\end{array} \int_{\Gamma}(u, v) \cdot\left(n_{x}, n_{y}\right) Q_{s}\right\}
$$

So the flowrate through any arc from A to B is just the difference in the stream function at the se points!

OK, how do you get 4 ? let's plug into the N-S eqins:
(1)

$$
\text { 1) } \begin{aligned}
\rho\left[\frac{\partial u}{\partial t}\right. & \left.+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}\right]=-\frac{\partial p}{\partial x} \\
& +\mu\left[\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right]+\rho g_{x}
\end{aligned}
$$

i) $\rho\left[\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}\right]=-\frac{\partial p}{\partial y}$

$$
+\mu\left[\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right]+99 y
$$

Let's just look at the RHS of these eq'ns:

$$
\begin{aligned}
& R H S_{1}=-\frac{\partial p}{\partial x}+\mu\left[\frac{\partial^{3} \psi}{\partial x^{2} y}+\frac{\partial^{3} \psi}{\partial y^{3}}\right]+\rho g_{x} \\
& R H S_{2}=-\frac{\partial p}{\partial y}+\mu\left[-\frac{\partial^{3} \psi}{\partial x^{3}}-\frac{\partial^{3} \psi}{\partial x \partial y^{2}}\right]+\rho g_{y}
\end{aligned}
$$

we can eliminate the p terms by

Because the LHS is so $\frac{211}{\text { nasty }}$ We usually use this eq in only for $R e \ll 1$ when we can ignore the LHS!

For low Re, we have the Biharmonic Equation:

$$
\nabla^{4} \psi=0
$$

with appropriate B.C.'s
This equation appears in other physical problems too-particularly in the deflection of thin elastic plates! The streamfunction is identical to the deflection of an elastic plate (like a thin sheet of glass) with the same B.C.'s
the operation:

$$
\begin{aligned}
& \frac{\partial R H S_{1}}{\partial y}-\frac{\partial R H S_{2}}{\partial x} \\
&= \mu\left[\frac{\partial^{4} \psi}{\partial x^{4}}+2 \frac{\partial^{4} \psi}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4} \psi}{\partial y^{4}}\right] \\
& \equiv \mu \nabla^{4} \psi \\
& \quad \rightarrow \nabla^{4} \psi \equiv \nabla^{2}\left(\nabla^{2} \psi\right)
\end{aligned}
$$

\longrightarrow Biharmonic operator
The LHS is rather nasty:

$$
\rho\left[\frac{\partial}{\partial t}\left(\nabla^{2} \psi\right)+\frac{\partial\left(\psi, \nabla^{2} \psi\right)}{\partial(x, y)}\right]
$$

where:

$$
\begin{gathered}
\frac{\partial\left(\psi, \nabla^{2} \psi\right)}{\partial(x, y)} \equiv\left|\begin{array}{cc}
\frac{\partial \psi}{\partial x} & \frac{\partial \psi}{\partial y} \\
\left.\frac{\partial}{\partial x} \nabla^{2} \psi\right) & \frac{\partial}{\partial y}\left(\nabla^{2} \psi\right)
\end{array}\right| \\
\text { C determinant }
\end{gathered}
$$

such as the value of 4 or its derivatives on the boundary. This provides a goo Q way of visualizing the spatial dependence of $\psi \Rightarrow$ just visualize the corresponding deflection problem!

Otc, let's worte an example! Suppose we have the wiper scraping fluid off a plate. What does the flow look like?

we have $\nabla^{4} \psi=0$
well use cylindrical coordinates:

$$
u_{\theta}=-\frac{\partial \psi}{\partial r}, \quad u_{r}=\frac{1}{r} \frac{\partial \psi}{\partial \theta}
$$

Now in cylindrical coords, we have: $\nabla^{2} \equiv \frac{\partial}{\partial \nu^{2}}+\frac{1}{\nu^{2}} \frac{\partial}{\partial r^{2}}+\frac{1}{\nu^{2}} \frac{\partial^{2}}{\partial \theta^{2}}$

$$
\psi \nabla^{4} \psi \equiv \nabla^{2}\left(\nabla^{2} \psi\right)^{0}
$$

land B.C.'s:

$$
\left.\begin{array}{c}
\left.u_{r}\right|_{\theta=0}=-0,\left.u_{\theta}\right|_{\theta=0}=0 \\
\left.u_{r}\right|_{\theta=\theta_{0}}=\left.u_{\theta}\right|_{\theta=0}=0
\end{array}\right\} \text { wiper }
$$

In terms of ψ these become:

$$
\begin{aligned}
& \left.\frac{\partial \psi}{\partial \theta}\right|_{\theta=0}=-u r,\left.\frac{\partial \psi}{\partial r}\right|_{\theta=0}=0 \\
& \left.\frac{\partial \psi}{\partial r}\right|_{\theta=\theta_{0}}=\left.\frac{\partial \psi}{\partial \theta}\right|_{\theta=\theta_{0}}=0
\end{aligned}
$$

This has the general solution:

$$
\begin{aligned}
f=A \sin \theta & +B \cos \theta+C \theta \sin \theta \\
& +D \theta \cos \theta
\end{aligned}
$$

Where the constants are det.
from the B.C.'s:

$$
f^{\prime}(0)=-1, f(0)=0 ; f\left(\theta_{0}\right)=f^{\prime}\left(\theta_{0}\right)=0
$$

Now from $f(0)=0$ we get $B=0$
the others are harder!
After some algebra:

$$
\begin{aligned}
& f(\theta)=\frac{-1}{\theta_{0}^{2}-\sin ^{2} \theta_{0}}\left[\theta_{0}^{2} \sin \theta\right. \\
& -\left(\theta_{0}-\sin \theta_{0} \cos \theta_{0}\right) \theta \sin \theta \\
& \left.-\left(\sin ^{2} \theta_{0}\right) \theta \cos \theta\right]
\end{aligned}
$$

OK, what is the pressure Distribution in the fluid (andon the wiper)?

The inhomogeneous B.C. $\frac{214}{\text { suggests }}$ a solution of the form:

$$
\psi=U N f(\theta)
$$

where $f(\theta)$ has the B, C, s_{s} :

$$
\begin{aligned}
& f^{\prime}(0)=-1, f(0)=0 \\
& f^{\prime}\left(\theta_{0}\right)=f\left(\theta_{0}\right)=0
\end{aligned}
$$

Let's see if this works!

$$
\begin{aligned}
& \nabla^{2} \psi=\nabla^{2}(u r f) \\
& =\frac{U}{r}\left(f+f^{\prime \prime}\right) \\
& \nabla^{4} \psi=\nabla^{2}\left[\frac{U}{r}\left(f+f^{\prime \prime}\right)\right] \\
& =\frac{2 U}{r^{3}}\left(f+f^{\prime \prime}\right)-\frac{U}{r^{3}}\left(f+f^{\prime \prime}\right)+\frac{1}{r^{3}}\left(f^{\prime \prime}+f^{\prime \prime}\right)
\end{aligned}
$$

$=0$
Thisrequces to:

$$
f^{+N}+2 f^{\prime \prime}+f=0
$$

In cylindrical coords, we have the N-S egins (RHS only!):

$$
\begin{aligned}
\frac{\partial P}{\partial r} & =\mu\left[\frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial}{\partial r}\left(r u_{r}\right)\right)\right. \\
& \left.+\frac{1}{v^{2}} \frac{\partial^{2} u_{r}}{\partial \theta^{2}}-\frac{2}{r^{2}} \frac{\partial u_{\theta}}{\partial \theta}\right]
\end{aligned}
$$

Recall :

$$
\begin{aligned}
& u_{\theta}=-\frac{\partial \psi}{\partial r}=-u f \\
& u_{r}=\frac{1}{r} \frac{\partial \psi}{\partial \theta}=u f^{\prime}
\end{aligned}
$$

So:

$$
\begin{aligned}
\frac{\partial p}{\partial r} & =\frac{\mu U}{r^{2}}\left[-f^{\prime}+f^{\prime \prime \prime}+2 f^{\prime}\right] \\
& =\frac{\mu U}{r^{2}}\left[f^{\prime}+f^{\prime \prime \prime}\right]
\end{aligned}
$$

Thus $P \sim \frac{\mu U}{r}$.

Note that this is singular (blows up) as $r \rightarrow 0$! This isn't even an integrable singularity as the total force on the wiper Diverges as $\log (r)$ as $r \rightarrow 0$! Basically, this huge force pushes the wiper off the surface, leaving a thin film behind!

The details of the flow near the tip is fairly nasty -it requires a technique called matched asymptotic expansions.

Thus:

$$
\begin{aligned}
& z=r \cos \theta \\
& x=r \sin \theta \cos \phi \\
& y=r \sin \theta \sin \phi
\end{aligned}
$$

For this problem $u_{\phi}=0$ and there is no ϕ dependence! we have the $B . C_{1}^{2}$ s:

$$
\left.u_{r}\right|_{r=a}=u \cos \theta ;\left.u_{\theta}\right|_{r=a}=-U \sin \theta
$$

$u_{r}, u_{\theta} \rightarrow 0$ as $r \rightarrow \infty$
In spherical coordinates we have the C.E.:

$$
\begin{gathered}
\frac{1}{w^{2}} \frac{\partial}{\partial r}\left(r^{2} u_{r}\right)+\frac{1}{\mu \sin \theta} \frac{\partial}{\partial \theta}\left(u_{\theta} \sin \theta\right) \\
+\frac{1}{\mu \sin \theta} \frac{\partial}{\partial \phi}\left(u_{\phi}\right)=0 \\
0
\end{gathered}
$$

A classic stream function problem is creeping flow ($R e \ll 1$) past a sphere.

Suppose a sphere of radius a is moving $w /$ velocity U in the z-direction. The flow is fully $3-D$, but it is axisymmetric we choose a spherical coord system such as that given below:

Basically, θ is the latitude \& ϕ is the longitude!

The structure of the $\frac{220}{2 \text { egests: }}$

$$
\begin{aligned}
& u_{r}=\frac{-1}{r^{2} \sin \theta} \frac{\partial \varphi}{\partial \theta} \\
& u_{\theta}=\frac{1}{r \sin \theta} \frac{\partial \psi}{\partial r}
\end{aligned}
$$

which automatically satisfies the CE!
This is not the same as $\&$ for 2-D flow \& leads to a differmet equation! for axisymmetric flows at $R_{e}=0$:

$$
E^{4} \notin=0
$$

where:

$$
E^{2} \equiv \frac{\partial^{2}}{\partial r^{2}}+\frac{\sin \theta}{r^{2}} \frac{\partial}{\partial \theta}\left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\right)
$$

ore, how Q_{0} we solve this? We look at the B.C.'s:

$$
\left.u_{\theta}\right|_{r=a}=\left.\frac{1}{N \sin \theta} \frac{\partial \psi}{\partial N}\right|_{r=a}=-U \sin \theta
$$

thus $\left.\quad \frac{\partial \psi}{\partial v}\right|_{w=a}=-0 a \sin ^{2} \theta$
and

$$
\left.u_{r}\right|_{r=a}=\left.\frac{-1}{r^{2} \sin \theta} \frac{\partial \psi}{\partial \theta}\right|_{r=a}=U \cos \theta
$$

Thus:

$$
\left.\frac{\partial \psi}{\partial \theta}\right|_{r=0}=-U a^{2} \sin \theta \cos \theta
$$

The structure of these $B . C$, ?
suggests a solution of the form:

$$
\psi=\sin ^{2} \theta f(r)
$$

well try this and see if it works!

Now we have to derive a PE. for $f(r)$:

$$
E^{4} \psi \equiv E^{2}\left(E^{2} \psi\right) \equiv E^{2}\left(E^{2}\left(\sin ^{2} \theta f(r)\right)\right)
$$

Recall:

$$
E^{2} \psi=\frac{\partial^{2} \psi}{\partial r^{2}}+\frac{\sin \theta}{r^{2}} \frac{\partial}{\partial \theta}\left(\frac{1}{\sin \theta} \frac{\partial \psi}{\partial \theta}\right)
$$

$$
=\sin ^{2} \theta f^{\prime \prime}+\frac{f}{v^{2}} \sin \theta \frac{\partial}{\partial \theta}\left(\frac{1}{\sin \theta} \frac{\partial \sin ^{2} \theta}{\partial \theta}\right)
$$

$$
=\left(f^{\prime \prime}-2 \frac{f}{r^{2}}\right) \sin ^{2} \theta
$$

Similarly,

$$
=0
$$

Thus we get the $4^{\text {th }}$ order $O D E$:

$$
r^{4} f^{w}-4 r^{2} f^{\prime \prime}+8 w f^{\prime}-8 f=0
$$

w/B.C.'s: $f(a)=-\frac{1}{2} V a^{2}, f^{\prime}(a)=-0 a$

Plug into. B.C.'s:

$$
\left.\frac{\partial \mathcal{H}}{\partial \theta}\right|_{r=a}=2 \sin \theta \cos \theta f(a)=-U a^{2} \sin \theta \cos \theta
$$

Thus $f(a)=-\frac{1}{2} 0 a^{2}$

$$
\left.\frac{\partial \psi}{\partial r}\right|_{r=a}=\sin ^{2} \theta f^{\prime}(a)=-U a \sin ^{2} \theta
$$

Thus $f^{\prime}(a)=-U a$
So far, so good! Now for the B, C.'s at $r \rightarrow \infty$:

$$
\left.u_{\theta}\right|_{\psi \rightarrow \infty}=0=\left.\sin \theta \frac{f^{\prime}(r)}{r}\right|_{\nu \rightarrow \infty}
$$

So $\lim _{r \rightarrow \infty} \frac{f^{\prime}(\mu)}{r}=0$
and

$$
\left.u_{\mu}\right|_{\Gamma \rightarrow \infty}=0=-\left.\cos \theta \frac{f(\mu)}{\mu^{2}}\right|_{\mu \rightarrow \infty}
$$

so $\lim _{r \rightarrow \infty} \frac{f(\nu)}{r^{2}}=0$

$$
\lim _{r \rightarrow \infty} \frac{f(r)}{r^{2}}=0, \lim _{r \rightarrow \infty} \frac{f^{\prime}(r)}{r}=0
$$

Now since all the terms in the $O D E$ have the form $r^{i} f^{i t h}$, the general solution is of the form:

$$
f(r)=r^{n}
$$

Plugging in yields the polynomial:

$$
n(n-1)(n-2)(n-3)-4 n(n-1)+8 n-8=0
$$

This has 4 roots:

$$
n=-1,1,2,4
$$

Thus:

$$
f(r)=\frac{e}{r}+b r+c r^{2}+Q r^{4}
$$

where the constants are Determined from the B.C. \rangle_{5} :

The condition that $f(r)$ die off at $r \rightarrow \infty$ requires $c=Q=0$

Thus:

$$
f(v)=\frac{e}{v}+b w
$$

Now at $r=a$:
$f(a)=\frac{e}{a}+b a=-\frac{1}{2} U a^{2}$
and

$$
f^{\prime}(a)=-\frac{e}{a^{2}}+b=-v a
$$

Solving for e \& b we get:
$e=\frac{1}{4} \cup a^{3}, \quad b=-\frac{3}{4} \cup a$
$\psi=U a^{2}\left(\frac{1}{4} \frac{a}{v}-\frac{3}{4} \frac{w}{a}\right) \sin ^{2} \theta$
which gives the velocities:
$u_{v}=-\frac{U \cos \theta}{2}\left\{\left(\frac{a}{v}\right)^{3}-3 \frac{a}{v}\right\}$
$u_{\theta}=-\frac{U \sin \theta}{4}\left\{\left(\frac{a}{v}\right)^{3}-3 \frac{a}{v}\right\}$
we can also obtain the pressure Distribution:
on the sphere!)

$$
\underset{\sim}{F}=\int_{\substack{\sim=a}}^{\sigma} \cdot n Q A
$$

Thus:

At high Re, form drag is large, white stain friction is negligible! At low Re, both are comparable!
$p=p_{0}+\frac{3}{2} \mu a U \frac{\cos \theta}{w^{2}}$
It's important to note that the velocity lies off only as $O(\mathrm{ar})$
for large r. This means that as
$R_{e} \rightarrow 0$, the disturbance produced
by a sphere is felt at very large
Distances! You have to go ~ 100 radii for the velocity to drop to 1% of the value at the sphere! This means that boundaries (have a strong influence
on the motion of objects - an important result in low Re flows!

OK, now we have the velocity and
the pressure. What a bout the
diag? (for es exerted by the fluid

The integrals are a bit messy to evaluate, but eventually you get:

$$
\begin{aligned}
F & =-\hat{e}_{z}\left\{\frac{2 \pi \mu a U}{\text { form } \operatorname{lrag}}+\frac{4 \pi_{\mu a U}}{\text { Skinfriction }}\right. \\
& =-6 \pi_{\mu} a \cup \hat{e}_{z}
\end{aligned}
$$

This is known as stokes' Law
an Q is of fundamental importance in the study of suspensions at low Re. You should remember this.!!

Note that from pure dimensional analysis we had:

$$
\frac{F}{\mu \cup a}=c \text { st for } \operatorname{Re} \ll 1
$$

Getting the value of the constant took all the effort?

There's an alternative way to Calculate the drag: Do an
Energy Balance
since there's no accumulation of momentum (mimetic energy) all of the wort done by the sphere on the fluid is Dissipated in heat! The work lone by the sphere on the fluid is just:

$$
\frac{\text { Work }}{\text { Time }}=U \cdot F \text { if force on fluid }
$$

- Total viscous Dissipation

The viscous Dissipation per unit volume is $\tau: \nabla \sim$

Among the set of all vector fields \sim which satisfy:

1) the no-slip conditions on a body (e.g. $\left.u\right|_{\partial D}=\cup(\underset{\sim}{x})$) $a n Q$
2) Satisfy $\nabla \cdot \underset{\sim}{u}=0$ (continuity) then the velocity field which also satis fies the creeping flow equations results in the minimum Viscous Dissipation! Since dissipation $=F \cdot U$, this provides a means of estimating the drag on a complex shape? Example: what is the dragon a cube wy sides of length S ?
or in index notation:

$$
\tau_{i j} \frac{\partial u_{i}}{\partial x_{j}}
$$

Thus:

$$
F \cdot U=\int_{v>a} \tau: \nabla \underset{\sim}{\tau} Q V
$$

\rightarrow all volume exterior to sphere
This yields the same result!

Before we leave creeping flow, (eq. Re <<1) let's looted at another special property: Minimum Dissipation
Theorem. Proving this is beyond this course (it's covered in 544), but we can use the result!

A corollary to the minimum dissip. theorem is that the drag on any object is less than that on one which completely encloses it! This is only true for Re<l Ok, how about the cube? It's Drag is greater than that of a sphere of radius $\frac{3}{2}$ (which it encloses) but less than that of a sphere of radius $s \cdot \frac{\sqrt{3}}{2}$ which encloses it!

Thus:

$$
6 \pi \mu \cup \frac{s}{2}<F_{\text {cube }}<6 \pi \mu \cup s \frac{\sqrt{3}}{2}
$$

233
These are rigorous bounds provided Re <<1 (higher Re is very
Different!). We can also estimate the drag by just tatting the geometric mean:

$$
F_{\text {cube }} \approx 6 \pi \mu \cup s \frac{(3)^{1 / 4}}{2}
$$

Another consequence of the minimum dissipation theorem is that streamlining an object by enclosing it in a smooth shell orly increases the drag! This is certainly not true for higher Re!

We can eliminate the s g term by defining on augmented pressure

$$
P=p-\rho g \cdot \underset{\sim}{x}
$$

Thus $\nabla P=\nabla P-\rho g$
provided - is cst
So:

$$
\rho \frac{\partial u}{\partial t}+\rho \underset{\sim}{u} \cdot \nabla \underset{\sim}{u}=-\nabla P
$$

We have the vector identity:

$$
\left.\underset{\sim}{u} \cdot \underset{\sim}{\nabla} \underset{\sim}{u}=\frac{\frac{1}{2} \underset{\sim}{\nabla}\left(\frac{\sim}{2}-u\right)}{\nabla}-\underset{\sim}{u} u^{2}\right) \quad \underbrace{\underset{\sim}{\sim}}_{\text {(vorticity })} \underset{\sim}{\nabla \times u)}
$$

Thus:

$$
\rho \frac{\partial u}{\partial t}+\nabla\left(\frac{1}{2} \rho u^{2}\right)+\nabla P=\rho u \times \underset{\sim}{w}
$$

or

$$
\rho \frac{\partial \ddot{u}}{\partial t}+\underset{\sim}{\nabla}\left(\frac{1}{2} \rho u^{2}+p-\rho \underset{\sim}{g} \cdot \underset{\sim}{x}\right)=\rho u \times \underset{\sim}{\omega}
$$

OK, we've loo ked at low Re flows. Now let's look at high Re limit.
Recall the high Re scaling:

$$
\begin{aligned}
& x^{*}=\frac{x}{l}, u^{*}=\frac{u}{u}, t^{*}=\frac{t}{(v)} \\
& p^{*}=\frac{p-p_{x}}{\left(\rho U^{2}\right)}=\text { inertial scaling }
\end{aligned}
$$

Thus:

$$
\begin{aligned}
\left(\frac{\partial u^{*}}{\partial t^{*}}+u^{*} \cdot \nabla^{*} u^{*}\right)=-\nabla^{*} p^{*} & +\frac{1}{R e} \nabla^{r^{2}} u^{*} \\
& +\frac{1}{F r} g^{*}
\end{aligned}
$$

For low Re we threw out inertial terms. For high Re we throw out viscous terms $\left(0\left(\frac{1}{r_{e}}\right)\right)$! This yields the inviscid (er oviscosity)
Euler eq'ns:

$$
\rho \frac{D u \underset{\sim}{D}}{D t}=-\nabla P+\rho g
$$

These equations are most useful for irrotational flow (eng., $\omega=0$) $\underset{\sim}{\omega} \equiv \underset{\sim}{\nabla} \times \underset{\sim}{u}$
If a flow starts out irrotational, then only the viscous term can produce vorticity! Thus, if the flow is inviscid, it stays irrotational:

You can prove this by taking the curl of the $N-s$ equations, but itgets a little messy!

Anyway, if $\underset{\sim}{\omega}=0$ we get:

$$
\rho \frac{\partial u}{\partial t}+\nabla\left(\frac{1}{2} \rho u^{2}+p-\rho g \cdot \underset{\sim}{x}\right)=0
$$

If the flow is also steady:

$$
\nabla\left(\frac{1}{2} \rho u^{2}+p-\rho g \cdot \underset{\sim}{x}\right)=0
$$

(237)

How does this vary along a streamline?
From Lagrangian perspective, time rate of change (for steady flow) along streamline is just:
u. $\nabla(E)$ Whatever you're

Thus:

$$
\underset{\sim}{u} \cdot \underset{\sim}{\nabla}\left(\frac{1}{2} \rho u^{2}+p-\rho g \cdot \underset{\sim}{x}\right)=0
$$

or $\frac{1}{2} \rho u^{2}+p+\rho g z=\operatorname{cst}$ along a stream line! (Note: $-\underset{\sim}{g} \cdot \underset{\sim}{x}=\left(-{\underset{\sim}{e}}_{z} g \cdot x\right)=g z$ if g is in $-z$ direction!)
This is known as Bernoulli Eq, valid for steady, inviscid. irrotational flows!

Neglecting losses, what is the velocity of the jet, the force on the nozzle?

Conservation of Mars: $U_{1} A_{1}=U_{2} A_{2}$
Conservation of mech. Energy (eng.) Aernoulliss eq):

$$
\frac{1}{2} \rho U_{1}^{2}+P_{1}=\frac{1}{2} \rho O_{2}^{2}+P_{2}
$$

Thus $P_{1}-P_{2}=\frac{1}{2} \rho\left(U_{2}^{2}-U_{1}^{2}\right)$

$$
\begin{aligned}
& =\frac{1}{2} \rho U_{1}^{2}\left(\frac{U_{2}^{2}}{U_{1}^{2}}-1\right) \\
& =\frac{1}{2} \rho U_{1}^{2}\left(\left(\frac{A_{1}}{A_{2}}\right)^{2}-1\right)
\end{aligned}
$$

So $U_{1}=\left[\frac{2\left(P_{1}-P_{2}\right)}{\rho\left(\left(\frac{A_{1}}{A_{2}}\right)^{2}-1\right)}\right]^{1 / 2}$
$\operatorname{anQ} U_{2}=\frac{A_{1}}{A_{2}} U_{1}$

What is the physical intern. of Bernoulli's eq >n? Conservation oof Mechanical Energy! If we have no frictional losses (eng., $\mu=0 \Rightarrow$ inviscid flow) then mechanical energy is conserved along a streamline! $\frac{1}{2} g u^{2} \equiv$ Hermetic. Energy/volume
$p+\rho g z \equiv$ "Potential Energy"/volume Thus, if one goes up, the other goes low!

How can we use this? look at a jet of water at high Re:

This assumes that the flow fir ld is uniform across inlet \& outlet, \& that there are no frictional losses,

What about the force on the nozzle? We kid this sort of problem before!

$$
\int_{\partial D}(S u) u \cdot n Q A=E F \quad \begin{aligned}
& \text { (force exerted } \\
& \text { on fluid) }
\end{aligned}
$$

We are interested in x-component (flow Direction), thus:

$$
\begin{aligned}
& \sum F_{x}=\int_{\gamma_{\Delta}}\left(\rho u_{x}\right) u_{n} \cdot n Q=\rho U_{1}\left(-U_{1} A_{1}\right) \\
& +\rho U_{2}\left(U_{2} A_{2}\right) \\
& =\rho\left(U_{2}^{2} A_{2}-U_{1}^{2} A_{1}\right)=\rho U_{1}^{2} A_{1}\left(\frac{U_{2}^{2}}{U_{1}^{2}} \frac{A_{2}}{A_{1}}-1\right)
\end{aligned}
$$

241
But from Bernoulli eq:

$$
\xi U_{1}^{2}=\frac{2\left(P_{1}-P_{2}\right)}{\left(\frac{A_{1}}{A_{2}}\right)^{2}-1}
$$

So:

Now $\sum F_{x}=-F_{N}+P_{1} A_{1}-P_{2} A_{2}$
So

$$
F_{N}=P_{1} A_{1}-P_{2} A_{2}-\frac{2 A_{1} A_{2}\left(P_{1}-P_{2}\right)}{A_{1}+A_{2}}
$$

Now if $\mathrm{P}_{2}=0$ (atmospheric pressure forces on nozzle are neglected) then:

$$
\begin{equation*}
F_{N}=P_{1} A_{1}\left(1-\frac{2 A_{2}}{A_{1}+A_{2}}\right) \tag{243}
\end{equation*}
$$

So we have:

$$
\frac{1}{2} \rho u_{e}^{2}=P_{0}-P_{e}
$$

To solve, we need the radial velocity everywhere under the plate! This, in turn, gives us the pressure! By conservation of mass:

$$
2 \pi \sim h u(x)=2 \pi R_{1} h u_{e}
$$

$\therefore u(r)=\frac{R_{t}}{r} u_{e}$, at least for
$r>R_{0}$. We can take $u=0$
for $r<R_{0}$ (stagnation flow it's a bit approximate!)

$$
\begin{aligned}
& \text { So : } \\
& \frac{1}{2} \rho u_{e}^{2}+P_{e}=\frac{1}{2} \rho u^{2}+P \\
& \text { or } P=P_{e}+\frac{1}{2} \rho u_{e}^{2}\left(1-\frac{u^{2}}{u_{e}^{2}}\right) \\
& =\left\{\begin{array}{l}
P_{e}+\left(P_{D}-P_{e}\right)\left(1-\left(\frac{R_{1}}{r}\right)^{2}\right) R_{0}<r<R_{1} \\
P_{0} \quad 0<r<R_{0} \text { (stagnation) }
\end{array}\right.
\end{aligned}
$$

Let's look at a more complicated problem: what are the forces on a plate near a spool of thread as Depicted below:

What happens? Can we blow the plate off the spool of thread?

First, what is le? We shall assume invisci θ, irrotational flow. Thus:

$$
\frac{1}{2} \rho u_{e}^{2}+P_{e}=\frac{1}{2} \rho \psi_{0}^{L}+P_{0}
$$

To get the net force on the 244 plate, we need to integrate:

$$
\begin{aligned}
& F=\int_{0}^{R_{1}}\left(P-P_{e}\right) 2 \pi r Q r \\
& =\left(P_{0}-P_{e}\right) \pi R_{0}^{2}+\int_{R_{0}}^{R_{1}}\left(P_{0}-P_{e}\right)\left(1-\frac{R_{1}^{2}}{r z}\right) 2 \pi r d \\
& =\pi R_{1}^{2}\left(P_{0}-P_{e}\right)\left(1-2 \ln \left(R_{1} / R_{0}\right)\right)
\end{aligned}
$$

So if $2 \ln R / R_{0}>1$ the net force drives the plate towards the spool! The harder you blow, the tighter it sticks! The critical ratio is

$$
R_{1} / R_{0}>1.65
$$

Bernoulli problems offer lots of interesting, counter intuitive examples like this!

245
Ore, so far we .be just looted at the case of Uniform Flow. What happens when the flow 3 non-unifora?
Bernoulli's equation still applies, but now u will be more complex!

If a flow is irrotationsl (e.g., $\nabla \times \underset{\sim}{u}=0$), then $\underset{\sim}{u}$ must be able to be represented by the gradient of a scalar potential! we take:

$$
\underset{\sim}{u}=-\nabla \phi
$$

What Ques ϕ satisfy? Remember the e.E.:

$$
\underset{\sim}{\nabla} \cdot \underset{\sim}{u}=0
$$

Thus:

$$
\underset{\sim}{\nabla} \cdot \underset{\sim}{u}=-\nabla^{2} \phi=0
$$

What are the B.C.'s?

$$
\begin{align*}
& \left.u_{\theta}\right|_{r \rightarrow \infty}=-\left.\frac{1}{r} \frac{\partial \phi}{\partial \theta}\right|_{r \rightarrow \infty}=U \sin \theta \tag{247}\\
& \left.\left.u_{r}\right|_{r \rightarrow \infty}=-\left.\frac{\partial \phi}{\partial r}\right|_{r \rightarrow \infty}=-U \cos \theta\right\rangle
\end{align*}
$$

What about the B.C.'s on the cylinder?? We vie thrown out viscosity (in viscid flow), so the no-siip eq'n no longer applies! Instead, we have no flow thru the object!

$$
\left.\underset{\sim}{u} \cdot n\right|_{\partial D}=0
$$

Thus $-\left.\nabla \phi \cdot n\right|_{w=a}=0=\left.u_{r}\right|_{r=a}$
so ϕ satisfies Laplace's eq'n! Such problems are easy to solve for many geometries!

Problems for which $u=-\nabla \phi, \nabla^{2} \phi=0$ are known as ileal potential flaw, and occur for steady, inviscid irrotational flow fields!

Let'r work a classic exampleflow past a cylinder

In cylindrical coordinates:

$$
\frac{\partial^{2} \phi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \phi}{\partial r}+\frac{1}{r^{2}} \frac{\partial \phi}{\partial \theta^{2}}=0
$$

How do we solve this? hook at inhomogeneous B.C.'s (those at $r \rightarrow \infty$ ',
They suggest a solution of the form:

$$
\phi=f(r) \cos \theta
$$

We. plug in to B,C.'s:

$$
\begin{aligned}
& -\left.\frac{1}{r} \frac{\partial \phi}{\partial \theta}\right|_{r=\infty}=\left.\frac{f}{r}\right|_{r \rightarrow \infty} ^{\sin \theta}=U \sin \theta \\
& \left.\therefore \frac{f}{r}\right|_{r \rightarrow \infty}=U \\
& -\left.\frac{\partial \phi}{\partial r}\right|_{\mu \rightarrow \infty}=-f^{\prime} \cos \theta=-U \cos \theta \\
& \left.\therefore f^{\prime}\right|_{r \rightarrow \infty}=U
\end{aligned}
$$

Both are satisfied if $f \sim u r$ as $r \rightarrow \infty$

Plugging in to $\nabla^{2} \phi=0$:

$$
\cos \theta f^{\prime \prime}+\frac{\cos \theta}{r} f^{\prime}-\frac{f}{r^{2}} \cos \theta=0
$$

$$
\text { or } f^{\prime \prime}+\frac{f^{\prime}}{r}-\frac{f}{r^{2}}=0
$$

w/ B.C.'s:

$$
\left.f\right|_{r \rightarrow \infty}=U r ;\left.\quad f^{\prime}\right|_{w=a}=0
$$

f is of the form:
$f=r^{n}$ which yields:

$$
n(n-1)+n-1=0
$$

or $(n+1)(n-1)=0$

$$
\begin{gathered}
\therefore n=1,-1 \\
f(r)=\frac{c_{1}}{r}+c_{2} r
\end{gathered}
$$

From condition as $r \rightarrow \infty, \quad c_{2}=0$
boundary layer next to the surface where both viscosity and no-slip condition must apply! A Reynolds number based on the thickness of the boundary layer is of $O(1)$!

but $\frac{U 8}{2}=O(1)$
so viscous effects are
important in the B, L.
W_{e} 'll look at B.L. problems in much more Qetail in a bit!
$\operatorname{secon} \alpha,\left.u_{\theta}\right|_{H=a}=2 U \sin \theta$, which
varies from zero at the leading and tracing stagnation points to twice the free stream velocity at

At $r=a$ we have

$$
\left.f^{\prime}\right|_{r=a}=\left.\left[-\frac{c_{1}}{r^{2}}+v\right]\right|_{r=a}=0
$$

Thus $C_{1}=v a^{2}$
And hence:

$$
\phi=U\left(\frac{a^{2}}{v}+\psi\right) \cos \theta
$$

This yields the velocity distribution:

$$
\begin{aligned}
& u_{\theta}=-\frac{1}{r} \frac{\partial \phi}{\partial \theta}=U\left(1+\frac{a^{2}}{r^{2}}\right) \sin \theta \\
& u_{r}=-\frac{\partial \phi}{\partial r}=-U\left(1-\frac{a^{2}}{r^{2}}\right) \cos \theta
\end{aligned}
$$

A couple of things to note. First, $\left.u_{\theta}\right|_{r=a} \neq 0$! Thus the tangential velocity violates the no-slip condition, as expected! This leads to the development of a very thin
$\theta=\frac{\pi}{2}$! This means the fluid is accelerated going around the cylinder, and thus the pressure is lowest at $\theta=\frac{\pi}{2}$! Let's calculate this:

We have Bernoulli's 'q' $^{\prime}$:

$$
\frac{1}{2} \rho u^{2}+p+\rho g z=\operatorname{cst}
$$

We neglect gravity! far upstream We have $p=p_{0}, u=U$ on $\underline{l l}$ streamlines. Thus:

$$
\frac{1}{2} \rho u^{2}+p=p_{0}+\frac{1}{2} \rho U^{2}
$$

at $v=a \quad u \equiv u_{\theta} \quad\left(u_{r}=0\right)$, thus:

$$
\left.P\right|_{r=a}=P_{0}+\frac{1}{2} \rho U^{2}\left(1-4 \sin ^{2} \theta\right)
$$

We can use this to calculate the drag (f, e_{x}) on the cylinder! There is no skin friction (no viscosity), thus:

$$
\begin{aligned}
& F=-\int_{\sim}^{F} P n d A \\
& F_{x}=L \int_{0}^{2 \pi}(-P) n \cdot \hat{e}_{x} a d \theta \\
& \\
& =L \int_{0}^{n} \frac{1}{2} \frac{n}{2} \frac{c \pi}{2} \rho U^{2}\left(1-4 \sin ^{2} \theta\right) \cos \theta d \theta=0 \\
& =
\end{aligned}
$$

The Boendscy Layer separates, $l_{n o}$ longer is attached to the boundary! This results in a much higher Rna! \Rightarrow Separation is critical for high Re flows! Consider flow past a wing:

The AP from top to bottom provides Lift which makes the plane fly!
If there is no separation, the
Dray is quite low! It's the Drag that the engines have to overcome to keep the plane moving! A
commercial airliner has a max L / Δ ratio of ~ 20 !

Thus the drag for ideal p potential flow around a cylinder is zero! This is known as D'Alembert's Paradox, and arises because the pressure distribution is symmetric.there is high pressure on both the front and back sides, which cancel out! What really happens? \Rightarrow You don't get pressure recovery on the back side!

What happens if the B.L. $\frac{256}{25}$ Separates? This will happen if the plane moves too slowly, or at too large an angle of attack:

Separation does two things. First, it greatly increases drag, decreasing the $2 / D$ ratio and, since engines aven't designed to over come this force, the plane slows down! since L~ gU, slowing down the plane kills the lift, and the plane falls! Second, wing control surfaces (e.g. elevators) are on the trailing edge of the wing. If the

Plow separates, these surfaces are now in a separation bubble and can no longer control the motion of the plane. This whole process is called stall and a huge part of wing design is figuring out how to avoid it!
N.S eqins in this region 259
Let's look at a simple problem:
high $R e$ flow past a plate of length L at zero incidence (e.g., edge on into flow):

If we have $R_{e_{L}}=\frac{U_{L}}{\nu} \gg 1$
($R_{e_{L}}=$ plate Reynolds $)^{4}$, based on length L) we get the Euler flow gins:

$$
\frac{\Delta u}{\Delta t}=-\nabla P\left(+\frac{1}{\sum_{R}} f^{2} u\right): \nabla \cdot u=0
$$

The B.C. is just $\left.u \cdot n\right|_{y=0}=0$ (no normal $\begin{aligned} & \text { flow) }\end{aligned}$
Because wive eliminated viscosity, we 've also eliminated the Nonslip Condition!

Boundary Layer theory
The scaling of the N-S egins
at high Re suggests that viscous terms are unimportant on a length scale comparable to the size of a body. The Euler flow eqins which result require eliminating the no -slip condition! This leads to discontinuities in the velocity at the surface, thus viscous forces must be important in this region, termed the boundary layer: the region where inertia and viscosity are equally significant! We can determine the thickness of the E.L. δ by rescaling the

Far from the plate $(y \Rightarrow \infty)$ we have
the undisturbed flow:

$$
\left.\sim\right|_{y \rightarrow \infty}=U \hat{e}_{x}
$$

This set of equations has the simple solution:

$$
\underset{\sim}{u}=U \hat{e}_{X} \quad \text { everywhere! }
$$

But this leads to a step change in the velocity at $y=0$ (the plate). Since viscous forces are proportional to velocity derivatives, they must become important in this region! Suppose viscous forces are important over some region $y=O(\delta)$. We shall rescale the N-S equations to preserve the viscous term \& the Mo slip condition.

$$
\text { Let: } \begin{aligned}
x^{*} & =x / L, u^{*}=y / u \\
v^{*} & =\frac{v}{V}, y^{*}=y / \delta, p^{*}=\frac{P-P_{\infty}}{S U^{2}}
\end{aligned}
$$

To determine \& \& V we must look at the equations. First (always) we do the C.E.:

$$
\begin{gathered}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \\
\therefore \quad \frac{U}{L} \frac{\partial u^{*}}{\partial x^{*}}+\frac{V}{\delta} \frac{\partial v^{*}}{\partial y^{*}}=0 \\
\text { or } \frac{\partial u^{*}}{\partial x^{*}}+\left(\frac{L}{U \delta}\right) \frac{\partial v^{*}}{\partial y^{*}}=0
\end{gathered}
$$

Thus we require:

$$
V=\frac{\delta}{L} U
$$

Which is the same scaling we got in lubrication theory!

Now for the x-momentum eq:

$$
\frac{\mu L}{\rho U \delta^{2}}=1 \text { or } \frac{\delta^{2}}{L^{2}}=\frac{\mu}{\rho U L}=\frac{1}{R_{e_{L}}}
$$

$$
\text { where } R_{e_{L}} \equiv \text { plate Reynolds number! }
$$

So $\frac{\delta}{L}=\left(\frac{1}{R_{L}}\right)^{1 / 2} \ll 1$ for high $R e_{L}$
and we get a boundary layer!
We thus have the Boundary Layer
Bins derived by Pranotl in 1904:
$\frac{\partial u^{*}}{\partial x^{*}}+\frac{\partial v^{*}}{\partial y^{*}}=0$
$\frac{\partial u^{*}}{\partial t^{*}}+u^{*} \frac{\partial u^{*}}{\partial x^{*}}+v^{*} \frac{\partial u^{*}}{\partial y^{*}}=-\frac{\partial p^{*}}{\partial x^{*}}+\frac{\partial^{2} u^{*}}{\partial y^{* 2}}$

$$
+O\left(\frac{1}{R_{L}}\right)
$$

what about the pressure? small
we need another eg'n. Let's look at the y-momentum ${ }^{2} q^{2} n$: $s\left(\frac{\partial v}{\partial t}+u^{\partial v}+\frac{\partial v}{\partial y}\right)=-\frac{\partial p}{\partial y}+\mu\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right)$

$$
\begin{aligned}
s\left(\frac{\partial u}{\partial t}\right. & \left.+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}\right)=-\frac{\partial P}{\partial x} \\
& +\mu\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)
\end{aligned}
$$

262

$$
\text { Let } t^{*}=U t / L \text {, now we scale: }
$$

$$
\rho \frac{U^{2}}{L}\left(\frac{\partial u^{*}}{\partial t^{*}}+u^{*} \frac{\partial u^{*}}{\partial x^{*}}+v^{*} \frac{\partial u^{*}}{\partial y^{*}}\right)
$$

Dividing through:

$$
\left(\frac{\partial u^{*}}{\partial t^{*}}+u^{*} \frac{\partial u^{*}}{\partial x^{*}}+v^{*} \frac{\partial u^{*}}{\partial y^{*}}\right)=-\frac{\partial p^{*}}{\partial x^{*}}
$$

$$
+\frac{\mu L}{\rho U \delta^{2}}\left(\frac{\partial^{2} u^{*}}{\partial y^{x^{2}}}+\frac{\delta^{2}}{L^{2}} \frac{\partial^{2} u^{*}}{\partial x^{* 2}}\right)
$$

we want to keep a viscous term! Thus we require:

$$
\begin{aligned}
& \rho \frac{v^{2} \delta}{L^{2}}\left(\frac{\partial v^{*}}{\partial t^{*}}+u^{*} \frac{\partial v^{*}}{\partial x^{*}}+v^{v} \frac{\partial v^{*}}{\partial y^{*}}\right)=-\frac{\frac{\rho U^{2}}{\delta} \frac{\partial p^{*}}{\partial y^{*}}}{} \\
& \quad+\frac{\mu U}{\delta L}\left(\frac{\partial^{2} v^{*}}{\partial y^{* 2}}+\frac{\delta^{2}}{L^{2}} \frac{\partial^{2} v^{*}}{\partial x^{* 2}}\right)
\end{aligned}
$$

Dividing through and rearranging:

$$
\begin{aligned}
\frac{\partial P^{*}}{\partial y^{*}}= & -\frac{\delta^{2}}{L^{2}}\left(\frac{\partial v^{*}}{\partial t^{*}}+u^{*} \frac{\partial v^{*}}{\partial x^{*}}+v^{*} \frac{\partial v^{*}}{\partial y^{*}}\right) \\
& +\frac{1}{R_{e_{L}}}\left(\frac{\partial^{2} v^{*}}{\partial y^{* 2}}+\frac{\delta^{2}}{L^{2}} \frac{\partial^{2} v^{*}}{\partial x^{*} z}\right)
\end{aligned}
$$

$$
\text { or: } \frac{\partial p^{*}}{\partial y^{*}}=O\left(\frac{1}{\text { fe }}\right)
$$

What does this mean?? Basically, a boundary layer is too this to support a pressure gradient in the y-direction! The pressure distribution Que to the external Euler (inviscid) flow is impressed on the boundary layer!

This applies equally well to other boundary layer problems, such as flow past a cyinderietc. In these flows we take x to be the coordinate along the surface (e.g., $x \equiv a \theta$ for a cylinder of radius a) and y to be the coordinate normal to the surface (e, g., $y \equiv w-a$ for the same geornetry):

Ok, let's return to the flat plate problem, we have the B.L.egins:
cE. : $\quad \frac{\partial u^{*}}{\partial x^{*}}+\frac{\partial v^{*}}{\partial y^{*}}=0$

267
For the flat plate problem) $\begin{aligned} & 267 \\ & u^{* E F}=1 \text { (canst) \& } p^{*}=0\end{aligned}$
For steady state flow $\frac{\partial u^{x}}{\partial t^{*}}=0 S_{0}$:

$$
\begin{aligned}
& \frac{\partial u^{*}}{\partial x^{*}}+\frac{\partial v^{*}}{\partial y^{*}}=0 \\
& u^{*} \frac{\partial u^{*}}{\partial x^{*}}+v^{*} \frac{\partial u^{*}}{\partial y^{*}}=\frac{\partial^{2} u^{*}}{\partial y^{* 2}} \\
& \left.u^{*}\right|_{y^{*}=0}=\left.v^{*}\right|_{y^{*}: 0}=\left.0 \quad u^{*}\right|_{y^{*} \rightarrow \infty}=1
\end{aligned}
$$

How do we solve this set of reins?
The flow is $2-D, s_{0}$ it is natural to define a stream function:

$$
u^{*}=\frac{\partial \psi^{*}}{\partial y^{x}} ; \quad v^{*}=\frac{\partial \psi^{*}}{\partial x^{*}}
$$

Substituting in:

$$
\frac{\partial \psi^{*}}{\partial y^{*}} \frac{\partial^{2} \psi^{*}}{\partial x^{*} \partial y^{*}}-\frac{\partial \psi^{*}}{\partial x^{*}} \frac{\partial^{2} \psi^{*}}{\partial y^{2}}=\frac{\partial^{3} \psi^{*}}{\partial y^{* 3}}
$$

x-mom:
(266)
$\frac{\partial u^{*}}{\partial t^{*}}+u^{*} \frac{\partial u^{*}}{\partial x^{*}}+v^{*} \frac{\partial u^{*}}{\partial y^{*}}=-\frac{\partial P^{*}}{\partial x^{*}}+\frac{\partial^{2} u^{*}}{\partial y^{* 2}}$
y -mom:

$$
\frac{\partial p^{*}}{\partial y^{*}}=0
$$

Where we have ignored terms of $O\left(\frac{1}{R_{L}}\right)$. The B.C.'s are:

$$
\begin{aligned}
& \left.u^{*}\right|_{y^{*}=0}=\left.v^{*}\right|_{y^{*}=0}=0 \quad(\text { noes lip }) \\
& P^{*}=\left.p^{*}\right|_{y / L \rightarrow 0} ^{(E F)} \underbrace{\rightarrow}_{a t} \text { Euler flow solution }=0 \\
& \left.u^{*}\right|_{y^{*} \rightarrow \infty}=\left.u^{*}\right|_{y / L} \rightarrow 0 \text { again, Eft sol } P_{n} \text { the surface }
\end{aligned}
$$

These latter matching conditions work provided $\delta / L \ll 1$

Outer limit of BL Inner limit of EF

With B.C.'s:

(268)

$$
\left.\frac{\partial \psi^{*}}{\partial x^{*}}\right|_{y^{*}=0}=\left.\frac{\partial \psi^{*}}{\partial y^{*}}\right|_{y^{*}=0}=0 ;\left.\frac{\partial \psi^{*}}{\partial y^{*}}\right|_{y^{*}=\infty}=1
$$

We still have a 3 red order non-limear PDE. What can we do with it??

This sort of problem often admits
a similarity transform which allows us to convert a PDE to an ODE, a tremendous simplification! How do we know if this will happen? Apply Moor gan's Theorem:

1) If a problem, including B, C_{1}^{\prime}, is invariant to a one-parameter group of continuous transformations then the number of independent variables may be reduced by one.
2) The reduction is accomplished by choosing as new dependent and independent variables combinations which are invariant under the transformations.

The techniques for applying this theorem can be quite messy, butwe'll stick to the simplest one: simple affine stretching.

Let's stretch all of the dep. \& in Dep variables! Let:
$\psi^{*}=A \bar{\psi}, x^{*}=B \bar{x}, y^{*}=C \bar{y}$
where. A, B, C are a group of stretching parameters. If the problem can be make invariant while leaving one of these undetermined,

Now for the inhomogeneous $B . C$
$\left.\frac{A}{c} \frac{\partial \bar{\psi}}{\partial \bar{y}}\right|_{c \bar{y}=\infty}=1$
Now $\frac{\alpha}{c}=\infty$, so the location Qoesn't add a restriction, but we get:

$$
\left.\frac{\partial \vec{\psi}}{\partial \bar{y}}\right|_{\vec{y}=\infty}=\frac{C}{A}
$$

which is invariant only if $\frac{C}{A}=1$
In general, homogeneous B.C.'s Qon't lead to restrictions on the stretching parameters, but in homogeneous ones do!

In this problem we only had two restrictions, but we had 3 parameters! Thus we satisfy Morgan! Theorem!
it will satisfy Morgan's Theorem
Let's Lo this. Plugging in:
$\frac{A^{2}}{B C^{2}}\left(\bar{\psi}_{\bar{y}} \bar{\psi}_{\overline{x y}} \div \bar{\psi}_{\bar{x}} \bar{\psi}_{\bar{y}}^{y}\right)=\frac{A}{C^{3}} \frac{\bar{\psi}}{\overline{y y y}}$
Where subscripts denote derivatives.
Dividing thru:
$\bar{\psi}_{\bar{y}} \bar{\psi}_{\overline{x y}}-\bar{\psi}_{\bar{x}} \bar{\psi}_{\bar{y} \bar{y}}=\frac{B}{A c} \bar{\psi}_{\overline{y y y}}$
Thus the equation is invariant if
$\frac{B}{A C}=1 \quad($ eng.: $A, B \& C$ disappear! $)$
We also have to look at the B.C.'s

$$
\left|\frac{A}{B} \frac{\partial \bar{\psi}}{\partial \bar{x}}\right|_{c \bar{y}=0}=\left.0 \quad \Rightarrow \frac{\partial \bar{\psi}}{\partial \bar{x}}\right|_{\vec{y}=0}=0
$$

Similarly, $\left.\quad \frac{\partial \bar{\psi}}{\partial \bar{y}}\right|_{\vec{y}=0}=0$

What will work? In general, any combination of variables which is invariant under the transformations will work, but some are better
than others!!
For example, we have the transf:

$$
\psi^{*}=A \bar{\psi}, x^{*}=B \bar{x}, y^{*}=C \bar{y}
$$

and the restrictions:

$$
\frac{B}{A C}=1, \quad \frac{C}{A}=1
$$

Thus one possibility is:

$$
\frac{x^{*}}{\psi^{*} y^{*}}=f(\xi) ; \quad z=\frac{y^{*}}{\psi^{x}}
$$

which is clearly invariant! This would work, but would be extremely messy to use, with lots of implicit differentiation required! A better
choice is to recast the restrictions so that the variable 3 only involves in dependent variables! We hal:

$$
\frac{B}{A C}=1, \quad \frac{C}{A}=1
$$

Amore convenient pair of restrictions is obtained by division:

$$
\frac{A}{C}=1, \quad \frac{B}{C^{2}}=1
$$

Which yielles the transform:

$$
\frac{\psi^{*}}{y^{*}}=f(\xi), \xi=\frac{x^{*}}{y^{* 2}}
$$

This works better, but it's still not the best choice! The problem is that we are taking 3 先 derivatives with respect to y^{*}, but only Is
derivatives w.r.t. x^{*}, 274
-sense to put all the complexity in x^{*};

$$
\frac{A}{B^{1 / 2}}=1, \frac{C}{B^{1 / 2}}=1
$$

yields:

$$
\frac{\psi^{*}}{\left(2 x^{* / 1 / 2}\right.}=f(z) ; \xi=\frac{y^{*}}{\left(2 x^{2}\right)^{2}}
$$

(the factor of 2 in 3 and ψ are there for historical reasons - it gets rid of a constant in the transformed $\Delta E-\operatorname{an} Q h a s$ ho significance! What matters is the dependence on $y^{*} Q x$) This is Eanowas Canoniol Form: Put all the complexity in the variate
with the lowest highest derivative. There cine he exceptions to this for special problems, beta if usually works pretty well!

We also have the B.C.'s: 277
$\left.u^{*}\right|_{y^{*}=0}=\left.0 \equiv \frac{\partial \psi^{*}}{\partial y^{*}}\right|_{y^{*}=0}=f^{\prime}(0)$
$\therefore f^{\prime}(0)=0$
$\left.v^{*}\right|_{y^{*}=0}=-\left.\frac{\partial \psi^{*}}{\partial x^{*}}\right|_{y^{*}=0}=\left.\frac{-1}{\left(2 x^{* *} y^{2}\right.}\left(f-\xi f^{\prime}\right)\right|_{\xi=0}$
Now since $\left.3 f^{\prime}\right|_{\xi=0}=0$ we get

$$
f(0)=0
$$

Finally,

$$
\left.u^{*}\right|_{y^{*} \rightarrow \infty}=1 \equiv f^{\prime}(x)
$$

$$
\therefore f^{\prime}(x)=1
$$

So the complete problem reduces
to the non-linear $O D E$

$$
\begin{aligned}
& u^{*}=\frac{\partial \psi^{*}}{\partial y^{*}}=f^{\prime}(\xi) \\
& v^{*}=\frac{\partial y^{*}}{\partial x^{*}}=\frac{-1}{2 x^{* / 2}}\left(f-\xi f^{\prime}\right)
\end{aligned}
$$

where
have to solve the $O D E$, which can be Done numerically, but we know $3_{50 \%}$ will be some $O(1)$ constant (the actual value is $3_{50 \%}=1,096$). What y value is this?

$$
3_{50 \%}=\frac{y_{000}^{*}}{\left.\left(2 x^{x}\right)^{*}\right)^{2}}=\frac{y_{50 \%}}{\left(2 \frac{y, x}{v}\right)^{1 / 2}}
$$

This $y_{\text {so\% }}=\left(\frac{\nu x}{V}\right)^{1 / 2} \frac{\eta_{50 \%}}{}$
So, within some O (1) number, we reach 50% of the free stream velocity at $y \sim\left(\frac{\partial x}{U}\right)^{1 / 2}$ - and we get this without solving the equation!-
What a bout the drag on the plate? Remember that we can break Drag in te two pieces:
$\frac{\psi^{*}(2 x)^{* / 2} f(z) ;}{\text { similarity Rule }} \frac{z^{2}=\frac{\psi^{*}}{\left(2 x^{* / 3 / 2}\right.}}{\text { similarity variable }}$
and:

$$
\begin{aligned}
& f^{\prime \prime \prime}+f f^{\prime \prime}=0 \\
& f(0)=f^{\prime}(0)=0 \quad f^{\prime}(\infty)=1
\end{aligned}
$$

What can we learn from all this?
First, that the thickness of the
boundary layer grows as $X^{* 1 / 2}$. Some the profile is self-simitar (same shape for all x), we approach the free stream velocity for some constant value of 3. We expect, for example, - that we reach 50\% of the freestream - velocity at some $z=z_{50 \% 0}=0(1)$:
 To get the value of 350% wed

In this case normal forces are zero, thus we just get stein friction!
The skin friction is the shear stress?
$\tau_{w}=\left.\tau_{y x}\right|_{y=0}=\left.\mu\left[\frac{\partial u}{\partial y}+\frac{\partial x}{\partial x}\right]\right|_{y=0}$
So $z_{w}=\left.\mu \frac{\partial u}{\partial y}\right|_{y=0}=\left.0 \mu \partial \partial^{\partial y}\left(f^{\prime}\right)\right|_{y=0}$
$=\left.\frac{u \mu}{\delta} \frac{\partial f^{\prime}}{\partial y^{*}}\right|_{y^{*}=0}=\frac{u \mu}{\delta(2 x)^{3 / 2}} f^{\prime \prime}(0)$
where, plugging in for $x^{*} \& \delta$, yields

$$
\tau_{\omega}=\frac{\mu}{\sqrt{2}}\left(\frac{v^{3}}{\nu x}\right)^{1 / 2} f^{\prime \prime}(0)
$$

Where $f^{\prime \prime}(0)$ is again some $O(1)$ constant

Which must be calculated numerically. Doing this, we get $f^{\prime \prime}(0)=0.4696$, so: $\quad r_{\omega}=0.332 \mu\left(\frac{u^{2}}{\nu x}\right)^{1 / 2}$
\cdots We may define a local drag coefficient:
$C_{D}^{\frac{1}{(1 o c)}}=\frac{\dot{\tau}_{\omega}}{\frac{1}{2} U^{2}}$
So: $C_{\Delta}^{(100)}=\frac{0.664}{\left(\frac{\rho U \times}{\mu}\right)^{1 / 2}} \cong \frac{0.664}{R_{R}^{r 2}}$
So the Drag decreases as we move Qown the plate. This makes sense

- be cause the B.L. is getting thicker,
so the shear rate is going down.
...... What is the total drag?
ot, for flow past a flat plate we
had a uniform Euler Flow. What
happens for a more complicated system?
Let's look at stagnation Flow produced by a jet impinging on a surface. (often used in cleaning).

First we look at the Euler Flow:
the flow is inviscid and irrotationd, so:

$$
u=-\nabla \phi, \nabla^{2} \phi=0
$$

In this coordinate system we have

$$
u=-\frac{\partial \phi}{\partial x}, \quad v=-\frac{\partial \phi}{\partial y}
$$

with B.C. $\left.\left.v\right|_{y=0}=0 \quad \begin{array}{r}\text { (zero normal } \\ \text { velocity) }\end{array}\right)$

$$
\begin{aligned}
& \frac{F}{\frac{1}{2} \rho U^{2} L W}=\frac{1}{L} \int_{0}^{L} C_{D}^{(10 C)} d x \\
& =\frac{1}{L} \int_{0}^{L \text { late }}
\end{aligned} \frac{282}{\left(\frac{0.664}{\mu}\right)^{1 / 2}} x^{-1 / 2} Q x=\frac{1.328}{R e_{L}^{1 / 2}}
$$

In which we could have gotten everything
to within some unknown O (is cst without having ever solved the ODE! This is the power of both scaling analysis and simikirity transforms. The former tells you how a problem depends on the parameters involved, While the latter tells you allot about the functional form!

Now for inviscid stagnation flow the solution is very simple:

$$
u=\lambda x, \quad v=-\lambda y
$$

which yields the potential:

$$
\phi=-\frac{1}{2} \lambda\left(x^{2}-y^{2}\right)
$$

we will also need the pressure at
the surface $y=0$. Let the
pressure at the origin be po.
since the flow is inviscid we have.
Bernoulli's eq'n:

$$
p+\frac{1}{2} f(u \cdot u)=\text { cst along a streamline. }
$$

The surface $y=0$ is a streamline,
and at $x=y=0$ the velocity vanishes
Thus: $\left.p\right|_{y=0}=P_{0}-\frac{1}{2} \rho u^{2}$
All this is for Euler flow. What about
the flow in the boundary layer?
we have the i3.L. eg ins:
$u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}=-\frac{1}{\rho} \frac{\partial p}{\partial x}+\nu \frac{\partial^{2} u}{\partial y^{2}}$
Where we have divided by ρ \&dropped
the $\frac{\partial^{2} u}{\partial x^{2}}$ term. We also have the
B.C.'s: $u,\left.v\right|_{y=0}=0 ;\left.u\right|_{y / \delta \rightarrow \infty}=\left.\left.u\right|_{y \rightarrow 0} ^{\sigma F}\right|_{y \rightarrow 0}$
and P is given by Bernoulli's $E q^{\prime n}$ outside the BL.:
$p+\frac{1}{2} \rho u^{(\beta P)^{2}}=c s t$
$\therefore \frac{\partial p}{\partial x}+\rho u^{\epsilon \epsilon} \frac{\partial u^{6 F}}{\partial x}=0$
or $\frac{\partial \partial P}{\rho \partial x}=-\lambda^{2} x \quad \begin{gathered}\left.\text { (pressure } \begin{array}{l}\text { decreases } \\ \text { in } x-\text { direction }\end{array}\right)\end{gathered}$
soon the B.L.:

$$
u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}=\lambda^{2} x+\nu \frac{\partial^{2} u}{\partial y^{2}}
$$

We define the streamfunction 28 :

$$
u^{*}=\frac{\partial \psi^{*}}{\partial y^{*}}, v^{*}=-\frac{\partial \psi^{*}}{\partial x}
$$

Thus:

$$
\begin{aligned}
& \text { Thus } \psi_{y^{*}}^{*} \psi_{x^{*} y^{*}}^{*}-\psi_{x^{*}}^{*} \psi_{y_{y^{*}}^{*}}=x^{*}+\psi_{\text {say }}^{*} \\
& \left.\psi_{y^{*}}^{*}\right|_{y^{*} \rightarrow \infty}=x^{*},\left.\psi_{x^{*}}^{*}\right|_{y^{*}=0}=\left.\psi_{y^{*}}\right|_{y^{*}=0}=0
\end{aligned}
$$

Let's look for a similarity transform! $\psi^{*}=A \bar{\psi}, x^{*}=B \bar{x}, y^{*}=C \bar{y}$
So:
$\frac{A^{2}}{B C^{2}}\left[\overline{\psi_{y} \psi_{x y}-\psi_{x} \psi_{y y}}\right]=B \bar{x}+\frac{A}{C^{3}} \overline{\psi_{\overline{y y}}}$ Dividing through by B :
$\frac{A^{2}}{B^{2} C^{2}}\left[\overline{\left.\psi_{y} \psi_{x y}-\psi_{x} \psi_{y y}\right]=\bar{x}+\frac{A}{B C^{3}} \bar{\psi} \overline{y y y}}\right.$
Thus the $D E$ is invariant if both
$\frac{A^{2}}{B^{2} C^{2}}=1 \quad$ an $Q \quad \frac{A}{B C^{3}}=1$

$$
\frac{\lambda^{2} L^{2}}{L}\left(u^{*} \frac{\partial u^{*}}{\partial x^{*}}+v^{\frac{\partial}{\partial}} \frac{\partial u^{*}}{\partial y^{*}}\right)=\lambda^{2} L x^{*}+\frac{\nu \lambda L}{\delta^{2}} \frac{\partial^{2} u^{*}}{\partial y^{2}}
$$

$$
u^{*} \frac{\partial u^{*}}{\partial x^{*}}+v^{*} \frac{\partial u^{*}}{\partial y^{*}}=x^{*}+\frac{\nu}{\frac{\nu}{\lambda \delta^{2}}} \frac{\partial^{2} u^{*}}{\partial y^{* 2}}
$$

$$
\text { so } \delta=\left(\frac{\partial}{\lambda}\right)^{1 / 2} \text {. Which is indep, of } L \text { ! }
$$

Physically, the negative pressure gradient acts as a source of momentum in the B.L., which retards its growth!

$$
\begin{aligned}
& \text { So: } u^{*} \frac{\partial u^{*}}{\partial x^{*}}+v^{*} \frac{\partial u^{*}}{\partial y^{*}}=x^{*}+\frac{\partial^{2} u^{*}}{\partial y^{* 2}} \\
& \left.u^{*}\right|_{y^{*} \rightarrow \infty}=x^{*}(\text { inner limit of EF) } \\
& \left.u^{*}\right|_{y^{*}=0}=\left.v^{*}\right|_{y^{*}=0}=0
\end{aligned}
$$

What about inhomogeneous $\frac{\sqrt{288}}{13 \cdot C . ?}$

$$
\left.\frac{A}{C} \frac{\partial \bar{y}}{\partial \bar{y}}\right|_{\bar{y} \rightarrow \infty}=B \bar{x}
$$

$$
\begin{aligned}
& \text { or } \frac{A}{B C}=1 \quad \text { which is the same } \\
& \text { restriction as we aired } \\
& \text { had }
\end{aligned}
$$

So we only have 2 restrictions, and well get a similarity transform!
What is it?

$$
\frac{A}{B C}=1, \frac{A}{B C^{3}}=1 \quad \therefore C=1, \frac{A}{B}=1
$$

Thus:

$$
\frac{\psi^{*}}{x^{*}}=f(\xi) ; \quad z=y^{*}
$$

z is not a function of x^{*} ! we could have guessed this because δ wasn't \& function of L either!

So $\psi^{*}=x^{*} f\left(y^{*}\right)$
$\frac{\partial \psi^{*}}{\partial x^{*}}=f\left(y^{*}\right) ; \frac{\partial \psi^{*}}{\partial y^{*}}=x^{*} f^{\prime}$, etc.
We get the transformed Q $D E_{0}$:
$\left(x^{*} f^{\prime}\right)\left(f^{\prime}\right)-(f)\left(x^{*} f^{\prime \prime}\right)=x^{*}+x^{*} f^{\prime \prime}$
or, rearranging,
$f^{\prime \prime}=f^{\prime 2}-f f^{\prime \prime}-1$
and $f(0)=f^{\prime}(0)=0, f^{\prime}(\infty)=1$
The shear stress (which is what
(leads to cleaning the surface!) is just:

$$
\tau_{\omega}=\left.\mu \frac{\partial u}{\partial y}\right|_{y=0}=\frac{\mu \lambda x}{\delta} f^{\prime \prime}(0)
$$

where $f^{\prime \prime}(0)$ is some constant!
It can be shown that any B.L. flow where $\left.u^{\varepsilon F}\right|_{y / L \rightarrow 0} ^{\sim} x^{\alpha}$ will admit a similarity solution!

Thus in the boundary layer: 291

$$
\frac{\partial P}{\partial x}=\frac{1}{a} \frac{\partial}{\partial \theta}\left(\left.P\right|_{r=a} ^{m}\right)=-\frac{4 \rho v^{2}}{a} \sin \theta \cos \theta .
$$

Thus for $0<\theta<\frac{\pi}{2}$ the pressure gradient is negative. This means it is a source of momentum in the $B L$, and retards BL growth!
For $\theta>\pi / 2$ we have $\frac{\partial P}{\partial x}>0$, so it is a sink of momentum in the
BL. This leads to rapid growth, and ultimately to BL separation! To drive a BL against an adverse pressure gradient ($\frac{\partial r}{\partial x}>0$) you have to get momentum in somehow. For laminar BL's this occurs only due to viscous diffusion ($\nu \frac{\partial^{2} u}{\partial y^{2}}$), which is weather. A more efficient method
ok, what about Bi L flows is
more complex geometries? Consider
a. cylinder:

From Euler Flow equations, we have the pressure distribution:

$$
\left(\rho-p_{0}\right)_{m=a}^{\prime}=\frac{1}{2} \rho U^{2}\left(1-4 \sin ^{2} \theta\right)
$$

To looker at this problem, we define Boundary Layer coordinates: we let:

$$
\begin{aligned}
x=\theta a \quad & \text { (distance along boy from } \\
& \text { leading stagnation point })
\end{aligned}
$$

$$
\left.y=r-a \quad \text { (distance normal to } b d_{y}\right)
$$

is by promoting turbulence $\frac{\sqrt{292}}{\text { since }}$ (as well l see next lecture!) this leads to an eddy viscosity many times that of the molecular viscosity. This is done on airplane wings by vortex generators: tiny little fins that stick up out of the wing surface. These have the effect of increastry skive friction (which is small) but decreeing form drag by delaying or preventing. separation.

Another example: baseballs! for a smooth sphere, the EF drag is zero because of complete pressure recovery on the back side! In practice, BL separation kills off the
recovery and leads to a drag whish
scales as:

We canplot up C_{D} vs. Re:

The abrupt transition at $\operatorname{Re} \sim 3.4 \times 10^{5}$ results from the transition of the BL
to turbulence, Relaying separation, giving an increase in pressure recovery and
reducing Quag ~ 6 folk! On a baseball
this transition is triggered at a lower Re
What 295
What about boundary layer flow on
a more complex shape such as a
wing? Again, befine boundary layer
coordinates :
$x \equiv \begin{aligned} \text { distance along surface from } \\ \text { leading stagnation point }\end{aligned}$
$y \equiv$ distance normal to surface
If $\delta / L \ll 1$ we may ignore curvature in the boundary layer! We thus
get the B.L. egins in Cartesian
coordinates:

$$
u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}=-\frac{1}{\rho} \frac{\partial p}{\partial x}+\nu \frac{\partial^{2} u}{\partial y^{z}}
$$

Where P is obtamed from Bernoulli's
eq's applied to the Euler (inviscid)
flow outside the B,L. Let u_{0}, p_{0}
be the velocity \& pressure far upstream
by the seams. If the ball 294) thrown without rotation, it can cause it to dart sideways in an unpredictable manner Que to recovery on one side, and not the other!
and let u be the 296
and let $u_{\text {bo }}$ be the inner limit of the EF solution leg., the EF velocity evaluated at the surface).
Thus:

$$
P=P_{0}+\frac{1}{2} \rho u_{0}^{2}-\frac{1}{2} \xi u_{x}^{2}
$$

and thus:
$\frac{\partial p}{\partial x}=-\rho u_{\infty} \frac{\partial u_{\infty}}{d x}$
We also have the B.C's:

$$
\begin{aligned}
& \left.u\right|_{y=0}=\left.v\right|_{y=0}=0,\left.\quad u\right|_{y / 8}=u_{\infty} \\
& \text { and the } c E_{1}:
\end{aligned}
$$

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0
$$

we may eliminate v by integrating over the B.L:

$$
v=-\int_{0}^{y} \frac{\partial u}{\partial x} \partial y \text { since }\left.v\right|_{y=0}=0
$$

Thus:
$u \frac{\partial u}{\partial x}-\left(\int_{0}^{y} \frac{\partial u}{\partial x} d y\right) \frac{\partial u}{\partial y}=u_{\infty} \frac{d u_{\infty}}{\partial x}+2 \frac{\partial^{2} u}{\partial y^{2}}$
with B.C.'s:

$$
\left.u\right|_{y=0}=0,\left.u\right|_{y / \delta}=u_{\infty}
$$

Even with knowledge of $u_{\infty}(x)$ (e, g., the EF solution) we still have to solve this numerically. For any thing other than power law forms $u_{\infty} \sim x^{\alpha}$ we won't get a similarity solution either!

We can develop a more useful expression, known as the integral BL eqin by integrating over the $B L$ thickness in the y-direction!

$$
\begin{aligned}
\int_{0}^{y / \delta}\left\{u \frac{\partial u}{\partial x}\right. & \left.-\left(\int_{0}^{y} \frac{\partial u}{\partial x} d y\right) \frac{\partial u}{\partial y}-u_{\infty} \frac{\partial u_{x}}{\partial x}\right\} d y \\
& =\int_{0}^{y / \delta \rightarrow \infty} \nu \frac{\partial u}{\partial y^{2}} \partial y
\end{aligned}
$$

(299)
inside the integral. The whole LHS
becomes:
$L_{H S}=\int_{0}^{y / 8 \rightarrow \infty}\left\{2 u_{\partial} \frac{\partial u}{\partial x}-u_{\infty} \frac{Q u_{\infty}}{\partial x}-u_{\infty} \frac{\partial u}{\partial x}\right\} d y$
$=\int_{0}^{y / s}\left\{\frac{\partial u^{2}}{\partial x}-u_{\infty} \frac{Q u_{\infty}}{\partial x}-\frac{\partial u_{0} u_{\infty}}{\partial x}+u \frac{Q u_{\infty}}{\partial x}\right\} d y$
$=\frac{2}{d x} \int_{0}^{y / 8 \rightarrow \infty}\left(u^{2}-u u_{\infty}\right) d y+\frac{2 u_{\infty}}{d x} \int_{0}^{y / 8}\left(u-u_{\infty}\right) d y$
$=-\frac{Q}{d x}\left\{u_{\infty}^{2} \int_{0}^{y / 5 \rightarrow \infty} \frac{u}{u_{\infty}}\left(1-\frac{u}{u_{\infty}}\right) d y\right\}$

$$
-u_{\infty} \frac{d u_{x}}{d x} \int_{0}^{y / 8}\left(1-\frac{u}{u_{\infty}}\right) d y
$$

We thus le fire two integrals:

$$
\delta^{*} \equiv \int_{0}^{y / s \rightarrow \infty}\left(1-\frac{u}{u_{\infty}}\right) d y \equiv \begin{aligned}
& \text { displacement } \\
& \text { thicteness }
\end{aligned}
$$

$\theta \equiv \int_{0}^{\frac{y}{8} \rightarrow \infty} \frac{u}{u_{\infty}}\left(1-\frac{u}{u_{\infty}}\right) d y \equiv \begin{gathered}\text { momentum } \\ \text { thicteness }\end{gathered}$
Both have units of length. The

Let's work on the LHS:
$L H S=\int_{0}^{1 / 6 \rightarrow \infty}\left\{u \frac{\partial L}{\partial x}-u_{\infty} \frac{d u_{\infty}}{d x}\right\} d y$
$-\int_{0}^{y / 5 \rightarrow \infty}\left(\int_{0}^{y} \frac{\partial u}{\partial x} d y\right) \frac{\partial u}{\partial y} d y$
The second term may be integrated
by parts to yield Q :
$L H S=\int_{0}^{y / \delta}\left\{u_{\partial u}^{\partial x}-u_{\infty} \frac{\partial u_{\infty}}{d x}\right\} d y$
$-\left[u \int_{0}^{y} \frac{\partial u}{\partial x} \Omega y\right]_{0}^{y / \delta \rightarrow \infty}+\int_{0}^{y / \delta} u \frac{\partial u}{\partial x} d y$
$=\int_{0}^{\frac{1}{\delta} \rightarrow \infty}\left\{u \frac{\partial u}{\partial x}-u_{\infty} \frac{Q \mu_{\infty}}{\partial x}\right\} d y$
$+\int_{0}^{y / \delta}\left\{u \frac{\partial u}{\partial x}-u_{\infty} \frac{\partial u}{\partial x}\right\} d y$
where we have made use of the
Br. $\left.u\right|_{y=0}=0$ and that $\left.u\right|_{y / 8 \rightarrow \infty}=u_{\infty}(x)$
which inst a $f^{\prime \prime}(y)$ and can be pulled

Qisplacement thicteness is the distance streamlines outside the B.L. are
Deflected by the wedge of slow moving
fluid in the boundary layer.
The ratio $H \equiv \delta^{*} / \theta$ is knowings the shape factor and is a dimensioned measure of the shape of the B.L. velocity profile. For laminar flow
past a flat plate:
$H=\frac{\delta^{*}}{\theta}=2.59$
but this will change for $u_{\infty} \neq$ cst, and if we have turbulent $f / r w$!

Otc what's all this good for? let's
look at the RHS:
$R H S=\int_{0}^{y / k \rightarrow \infty} \nu \frac{\partial^{z} u}{\partial y^{2}} d y=\left.\frac{\mu}{\rho} \frac{\partial u}{\partial y}\right|_{0} ^{y / \delta \rightarrow \infty}=-\left.\frac{1}{\rho} \mu \frac{\partial u}{\partial y}\right|_{x_{0}}$

But this is just the shear stress at
the surface! $\varepsilon_{0}=\left.\mu \frac{\partial u}{\partial y}\right|_{y=0}$
So:

$$
\frac{r_{o}}{\rho}=\frac{\partial}{\partial x}\left(u_{\infty}^{2} \theta\right)+\delta^{x} u_{x} \frac{d u_{\infty}}{d x}
$$

which is known as the vol trainman' boundary-layer momentum balance.
In general, it's very difficult to measure a velocity derivative $\frac{\partial u}{\partial y}$ at a surface, so instead we use integrals of
u to get $\Theta \& \delta^{*}$ and then use these
to calculate skim friction!
For our flat plate problem $y_{0} \equiv U$ cst)
thee in this case:

$$
\frac{r_{0}}{\rho} \left\lvert\,=U^{2} \frac{d \theta}{d x}\right.
$$

Blasts
problem

From the Navier-Stotes equations.
They look like this:

superimposed on mean flow
(3) Unstable laminar flow: 3-D
waves and vortex formation
(4) Bursting of vortices and growth of fixed turbulent spots
(5) Fully developed turbulent boundary layer flow
which, like flow along a sufficiently long flat plate, brings us to a
discussion of turbulence!
and the total drag is just 302 $F=w \int_{0}^{L} \tau_{0} d x=\left.w g u^{2} \Theta\right|_{x}$
which is very convenient! This technique
is used in senior Lab.
So for we've focused on Laminar
BL flows (although the vonka'rman
balance works pretty well in turbulent
flow too). This is valid up to Rex $\sim 3 \times 10^{s}$.
Beyond this point life gets more
complex:
(1) Laminar flow (Blasius sol ${ }^{x}$)
(2) Unstable laminar flow -2-D

Tollmein-Schlieting waves which can
be predicted via an instability analysis

Turbulence

Turbulent flow is chaotic and time dependent, so it is difficult to Describe directly using the $N-S$
equations. Instead, we look at the time-average of the motion!

Let $\underset{\sim}{u}=\bar{u}+u^{\prime}$
where $\underset{\sim}{u}=\frac{1}{\delta t} \int_{t}^{\tilde{T}+\delta \tilde{t}^{2}}$ ut
e.g., we average u aver some small
interval of time. By definition, then,
fluctuations average out:
$\frac{1}{\delta t} \int_{t}^{t+\delta t} u^{\prime} d t \equiv 0$
The objective is to develop a set of Queraged equations for $\bar{\sim}, 5$!

First, we look at the C.E.E

$$
\left.\begin{array}{rl}
\nabla \cdot u & \nabla \\
\therefore \frac{1}{\delta t} \int_{t}^{t+\delta t}(\nabla \cdot u) d t & =\nabla \cdot\left\{\frac{1}{\delta t} \int_{t}^{t+\delta t} u d t\right.
\end{array}\right\} \equiv \nabla \cdot \bar{d}
$$

In general, the linear terms bon? givens any trouble! It's the nonlinear ones that cause problems! Let's look at the N-S eq'ns:

$$
\rho^{\partial} \frac{\partial u}{\partial t}+\rho \underline{\sim} \cdot \nabla \cdot \underset{\sim}{u}=-\nabla p+\mu \nabla^{2} u
$$

Let's time average each term:

$$
\begin{aligned}
& \frac{1}{\delta t} \int_{t}^{t+\delta t} \rho \frac{\partial u}{\partial t} \Omega t=\frac{\rho}{\delta t}[u(t)]_{t}^{t+\delta t} \\
& =\rho \frac{\bar{u}(t+\delta t)-\bar{u}(t)}{\delta t}+\rho \frac{u^{\prime}(t+\delta t)-u^{\prime}(t)}{\delta t}
\end{aligned}
$$

Now the second term may be non-zero, but it will have zero mean on average and
convection term:
307

$$
\begin{aligned}
& \frac{1}{\delta t} \int_{t}^{t+\delta t} \rho \underset{\sim}{u} \cdot \nabla \underset{\sim}{u} \Delta t=\frac{\rho}{\delta t} \int_{t}^{t+\delta t}\left(\vec{u}+u^{\prime}\right) \cdot \nabla\left(\bar{u}+u^{\prime}\right) d t \\
& =\frac{\rho}{\delta t} \int_{t}^{t+\delta t}\left[\vec{u} \cdot \nabla \underset{\sim}{u}+\underset{\sim}{u} \cdot \nabla u^{\prime} t^{\prime}+\underset{\sim}{u} \cdot \nabla \cdot \underset{\sim}{u}+u^{\prime} \cdot \nabla u^{\prime}\right] d t \\
& =\rho \bar{u} \cdot \nabla \bar{u}+\rho \frac{i}{\delta t} \int_{t}^{u} u^{\prime} \cdot \nabla u^{\prime} Q t
\end{aligned}
$$

Let's write this as

$$
\rho\left\langle{\underset{\sim}{u}}^{\prime} \cdot \nabla{\underset{\sim}{u}}^{\prime}\right\rangle \equiv \nabla \cdot\left\langle\rho \underline{u}^{\prime} \underline{u}^{\prime}\right\rangle
$$

for $\rho=c s t$ (and $\nabla \cdot \underline{u}^{\prime}=0$) where \rangle Qenote time averaging
Thus we get the tame -averaged eg ins:

$$
\beta \frac{\partial \vec{u}}{\partial \underline{t}}+s \bar{u} \cdot \nabla \bar{u}=-\nabla \bar{p}+\mu \nabla^{z} \bar{u}-\nabla\left\langle\rho u^{\prime} u^{\prime}\right\rangle
$$

This last term may be written as:
shouldn't contribute to the sow. If the time scale for turk. fluctuations is short with respect to the time scale For mean variations (e.g., the time scale of increasing or decreasing flow rates through apipe) then the first term reduces to:

$$
\frac{1}{\delta t} \rho[\bar{u}(t+\delta t)-\bar{u}(t)] \approx \varsigma_{\delta \bar{u}}
$$

Next look at pressure:

$$
\frac{1}{\delta t} \int_{t}^{t+\delta t} \nabla Q t \equiv \nabla \vec{P}
$$

and the viscosity term:

$$
\frac{1}{\delta t} \int_{t}^{t+\delta t} \mu \nabla^{2} u d t=\mu \nabla^{2} \bar{u}
$$

So the linear terms $\mathrm{Qid}^{3}+$ cause any trouble. Now for the non-linear

Where $\tilde{\tau}^{\text {turk }} \equiv-\left\langle\underline{u}^{\prime} u^{\prime}\right\rangle \equiv \underset{\text { Reynolds }}{\text { stress }}$
It's the added momentum flux due to turbulent fluctuations!

To solve these equations we need a way of modelling $\tilde{\tau}^{\text {turd }}$ in terms of velocity gradients, much like Newton's Law of Viscosity for laminar stresses! Unfortunately, this is Lard to do, and only approximate models exist!

Let's loots at the simplest model:
Prandtl mixing length theory
In gases, mass, momentum \& energy transport rates are calculated by looking at the rate with which molecules
cross streamlines \Rightarrow since they phys scaly carry momentum, mass \& energy, if they cross streamlines you get a flux of the ese quantities! You can use this to estimate the viscosity of a gas, for example!

In turbulence, Prandtl's idea was that eddies Q_{0} the same thing! As two eddies exchange places (across streamlines) they also lead to momentum transfer le.g., the Reynolds stress). In a channel, these arguments lead to:

$$
\bar{\tau}_{y x}^{\text {turd }}=\{g l^{2}|\underbrace{\left|\frac{q u}{d y}\right|}_{\rightarrow \mu^{t}}|\} \frac{R u}{d y}
$$

The quantity above is the eddy viscosity
is constant, we get:

(311)

$$
\bar{\tau}_{y x}=\tau_{0}=\bar{\tau}_{y x}^{2 a m i n o t} \bar{\tau}_{y x}^{t_{u x h}}
$$

In general, $\bar{\tau}_{y x}^{t} \gg \bar{\tau}_{y x}^{e}$ (about $100 x$!) so well ignore the laminar contrib.
We fond, empirically, the following picture:

In the turbulent core:

$$
\zeta_{0} \cong \rho \alpha^{2} y^{2}\left|\frac{\partial \bar{u}}{\frac{\partial y}{y}}\right| \frac{d \bar{u}}{d y}
$$

So: $\frac{\alpha \bar{u}}{\partial y}=\frac{1}{y} \frac{1}{\alpha}\left(\frac{r_{0}}{\rho}\right)^{1 / 2}$.
Let's render this dimensionless: The scaling for velocity is the
by analogy with Newton's law of viscosity! The quantity " l " is the length sale of the eddies, and the shear rate $\left|\frac{q u}{2 y}\right|$ is the rate with which such exchanges take place!

Prandtt made the further approximation:
Eddies are bigger in the middle of a pipe than near the wall so let:

$$
l \equiv \alpha y
$$

where the wall is at $y=0$. This cost. α is known as the vonkerme'n canst, and is about $\alpha=0.36$ by fitting to empirical data!
Ok, now let's apply this to flow
near a wall. If the shear stress

Friction velocity $v_{k} \equiv\left(\frac{x_{0}}{g}\right)^{1 / 2}$ (312
The scaling for y is the viscous length
scale $E \frac{\left.\frac{\partial}{x_{0}}\right)^{1 / 2}}{\left(\frac{x_{2}}{s}\right.}$
We thus define scaled coordinates:

$$
\bar{u}^{+}=\frac{\bar{u}}{\left(\frac{\tau_{0}}{\varrho}\right)^{1 / 2}} \quad y^{+}=\frac{y}{\frac{y}{\left(\frac{\tau_{o}}{\varphi}\right)^{1 / 2}}}
$$

So: $\frac{Q \bar{u}^{+}}{2 y^{+}}=\frac{1}{\alpha} \frac{1}{y^{+}}$
and. $\bar{u}^{+}=\frac{1}{\alpha} \ln y^{+}+c$
or the velocity profile should be logarithmic
near the wall! The constants α and C
are obtained by fitting the model to the date. For flow through tubes we get $\alpha \approx 0.36, c \approx 3.8$ for $y^{+} \geqslant 26$ (egg., $y^{+} \approx 26$ is the edge of the turbulent
core). This works for $\operatorname{Re} \geq 20,000$ in smooth pipes. For $y^{+}<26$ you need to use other correlations which include $\bar{z}_{y x}^{l}$ (e.gi, viscosity). For very small y^{+}(eeg.; $y^{+} \leq 5$) we may ignore $\bar{z}_{y x}^{z}$ rather than $\bar{z}_{y x}^{l}$! This is the viscous sublayer, which yields:

$$
\bar{u}^{+}=y^{+} \quad 0<y^{+} \leq 5
$$

So we get:

$$
\bar{u}^{+}=\left\{\begin{array}{l}
y^{+} \quad 0<y^{+}<5 \\
\frac{1}{0.36} \ln y^{+}+3.8 \quad y^{+} \geq 26
\end{array}\right.
$$

and a more complicated expression in the buffer region $5 \leq y^{+} \leq 26$

What are the physical Qumensions of the friction velocity and viscous length sade?

Thus since we reach the turbulent core only $520, \mathrm{~m}$ from the wall, fir tally the entire tube is turbulent! Ingeneral, for smooth tubes:

$$
\begin{aligned}
& \frac{\nu}{v_{*}}=\frac{\nu}{\left(\frac{\gamma_{0}}{\rho}\right)^{1 / 2}}=\frac{\nu}{\langle u\rangle} \frac{1}{\left(\frac{\tau_{0}}{\rho\langle u\rangle^{2}}\right)^{1 / 2}} \\
& \left.\approx \frac{\nu}{\langle u\rangle} \frac{1}{\left(\frac{1}{2} \cdot 0.0\right\rangle q 1} \frac{R_{e} e^{u_{0}}}{}\right)
\end{aligned} \frac{\nu}{\langle u\rangle} 5 \cdot \operatorname{Re}^{1 / 8} .
$$

for $2100<R_{e}<10^{5}$, which provides
a convenient way of estimating the thickness of the viscous sablayer (about 5-26 times this value).

Suppose we are pumping water through
a $4^{\prime \prime}(10 \mathrm{~cm})$ Ria pipe at $\langle\mu\rangle=1 \mathrm{~m} / \mathrm{s}$.
We have

$$
R_{e}=\frac{\langle u\rangle D}{\nu} \approx 10^{5}
$$

At this Re we are well into the turbulent regime! Empirical correlations suggest that for $2.1 \times 10^{3}<R e<10^{5}$ the wall shear stress is about:

$$
\frac{\tau_{0}}{\frac{1}{2} \rho^{\langle u\rangle^{2}}} \approx \frac{0.0791}{R_{e} r^{\gamma_{4}}}
$$

Thus $r_{0} \cong 22$ dyne/ cm^{2} - about
$27 x$ greater than would be the case for laminar flow! We thus get the
friction velocity $V_{x}=\left(\frac{r_{0}}{\rho}\right)^{1 / 2}=4.7 \mathrm{~cm} / \mathrm{s}$ and the viscous length:

$$
\frac{2}{V_{*}}=0.002 \mathrm{~cm}=20 \mu \mathrm{~m}!
$$

Friction Factors.

How do you, as an engineer, determine: ΔP and Q (flow rats) in a piping system? Such systems may be very complex networks, and the flow is usually turbulent. The easiest way is to use empirical friction factors! Let's start with Dimensional Ambles: $\Delta P=f^{n}(\langle u\rangle, L, D, e, \mu, j)$ where e is the surface roughness of a pipe. We can firm the dimensional Matrix:

The rant of this matrix is $\underline{\underline{3}}$, thus

Thus:
$\frac{h_{L}}{\left.(\mu u)^{2} / g\right)}=f^{n}\left(\frac{L}{D}, \frac{e}{\Delta}, R_{e}\right)$
Empirically, we observe that for $\psi_{0} \gg 1$ we have h_{L} N L (est., double the pipe length \& you double the pressure drop).
Thus:

$$
\frac{h_{L}}{\langle u\rangle^{2} / g}=\frac{L}{\sigma} f^{n}\left(\frac{e}{0}, R_{e}\right)
$$

We can define the Fanning Friction Factor:
f_{f} st.

$$
\frac{h_{L}}{\left(\langle u\rangle^{2} / g\right)}=\frac{L}{0}\left(2 f_{f}\right)
$$

where $f_{f} a f^{n}\left(\frac{e}{o}, \operatorname{Re}\right)$
If we Qetermme $f_{f} e_{i}$ the theoretically $-\cdots$
or empirically, 't's easy to aet the
heap loss!

$$
\begin{aligned}
& \text { Let's look at low Re first fo for } \\
& \text { laminar flow we get Poiscuille's Low: } \\
& \Delta P=32 \frac{\mu\langle u\rangle L}{D^{2}} \\
& \text { Thus: } \\
& h_{L}=\frac{\Delta^{D}}{19}=32 \frac{\mu<u\rangle t}{\rho 9 D^{2}} \\
& f_{f}=16 \frac{\mu}{\Delta\langle u\rangle g} \equiv \frac{16}{R c}!
\end{aligned}
$$

Nate that f_{f} is inversely proportional
to $R e$ as $R_{e} \rightarrow 0!$ This is because weave use Q inertial scaling for $\triangle P$, whereas at low Re $\Delta P \sim \frac{u\rangle \mu L}{\Delta^{2}}$ (viscous scaling).

Empirically, for laminar flow f_{f} isn't a strong function of $\frac{e}{b}$ provided U < <1. In fact, for Re $\rightarrow 0$ we can show that the correction is $O\left(\frac{e}{8}\right)$
using the Minimum Dissightiox
Theorem. This will not be true at higher Re, where even very smari ED can play a big role by promoting turbulence!
Ok, how about turbulent flow?

We start with the Law of the Wall obtained by Prandtl \& vo Kármán:

$$
\vec{u}^{+} \cong 2.5 \ln y^{+}+5.5 \text { in thetwrbuient }
$$

$$
\frac{1}{\alpha}, \alpha=0.4 \quad \text { (Karminn's value) }
$$

remember $\vec{u}^{+}=\frac{\bar{u}}{\left(\frac{\varepsilon_{g}}{\rho}\right)^{1 / 2}}<v_{*}$ =friction Let's assume that this applies throughout the pipe, and use it to calculate 〈u〉! First, we need to relate y^{+}to μ;

$$
y=R-p ; y^{+}=\frac{\left(\tau_{0} / \beta\right)^{1 / 2}}{\nu} y
$$

$$
\begin{aligned}
& S_{0}: y^{+}=\frac{\left(\tau_{0} / \rho\right)^{\gamma_{2}}}{2}(R-r) \\
& \text { Now }\langle u\rangle=\frac{1}{\pi R^{2}} \int_{0}^{R} u 2 \pi r d r \\
& =\frac{2}{R^{2}} \int_{0}^{R}\left(\frac{\tau_{0}}{\rho}\right)^{1 / 2}\left(5.5+2.5 \ln \left(\frac{\left(\tau_{\%} / \frac{1 / 2}{\nu}\right.}{\nu}(R-r)\right)\right) r d r \\
& =\left(\frac{\tau_{0}}{\rho}\right)^{1 / 2}\left[2.5 \ln \left(\frac{R\left(\tau_{0}\right)^{1 / 2}}{2}\right)+1.75\right]
\end{aligned}
$$

We need to relate τ_{0} to $\triangle P$. We Ko this with a force balance on the pipe :

Forces must balance, so:
parameters, we get:

$$
\frac{1}{\sqrt{f_{f}}}=4.0 \log _{10}\left\{\operatorname{Re} \sqrt{f_{f}}\right\}-0.40
$$

which is pretty close to what vol kurimon' got from mixing-longth theory! That was for smooth pipes $(\%=0)$. For rough pipes, we get empirically:

$$
\frac{1}{\sqrt{f_{f}}}=4.0 \log _{10}\left(\frac{D}{e}\right)+2.28
$$

Provided $\frac{e}{D} \geqslant \frac{10}{\operatorname{Re} \sqrt{T_{f}}}$
this mates more sense if we recall that
$f_{f}=\frac{z_{0}}{\frac{1}{2} \rho\langle u\rangle^{2}}$ thus we get.

$$
=\frac{10}{\sqrt{2}} \frac{D /\left(\frac{2}{D}\right)^{1 / 2}}{b}
$$

or $e^{+} \geq 7 \Rightarrow$ eeg: when the wall
roughness sticks up outside the

So $\frac{\Delta P}{L}=\frac{2 \tau_{0}}{R}$
which is valid at all Re!
Recall that $\Delta P \equiv 2 f_{f} \frac{L}{D} g^{S}\langle u\rangle^{2}$
Thus $\frac{\langle u\rangle}{\left(\tau_{0} / g\right)^{1 / 2}}=\frac{1}{\sqrt{f_{f / 2}}}$
So:
$\frac{1}{\sqrt{f_{f / 2}}}=2.5 \ln \left\{\frac{R\langle u\rangle}{2} \sqrt{\frac{F_{2}}{2}}\right\}+1,75$
or, as is more usually expressed,
$\frac{1}{\sqrt{f_{f}}}=4.06 \log _{10}\left\{\operatorname{Re} \sqrt{f_{f}}\right\}-0.40$
as derived by win karmán. We can
get aliftle better result by fitting this model to empirical ΔP measurements! If we take the constants as adjustable
viscous sublayer!

many plots of f_{f} vs Re \& $\frac{e}{1}$ are available, but the most useful correlations are:

$$
\begin{aligned}
& f_{f}=\frac{16}{R_{e}} ; R_{e}<2100 \\
& f_{f} \approx \frac{0.0791}{R_{e} / 4}, \frac{2}{D}=0,3 \times 10^{3}<R_{e}<10^{5}
\end{aligned}
$$

$$
\frac{1}{\sqrt{f_{f}}}=4.0 \log _{10}\left\{R_{e} \sqrt{f_{f}}\right\}-0.40, \begin{aligned}
& R_{e}>3 \times 100^{3} \\
&
\end{aligned}
$$

$$
\frac{1}{\sqrt{f_{f}}}=4.0 \log _{1_{0}}(D / e)+2.28, \frac{e}{\Delta} \geq \frac{10}{\operatorname{Re} \sqrt{f_{f}}}
$$

In a pipe system we don't have
just pipe, but we also have fittings!
These also contribute to the head loss, we
may Refine, for high Re flow, :

$$
h_{L}=\frac{\Delta p}{\rho g} \equiv K \frac{\langle u\rangle^{2}}{2 g}
$$

where the "K" values are determas empirically. A table of a few useful values is given below:

Table f 14.1 Friction loss Factorsior Various Pipe Fittings

(from welty, Wicks \& wilsori)
Ore, how do we use all this? Just add un the headiosson any stream!
for this Re, $f_{f} \approx 0.0038$
Thus for the pipes:
$\left(h_{L}\right)_{\text {pipes }}=(2)(0,0038)\left(\frac{565}{0.33^{\prime}}\right) \frac{\left(8.0 \frac{f / 5}{}\right)^{2}}{\left(32.2 \frac{5 t / 5^{2}}{5!}\right)}$

$$
=25.4 \mathrm{ft} \text { which is nearly } 1 \mathrm{~atm} \text { ! }
$$

What about the fittings?
For a 90° elbow, we have $k \approx 0.7$
for a sudden contraction, we have
(ingeneral).

$$
\begin{aligned}
& K_{\text {contraction }} \approx 0.45(1-\beta) \\
& \text { where } \beta=\frac{A_{\text {gmatil }}}{A_{\text {large }}}
\end{aligned}
$$

Here $\beta=0$ so $K_{\text {cont }}=0.45$
For an expansion we have:
$K_{\text {expansion }}=(1-\beta)^{2}=1$
(based on <u> in smaller pipe!)
$\begin{aligned} & \text { Thus: } \\ & \quad\left(h_{L}\right\rangle_{\text {fitimfs }}=(3 \cdot(0.7)+0.45+1) \frac{(8.0 .0)^{2}}{32.2} \\ &=3.6 . \mathrm{ft}\end{aligned}$

Suppose we have all 4"ID smoothpips, and we want a flow rate $Q=42 \mathrm{ft}^{3} / \mathrm{min}$. What is the required power of the purge? We have:

565^{\prime} of 4" pipe	Change in
3 El 90° elbows	Elevation: 150 ft
1 sudden contraction	
1 sudden expansion	

First we calculate the $R e$:

$R_{e}=2.47 \times 10^{5}$ so flow is turbulent

Ok, so what is the to al head $\frac{328}{105 s}$?
It's just the sum of the change ir elevation, $\left(h_{L}\right)_{\text {pipes }}$ \& $\left(h_{L}\right)_{\text {fittings }}$!

$$
\begin{aligned}
\Delta h & =h_{2}-h_{1}+\left(h_{L}\right)_{\text {pipes }}+\left(h_{L}\right)_{\text {fictions }} \\
& =150^{\prime}+25.4^{\prime}+3.6^{\prime}=179 \mathrm{Pt}
\end{aligned}
$$

(Dominated by change in elevation)
What is the power requirement?
$W=Q \Delta h \rho g=7800 \mathrm{ft} / \mathrm{lb}_{\mathrm{f}} / \mathrm{s}=14 \mathrm{hp}$
so we need a pump output of it hp. The input will be greater due to pump inefficiencies! What pump to use? we loots for a pump that puts out $42 \mathrm{ft} / \mathrm{min} \equiv 20 \mathrm{l} / \mathrm{s}$ with a $\Delta \mathrm{h}$ of $177 \mathrm{ft} \div 54.6 \mathrm{~m}$
The eurpecurve of a pump which would Do the job is on next page:

Note that the operating point was close to the "BEP" curve \Rightarrow Best Efficiency Point! As you move away from this curve, the efficiency goes Down! on the y-axis, the efficiency is zero \Rightarrow no flow means no work!

As a final note on pump curves, look at the "NPSHR" curve at the bottom. This is the "Net Positive Suction Head" Require Q at the pump inlet to prevent equitation in the pump! For our system: spoffipecentraction

Back to Main

$$
=28.1 \mathrm{ft}=8.6 \mathrm{~m}
$$

The trite is to find a pump which can provide the required head $(179 \mathrm{ft})$ and the desired flow rate ($20 \mathrm{l} / \mathrm{s}$), and where these values also lie in the recommended operating range of the pump! (shaded area). In this case, the H HBo pump operating at $\sim 1820 \mathrm{RPM}$ produces the required head\& flow rate. What is the power consumption? This is given by the lashed curves. The consumption is $\sim 19 \mathrm{~kW}$ plus 2 kew for power consumption of air compressor as per footnote). What is the efficiency?

Efficiency $=\frac{\text { workout }}{\text { Work in }}=\frac{14 \mathrm{kp}}{21 \mathrm{~kW}}=0.50$
$\left(1 \mathrm{~h}_{\mathrm{t}}=0.746 \mathrm{rcw}\right)$
or about 50% efficiency - not too bad!

This is greater than the wPSHR of about 2 m required at the operating condition (flow rate), so were fine.

You often want to control output of a pump by throttling it with a value. Always put the value on the down streams side! Otherwise the $\left|h_{L}\right\rangle_{\text {vane }}$ will reduce the NPSH at the pump inlet, and it will usually cavitate! This is very bad, because cavitation increases wear and can lead to the pump failing.

What about piping networks in a plant? It's easy to account for the se using the head loss approach! Consider the weactor with recycle:

Fee

Suppose we want to size the pump for the recycle stream. We can represent the head tosses \& flow rates as an electrical network!

The head is equivalent to the voltage The flow rate is equivalent to the current. The only difference is that

We combine the se definitions with mass and head loss balances:

$$
\begin{aligned}
& h_{0}-h_{L}^{(1)}-h_{L}^{(2)}-h_{L}^{(4)}=h_{e} \\
& h_{L}^{(2)}=-h_{L}^{(8)} \\
& Q_{1}=Q_{4} \quad Q_{2}=Q_{1}+Q_{3}
\end{aligned}
$$

If we specify, say, Q_{1}, and the recycle ratio Q_{3} / Q_{2} we could calculate both the total head loss through the system h_{0}-he and the required pump head ah pump. Note that this is a system of non-linear equations, but it's easy to solve it numerically!

Ohm's Law gets modified 保to the non-linetr dependence of h_{L} on Q !

As in circuits: The sum of the head loss along each possible fluid path from a common node to a common node must be the same! Let's apply this:

First, label the streams:

$$
\begin{align*}
& h_{L}^{(1)}=\left[\left(2 f_{f}^{(1)} \frac{L^{(1)}}{D} \frac{1}{g}\right)+\frac{0.4}{2 g}\right]\left(\frac{Q_{1}}{A_{1}}\right)^{2} \\
& h_{L}^{(2)}=\left[\left(2 f_{f}^{(2)} \frac{L}{0}_{(2)}^{D} \frac{1}{9}\right)+\frac{\Sigma k^{(2)}}{2 g}\right]\left(\frac{Q_{2}}{A_{2}}\right)^{2}+\Delta h^{(2)} \\
& h_{L}^{(3)}=\left[\left(2 f_{f}^{(3)} \frac{L^{(3)}}{\Delta} \frac{1}{9}\right)+\frac{\sum k^{(3)}}{2 g}\right]\left(\frac{Q_{9}}{A_{3}}\right)^{2}+\Delta h^{(3)}-\Delta h_{f a x p} \\
& h_{L}^{(4)}=\left[\left(2 f_{f}^{(4)} \frac{L^{(4)}}{\Delta} \frac{1}{g}\right)+\frac{\sum k^{(4)}}{29}\right]\left(\frac{Q_{4}}{A_{4}}\right)^{2} \tag{A}
\end{align*}
$$

Index Notation
What is index notation? If is simply a compact Q convenient way of representing scalars, vectors, and tensors, $I t$ is particularly useful for fluid mechanics, especially (as we shall see) at fowRe.
\Rightarrow There is no new physics associated with index notation, however it can reveal symmetries \& relations which were already there!

For any tensor, the order of the tensor is given by the
number of unrepeated indices!
$a \Rightarrow$ no indices, scaler $x_{i}, u_{j} \Rightarrow$ one index, both are vectors
$\sigma_{i j} \Rightarrow t_{\text {we indices, }}$, nd order
$\varepsilon_{i j k} \Rightarrow 3 \begin{gathered}\text { indices, } \\ \text { tensor }\end{gathered} 3^{\text {rd }}$ order
The letters used as subscripts don't matter, e.g. x_{i}, x_{j}, x_{p}, etc.
are equivalent
\Rightarrow exception: in an equation, each term must have the same unrepeated indices, e.g.
$x_{i}=y_{i}$ is same as $\underset{z}{x}=y$
but $x_{i}=y_{j}$ is an error!

* You cannot repeat an (D) index in any product more than once:

$$
\begin{aligned}
x_{i} y_{j} z_{i} & \equiv \underset{\sim}{y}(\underset{\sim}{x} \cdot z)(o k) \\
x_{i} y_{i} z_{i} & \equiv \text { error ! }
\end{aligned}
$$

The order of multiplication (hat product) is preserved by the names/order of the indices!

Remember $\underset{\sim}{A} \underset{\sim}{x}=\underset{\sim}{b}$?
In index notation:

$$
A_{i j} x_{j}=b_{i}
$$

To take the transpose, just reverse the order:

$$
\left(A_{i j}\right)^{T}=A_{i i}
$$

A key feature of index notation is the dot product:
\Rightarrow Repeated indices (in a product) implies summation!

Thus: $\quad x_{i} y_{i} \equiv \underset{\sim}{x} \cdot \underset{\sim}{y}=\sum_{i} x_{i} y_{i}$ (e.g., $x_{i} y_{i}=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}$)

Just thine of how you would code it up on a computer using loops!
The vector composition or outer product is also simple:

$$
\underset{\approx}{A}=\underset{\sim}{x} \underset{\sim}{x} \text { is given by } A_{i j}=x_{i} y_{j}
$$

since there are two unrepeated indices, $x_{i} y_{j}$ is a 2 nd order tensor!

Remember the Normal Equations?

$$
\underset{\approx}{A^{\top} A \underset{\sim}{x}} \underset{\sim}{A} \underset{\approx}{A} \underset{\sim}{b}
$$

We would write this as

$$
A_{k i} A_{k j} x_{j}=A_{k i} b_{k}
$$

We could also look at the residual from linear regression:

$$
\begin{aligned}
r_{i} & =A_{i j} x_{j}-b_{i} \\
\underset{\sim}{r} \cdot \underset{\sim}{r} & =\left(A_{i j} x_{j}-b_{i}\right)\left(A_{i k} x_{k}-b_{i}\right)
\end{aligned}
$$

Note that there are no unrepeated indices in the product, so it's a scaly, and that we switched a pair of " j "s to "K"s to avoid repeating j too many times! j was repeated
already, so this is ok, eng.

$$
x_{j} x_{j}=x_{k} x_{k}
$$

while both are scalars

$$
x_{j} \neq x_{k}
$$

We define a couple of things:
$\nabla \equiv \frac{\partial}{\partial x_{i}}$ gradient operator

$$
\begin{aligned}
& I \approx \delta_{i j} \begin{array}{l}
\text { (Ironecter } \delta^{k} \\
\delta_{i j}= \begin{cases}0 & i \neq \hat{j} \\
1 & i=j\end{cases}
\end{array} \$. \begin{array}{l}
\text { (Identity matrix) }
\end{array}
\end{aligned}
$$

Note: $\frac{\partial x_{i}}{\partial x_{j}}=\delta_{i j}$ (IDentity $\begin{gathered}\text { Matrix }\end{gathered}$

$$
\frac{\partial x_{i}}{\partial x_{i}}=\delta_{i i}=1+1+1=3
$$

Note that we combined the two middle terms since

$$
A_{j k} x_{k} \equiv A_{j l} x_{2}
$$

The use of k or l was indeterminate because they were repeated. Only the unrepeated index " " " has to be the same on both sides!

Ok, now we take some derivatives. Note that $A_{i j}$ and b_{j} are constants, so they pop out!

$$
\begin{gathered}
\nabla\left(\alpha^{T} \sim\right) \equiv A_{j k} A_{j k} \frac{\partial}{\partial x_{i}}\left(x_{k} x_{l}\right) \\
-2 A_{j k} b_{j} \frac{\partial x_{k}}{\partial x_{i}}+\frac{\partial b_{j} \gamma_{j}}{\partial x_{i}} \\
\delta_{k i}
\end{gathered}
$$

Ok, let's use this to solve
for the Normal Equations!
Recall we had $\underset{\sim}{\nabla}\left({\underset{\sim}{\sim}}^{\top} \underset{\sim}{\sim}\right)=0$
In index notation:

$$
\begin{aligned}
\frac{\partial}{\partial x_{i}} & \left\{\left(A_{j k} x_{k}-b_{j}\right)\left(A_{j l} x_{l}-b_{j}\right)\right\} \\
= & \frac{\partial}{\partial x_{i}}\left\{A_{j k} x_{k} A_{j l} x_{l}-b_{j} A_{j l} x_{l}\right. \\
& \left.-A_{j k} x_{k} b_{j}+b_{j} b_{j}\right\}
\end{aligned}
$$

Or, since we only have to preserve the order of the indices:

$$
\begin{gather*}
=\frac{\partial}{\partial x_{i}}\left\{A_{j k} A_{j l} x_{k} x_{l}-2 A_{j k} b_{j} x_{k}\right. \\
\left.+b_{j} b_{j}\right\} \tag{I}
\end{gather*}
$$

Now we compute the first term:

$$
\begin{aligned}
& \frac{\partial}{\partial x_{i}}\left(x_{k} x_{l}\right)=x_{k} \frac{\partial x_{l}}{\partial x_{i}}+x_{l} \frac{\partial x_{k}}{\partial x_{i}} \\
& =x_{k} \delta_{i l}+x_{l} \delta_{i k} \text { (chain rule) }
\end{aligned}
$$

So: $\nabla\left({\underset{\sim}{r}}^{\top} \underset{\sim}{r}\right) \equiv A_{j k} A_{j k}\left(x_{k} \delta_{i g}+x_{l} \delta_{i k}\right)$

$$
-2 A_{j k} b_{j} \delta_{i k}
$$

Taking the Lot product of a matrix (or vector) with the identity matrix leaves it unchanged. In index notation this is:

$$
A_{i j} \delta_{j k}=A_{i k}
$$

(just replace the " j " with a "k")

So:

$$
\begin{aligned}
\nabla\left(\sim^{\top}{ }^{\top}\right)= & A_{j k} A_{j i} x_{k}+A_{j i} A_{j l} x_{l} \\
& -2 A_{j i} b_{j}
\end{aligned}
$$

Now the first two terms are identical since in both cases" l " and "K"are repeated indices and thus indeterminate.
So:

$$
\nabla\left(\sim_{\sim}^{\top} \sim\right)=0 \text { becomes: }
$$

$2 A_{j i} A_{j k k} x_{k}-2 A_{j i} b_{j}=0$
or $A_{j i} A_{j k} x_{k}=A_{j i} b_{j}$
Which is the same as:

$$
\underset{\sim}{A^{\top} A} \underset{\sim}{x} \underset{\sim}{x}=\underset{\approx}{A^{\top}} \underset{\sim}{1}
$$

In addition to the δf^{n}, there is another special beast well use

Note that just as

$$
\begin{equation*}
\underset{\sim}{A} \times \underset{\sim}{B}=-\underset{\sim}{B} \times \underset{\sim}{A} \tag{L}
\end{equation*}
$$

In index notation we have

$$
\varepsilon_{i j k}=-\varepsilon_{j i k}
$$

switching order throws in a(-)! If $\varepsilon_{i j k}$ is cyclic, $\varepsilon_{j i k}$ must be counter-cyclic \& viceversa.
Technically, any matrix for which $A_{i j}=A_{j i}$ is termed symmetric
A matrix for which $B_{i j}=-B_{j<}$ is anti-symmetric

Note: The double dot product (e.g. $A_{i j} B_{i j}$ - no unrepeated indices) of a symmetric \& an anti-symmetric

$$
\varepsilon_{i j k} \equiv 3^{\frac{+d}{}} \text { order alternating }
$$

we use this in computing the cross-product

$$
\varepsilon_{i j k}= \begin{cases}0 & i=j, j=k, \text { or } i=k \\ 1 & i, j, k \text { cyclic } \\ -1 & i, j, k \text { counter-cyelic }\end{cases}
$$

Thus:

$$
\begin{aligned}
& \varepsilon_{123}=\varepsilon_{312}=\varepsilon_{231}=1 \\
& \varepsilon_{321}=\varepsilon_{132}=\varepsilon_{213}=-1
\end{aligned}
$$

These are the only non-zero clements!
The cross-product is:

$$
\begin{aligned}
& \underset{\sim}{A} \times \underset{\sim}{B}=\underset{\sim}{c} \text { is } \\
& c_{i}=\varepsilon_{i j k} A_{j} B_{k}
\end{aligned}
$$

matrix is zero
(M)

$$
\begin{array}{ll}
A_{i j} B_{i j}=A_{j i} B_{i j} & \text { if } \underset{\approx}{A^{T}=A} \\
=-A_{j i} B_{j i} & \text { if }{\underset{\approx}{*}}^{T}=-B_{\approx}
\end{array}
$$

$\equiv-A_{i j} B_{i j}$ (relabling repeated
Thus since $A_{i j} B_{i j}=-A_{i j} B_{i j}$, both are zero!

We can use this to prove that

$$
\begin{aligned}
& \nabla \times(\nabla \phi)=0: \\
& \varepsilon_{i j k} \frac{\partial}{\partial x_{j}}\left(\frac{\partial \phi}{\partial x_{k}}\right)=\underbrace{\varepsilon_{i j}}_{\text {antic }_{\text {antic }}} \frac{\partial^{2}}{\partial x_{j} \partial x_{k}}(\phi) \\
& \therefore=0!\quad \text { symmetric } \\
& \therefore=0
\end{aligned}
$$

Another useful concept is isotropy Mathematically, a tensor is isotrgeis. if it is invariant under rotation of the coordinate system
Physically, it's isotropic if it looks the same from all directions!

A sphere is isotropic, a football isn't!
All scalars are isotropic
No vectors are isotropic!
The most general 2 ne order isotropic tensor is $\lambda \delta_{i j}$
\rightarrow cost. scala
The most general $3^{\text {rd }}$ order tensor is $\lambda \varepsilon_{i}$,

Thus:

$$
\begin{equation*}
\underset{\sim}{\nabla} \times(\nabla \times u) \equiv \varepsilon_{i j k} \varepsilon_{k l m} \frac{\partial^{2} u_{m}}{\partial x_{j} \partial x_{l}} \tag{P}
\end{equation*}
$$

What's $\varepsilon_{i j k e} \varepsilon_{\text {rem }} ?$?
4 unrepeated indices, so it's a 4th order tensor.
$\varepsilon_{i j k}$ is is tropic, so the product is also isotropic
Hence:

$$
\begin{gathered}
\varepsilon_{i j k} \varepsilon_{k l m}=\lambda_{1} \delta_{i j} \delta_{l m}+\lambda_{2} \delta_{i l} \delta_{j m} \\
+\lambda_{3} \delta_{i m} \delta_{j l}
\end{gathered}
$$

where $\lambda_{1}, \lambda_{2} \& \lambda_{3}$ are to be determined
We can calculate these by multiplying both sides by each of the three terms on the RHIS (one at anime!) which then yields three eq'ns for the three λ 's.

The most general 4 th order isotropic tensor is:

$$
\begin{gathered}
A_{i j k \ell}=\lambda_{1} \delta_{i j} \delta_{k l}+\lambda_{2} \delta_{i k} \delta_{j l} \\
\\
+\lambda_{3} \delta_{i l} \delta_{j k}
\end{gathered}
$$

where $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are scalars
We can use this to prove vector calculus identities

From texts, we have

$$
\underset{\sim}{\nabla} \times(\underset{\sim}{\nabla} \underset{\sim}{u})=\nabla(\underset{\sim}{\nabla} \cdot \underset{\sim}{u})-\nabla^{2} \underline{\sim}
$$

Let's prove this!
$\nabla \times(\boldsymbol{Q} \times \mu) \equiv \varepsilon_{i j k} \frac{\partial}{\partial x_{j}}\left(\varepsilon_{k l m} \frac{\partial u_{m}}{\partial x_{l}}\right)$
Note the order of the indices. This is important when working with $\varepsilon_{i j k}$!

So:

$$
\begin{equation*}
\varepsilon_{i j k} \varepsilon_{k l m} \delta_{i j} \delta_{l m} \equiv \varepsilon_{i i k} \varepsilon_{k l l} \tag{Q}
\end{equation*}
$$

This is zero because $\varepsilon_{\text {ilk }}$ is zero for all i,k. Also, $\varepsilon_{i j k} \delta_{i j} \equiv 0$ because $\varepsilon_{i j k}$ is anti-symmetric and $\delta_{i j}$ is symmetric, so the doubledot product of the two is lite wise zero!

Now for the RHS:

$$
\begin{aligned}
& \left(\lambda_{1} \delta_{i j} \delta_{l m}+\lambda_{2} \delta_{i l} \delta_{j m}+\lambda_{3} \delta_{i m} \delta_{j l}\right) \\
& x\left(\delta_{i j} \delta_{\ell m}\right)=\lambda_{1} \delta_{i i} \delta_{\ell l}+\lambda_{2} \delta_{i m} \delta_{i m} \\
& +\lambda_{3} \delta_{i m} \delta_{i m} \\
& =\lambda_{1}(3)(3)+\lambda_{2}(3)+\lambda_{3}(3)
\end{aligned}
$$

since $\delta_{i i}=1+1+1=3!$
we thus get the first equation $0=9 \lambda_{1}+3 \lambda_{2}+3 \lambda_{3}$
Now for the second term. We
multiply both sides by $\delta_{i x} \delta_{j m}$.
we get:
$\varepsilon_{i j K} \varepsilon_{k l m} \delta_{i \ell} \delta_{j m}=3 \lambda_{1}+9 \lambda_{2}+3 \lambda_{3}$
Where the RHS was calculated the same way as before.
The $L H S$ is:
$\varepsilon_{i j k} \varepsilon_{k i j}$
Now if $\varepsilon_{i j k}$ is cyclic, so is $\varepsilon_{k i j}$
Likewise, if $\varepsilon_{i j k}$ is counter-cyclis, so is $\varepsilon_{k i j}$. Thus, the product is just $(1)(1)=1$ or $(-1)(-1)=1$ for all six non-zero elements!

$$
\begin{aligned}
& =\delta_{i l} \delta_{j m} \frac{\partial^{2} u_{m}}{\partial x_{j} \partial x_{l}}-\delta_{i m} \delta_{j l} \frac{(T)}{\partial x_{j} \partial x_{k}} \\
& =\frac{\partial}{\partial x_{i}}\left(\frac{\partial u_{j}}{\partial x_{j}}\right)-\frac{\partial^{2} u_{i}^{-}}{\partial x_{j}^{2}} \\
& \equiv \nabla(\nabla \cdot u)-\nabla^{2} u
\end{aligned}
$$

Which completes the identity!

The last concept we wish to explore is the difference between pseudo-tensors and physical tensors This distinction arises from the choice of right handed or lefthanded coordinate systems. A pseudo tensor is ore whose sigh depends on this choice, a physical tensor is one which doesn't!

This yields:

$$
6=3 \lambda_{1}+9 \lambda_{2}+3 \lambda_{3}
$$

Like wist, the multiplication by the last term yields:
$\varepsilon_{i j k} \varepsilon_{K \ell M} \delta_{i m} \delta_{j \ell}=3 \lambda_{1}+3 \lambda_{2}+9 \lambda_{3}$
$=\varepsilon_{i j k} \varepsilon_{k j i}=-6$
These equations have the solution

$$
\lambda_{1}=0, \quad \lambda_{2}=1, \lambda_{3}=-1
$$

Thus:
$\varepsilon_{i j k} \varepsilon_{k \ell m}=\delta_{i \ell} \delta_{j m}-\delta_{i m} \delta_{j \ell}$
and hence:
$\underset{\sim}{\nabla} \times(\underset{\sim}{\nabla} \times u)=\varepsilon_{i j k} \varepsilon_{k \ell m} \frac{\partial^{2} u_{m}}{\partial x_{j} \partial x_{l}}$
$=\left(\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j \ell}\right) \frac{\partial^{n} u_{m}}{\partial x_{j} \partial x_{\ell}}$
Let's look at some exampleS:
physical pseudo
velocity angular velocity
force torque
stress vorticity
$\delta_{i j} \quad \varepsilon_{i j k}$
we go from ore to the other
via the cross -product!
The vorticity is defined as:

$$
\omega_{i} \equiv \varepsilon_{i j k} \frac{\partial u_{k}}{\partial x_{j}} \quad\left(e, q, \omega=\underset{\sim}{\nu} X_{i}\right)
$$

ω_{i} is a pseudovector
u_{k} is a physical vector
Likewise,
$\nabla X \underset{\sim}{\omega} \equiv \varepsilon_{i j k} \frac{\partial \omega_{k}}{\partial x_{j}}$ is a physical
vector. In fact, our vector
iQentity yields

$$
\begin{aligned}
& \nabla \times \omega_{\sim}^{\omega} \equiv \varepsilon_{i j k} \frac{\partial \omega_{k}}{\partial x_{j}}=\varepsilon_{i j k} \frac{\partial}{\partial x_{j}}\left(\varepsilon_{k l m i} \partial{u_{l}}_{l}\right) \\
& =\varepsilon_{i j k} \varepsilon_{k l m} \frac{\partial u_{m}}{\partial x_{j} \partial x_{l}} \\
& =\frac{\partial}{\partial x_{i}}\left(\frac{\partial u_{j}}{\partial x_{j}}\right)-\frac{\partial^{2} u_{i}}{\partial x_{j}^{2}}
\end{aligned}
$$

which is a physical vector
The reasor why we matee this distinction is that a plysical tensor and a pseudotensor can never be equal!

How can we use this? Consider the following problem. Suppose we have a body of revolution whose orientation is specified by the unit vector p_{i}, e.g.
There is orly one way to Qo this!!

$$
A_{i k}=\lambda \varepsilon_{i j k} P_{j}
$$

where λ is some scalar!
Thus $\Omega_{i}=\lambda \varepsilon_{i j k} P_{j} F_{k}$ and a single experiment can determine λ, which is constant for all orientations:

Likewise, if the object has fore-and-a.ft symmetry (e.g., a footbali, which looks the same For P and - P orientations) we have that Aik must be an ever function of P. Since the only possible form of $A_{\text {ik }}$ is

(w)

It's settling under gravity with a net force $\underset{\sim}{F}$ (physical vector). At very low Re, how does its angular velocity (pseudovector) Ω \&epend on p??

At low Re, we can show that $\sqrt[\sim]{2}$ is proportional to $\underset{\sim}{F}$

Thus $\Omega_{i}=A_{i k} F_{k}$ where Aik must be a pseulotensor which Qepends only on p and the objects shape!
OQQ in P, λ must be
zero for such objects! Thus, in example, rods (foreaft symmetric cylinders) \&on't rotate when settling at low $R e$, regarQless of orientation.

We can also look at the settling velocity U_{i} (physical vector) for some F:

$$
U_{i}=B_{i j} F_{j}
$$

here $B_{i j}$ is a physical tensor which depends on p. The most general form is:

$$
B_{i j}=\lambda_{i} \delta_{i j}+\lambda_{2} P_{i} P_{j}
$$

Thus:
(z)
$\omega_{i}=\left(\lambda_{1} \delta_{i j}+\lambda_{2} p_{i} p_{j}\right) F_{j}$
where λ_{1} \& λ_{2} must be
determined from experiment or (nasty) calculation. Actually, by measuring the settling velocity
of a rod broadside on and
end on, you can get $\lambda_{1} \& \lambda_{2}$;
allowing you to calculate $\underset{\sim}{\sim}$
for all orientations - including
the lateral velocity for inclined
rods! Well \&o this experiment
later this semester.

