## CBE 30355 TRANSPORT PHENOMENA I

## First Hour Exam

10/4/11

## This test is closed books and closed notes

Problem 1. ( 15 pts ) Hydrostatics: Consider the system depicted below. Two tubes, filled with a fluid of density $\rho$, are connected at the bottom. The tube radii are $R_{1}$ and $\mathrm{R}_{2}$, respectively. A piston (ignore friction!) sits on the top of the fluid in each tube. The mass of the piston in tube 1 is $\mathrm{M}_{1}$, and the mass of the piston in tube 2 is $\mathrm{M}_{2}$. Initially both pistons are at a height $h_{0}$, and then they equilibrate to different heights $h_{1}$ and $h_{2}$.
a. Calculate the equilibrium height difference $h_{2}-h_{1}$.
b. Determine both $h_{2}$ and $h_{1}$ in terms of the initial height $h_{0}$.


Problem 2. ( 15 pts ) Plane-Poiseuille Flow: It is desired to pump fluid of viscosity $\mu$ through a microchannel of length $L$, width $W$, and depth $2 b$ with volumetric flow rate $Q$ as depicted below. The aspect ratios are such that $\mathrm{L} \gg \mathrm{W} \gg \mathrm{b}$.

a. Making any reasonable approximations, develop an equation for the pressure drop required for the flow rate Q .
b. If $\mathrm{L}=10 \mathrm{~cm}, \mathrm{~W}=0.1 \mathrm{~cm}$, and $\mathrm{b}=0.001 \mathrm{~cm}$ (e.g., $2 \mathrm{~b}=20 \mu \mathrm{~m}$ ), $\mathrm{Q}=0.1 \mu \mathrm{l} / \mathrm{s}$ (e.g., the channel processes 1 ml in a bit under 3 hours), and the working fluid is water, what is the numerical value of the pressure drop in cgs units? In atmospheres? In $\mathrm{cm}_{2} \mathrm{O}$ (e.g., if you used a water manometer to measure it)?

Problem 3. (15 pts) Conservation of Momentum: Consider the plate and mass depicted below. The mass M is supported by the deflection of a jet of water of volumetric flow rate $Q$ and density $\rho$. The jet emerges from a nozzle of cross-sectional area A, yielding some initial velocity $U_{0}$. The curvature of the plate deflects the stream backwards by some angle $\theta$. Using all this (and an integral momentum balance!) calculate the equilibrium height of the plate. Note that the jet slows down as it moves upwards: think of Bernoulli's Equation!


Problem 4. (15 pts) Short Answer / Index notation / Additional Readings
Identify the physical mechanism behind the following terms:

1. $\rho \mathrm{u}_{\sim}$ (two interpretations!)
2. $\mu \frac{\partial^{2} u_{x}}{\partial y^{2}}$
3. $\rho \frac{\mathrm{V}_{\mathrm{r}} \mathrm{v}_{\theta}}{\mathrm{r}}$
4. $\rho u_{x} \frac{\partial u_{y}}{\partial x}$
5. $\frac{D \rho}{D t}$

Briefly answer the following (2 pts each):
6. What is the most general relationship for the velocity of a body of revolution falling under some force $F_{j}$ in terms of its orientation vector $p_{j}$ at zero Re? Use index notation.
7. What is the corresponding expression for its angular velocity.
8. Write down the continuity equation for an incompressible fluid using index notation.
9. The "legs of wine" phenomenon is driven by ethanol's evaporation affecting what material property?
10. Cookie dough climbs up the shaft of a mixer (the Weissenberg Effect). Why?

