
CBE 30355 Transport Phenomena  I 
Final Exam 

 
December 13, 2010 

 
Closed Books and Notes 
 
Problem 1. (20 points)  Scaling/Boundary Layers:  For homework you examined the 
boundary layer produced by a rotating disk.  In this problem we use this velocity 
distribution to determine the temperature of a heated, rotating disk.  Consider the disk 
of radius R depicted below, rotating with angular velocity ! in an unbounded fluid.  
The velocity distribution in the r and z directions (the ones that matter) near the disk are 
given by: 
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where " is an O(1) dimensionless constant that would be obtained from a numerical 
solution of the momentum transfer boundary layer equations.  The disk is heated, such 
that at the surface there is a constant heat flux (energy/area/time) of: 
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a). By scaling the energy equation and boundary conditions in the boundary layer limit, 
determine the characteristic temperature of the surface of the disk as a function of the 
parameters of the problem.  You may take the temperature far away from the disk to 
have a reference value of zero (just like pressure in incompressible flow, the absolute 
value of the temperature doesn’t matter as long as material properties are assumed 
constant).  The energy equation for this problem is: 
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b). How fast do we have to rotate the disk for the scaling result obtained in part (a) to be 
valid? 
 
c). Using affine stretching, show that this (now dimensionless) problem admits a self-
similar solution.  Obtain the corresponding ODE and boundary conditions. 
 
d). Solve the equation to determine the temperature distribution on the disk.  You may 
leave the final result in terms of an integral. 
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Problem 2. (20 points) Earlier this semester students demonstrated the interesting issue 
of the drainage of a can of liquid through a small hole of radius R0.  Here we examine 
this phenomenon: 
 
a). If the top of the can is sealed (only the one hole in the bottom!) it is observed that the 
liquid won’t come out at all if the radius of the hole is sufficiently small, and that the 
critical size doesn’t depend on the height or radius of the can either.  Adding a tiny 
amount of soap to the hole caused the liquid to start running out, showing that the 
drainage was held off by surface tension.  Using these observations and dimensional 
analysis, estimate the critical radius R0 for water (# = 70 dyne/cm). 
 
b). Physically, why shouldn’t the critical size of the hole depend on the height of the 
fluid in the can?  No more than a couple of sentences! 
 
c). When a hole was punched into the top of the can, air rushed in and the liquid 
drained out very quickly.  Neglecting viscosity, develop an equation to determine the 
velocity and flow rate as a function of fluid depth, and use it to calculate the drainage 
time for initial height h0.  Evaluate this drainage time for the properties of water, h0 = 
10cm, R1 = 5cm, and R0 = 0.25cm.  You may want to use appropriate “K” values from 
the table on the next page! 
 
d). A colleague argues that you are making a serious mistake by ignoring viscous 
effects.  Estimate how large the viscosity of the fluid in the can would have to be to 
significantly affect the drainage time. 
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Problem 3. (10 points) Plane Poiseuille Flow:  A problem which is currently being 
investigated in bioengineering laboratories is the phenomenon of cell adhesion to 
surfaces in the presence of hydrodynamic stresses.  This is very important in the design 
of biocompatible materials, for example.  To study this, a researcher has built a 
rectangular flow cell which is 50µm deep, 1mm wide, and 2cm long.  The objective is to 
have a wall shear stress (e.g., stress at the lower wall - the 1mm x 2cm surface - where 
cell adhesion is being studied) of 10 dyne/cm2.  If the working fluid has the same 
viscosity as water, what should the flow rate of the pump supplying the fluid be? 
 

 
 
Problem 4. (10 points) You are designing an overflow drain for a tank as depicted 
below.  It is required that the pipe must handle a flow rate of 5 liters/s.  What is the 
minimum diameter of the drain pipe? 
 

7 m

1 m

5 m

10 m  
You may find the following expressions useful: 
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Fitting K value 

sudden contraction 0.45 
sudden expansion 1.0 

90° elbow 0.90 



Problem 5. (30 points) Pump Curves / Additional Readings / Short Answer: 
 
The first seven questions refer to the pump curve below: 
 
1.  It is desired to pump 75 liters/sec from a pond to an elevation of 75 meters.  If we 
neglect all frictional losses (say we use a really fat pipe!) is the pump HH150 
recommended for the job? 
 
2.  What is the useful mechanical work done by the pump on the fluid per unit time? 
 
3.  What is the efficiency of the pump at the operating conditions? 
 
4.  How far up the hill from the level of the pond can we put the pump?  (Again, neglect 
frictional losses)  (Note: 1atm ! 10.3 m water) 
 
5.  Frictional losses always add to the required head.  What additional head losses can 
we tolerate before the pump is unable to achieve the required flow rate? 
 
6.  Your boss proposes to use a 10cm diameter pipe for this system.  Quantitatively 
demonstrate why this is probably a bad idea. 
 
7.  About how big should the pipe be instead?  Make any approximations you think are 
reasonable. 
 

 



 
8. The displacement thickness is defined as: 
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Provide a brief physical interpretation of this quantity. 
 
9. A sphere of density $m (> fluid density $f) and radius a is sitting on the wall of a 
microfluidic channel of half-width b (b>>a).  At high enough velocities U, inertial lift 
effects will overcome gravity and cause the sphere to lift off from the wall.  Estimate the 
critical velocity. (Hint: in the limit b>>a the lift scales with the shear rate at the wall, not 
directly with the mean velocity.) 
 
10. Why can’t viscous forces cause the sphere to lift off from the plane in channel flow?  
No more than two sentences! 
 
11. At high Re, drag principally results from: 
A. Potential Flow B. Boundary Layer Separation 
C. Skin Friction D. Turbulence 
 
12. Give a physical description of the Reynolds stress (e.g., where does it come from, 
and how is it defined?). 
 
13. Experimentally, how can you most accurately calculate the shear stress on a plate in 
boundary layer flow at high Reynolds numbers from the velocity profile? 
 
14. For a shear stress of 49 dynes/cm2 in the turbulent flow of water through a pipe, 
about how rough does the pipe wall have to be before it influences the flow? 
 
15. Using index notation, write down the force exerted by the surrounding fluid on an 
arbitrary object in terms of the stress tensor %ij. 
 
 
 


