
PROBLEM SET 11                        CBE30355                             DUE 12/5/24 
 
 

1.  Last week you scaled the problem of shear flow past a heated plate.   This time you 
will solve a somewhat simpler version of it! 
 
a).  By using the coordinate stretching technique illustrated in class, show that the 
boundary layer problem described below admits a similarity solution and obtain the 
similarity rule and similarity variable. Obtain the transformed ODE and boundary 
conditions.  How does the thickness of the thermal boundary layer grow as it moves 
down the plate? 
 
b).  Solve the ODE.  Note that f"/f' = (ln(f'))'.  You may leave the final result in terms of 
an explicit integral of a known function, or you may evaluate the integral in terms of the 
incomplete gamma function (you can look it up in a handbook, or online).  Obtain a 
similar explicit relationship for the heat loss from the plate as a function of the length of 
the plate.  Note that nearly all aspects of the solution except the final numerical value 
may be learned without explicitly solving the equation. 
 
c). Evaluating the integral above, get the O(1) constant f’(0), and thus the numerical 
value of the heat loss.  You can solve the whole differential equation numerically as 
discussed in class, evaluate the integral from part b numerically or via mathematica, or 
evaluate the gamma function integral.  All methods work fine, just say how you got 
your answer! 
 
Recall that the problem was flow past the flat plate y=0 as depicted below.  Fluid with a 
temperature T = 0 flows along the plane in the x direction with velocity u = Gy where G 
is the shear rate (e.g., plane Couette flow without the upper plane).  The plate is 
maintained at a temperature T = 0 for x < 0 and a dimensionless temperature T = 1 for x 
> 0.  The governing equations and boundary equations are given below. 
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2. Boundary layer growth with suction:  One technique used to control the rate of 
boundary layer growth on airplane wings is suction -- the wing (or plate) is porous, and 
fluid is sucked out of tiny holes which has the effect of keeping the boundary layer 
attached and preventing separation.  In this problem we will examine the simple case of 
uniform flow past a flat plate where the vertical suction velocity is given by the power-
law relation: 
 

v|y = 0 =  -λ x -1/2 
 
a. What should be the characteristic magnitude of λ to affect the boundary layer 
thickness (e.g., how should it scale with U, µ, ρ, L, etc.) and what should be the 
magnitude of the total amount of gas withdrawal (the integral of v over the plate)? 
 
b. Solve for the dimensionless displacement thickness and wall shear stress (f’’(0)) as a 
function of λ* (e.g., λ divided by its characteristic scaling) and plot it up.  Note that this 
will require a numerical solution to the Blasius Equation - where your boundary 
condition f(0) = 0  is replaced by one which involves λ∗. 
 

 
 

3. An important experimental geometry in electrochemistry is the spinning disk 
electrode, in which a disk is spun rapidly in a fluid.  The diffusion of momentum away 
from the surface of a disk imparts a centrifugal force which throws the fluid out 
radially, drawing fluid in axially.  All three components of the velocity are non-zero 
(the coriolis force matters too), however some components are larger than others.  This 
problem is essentially the same as the tea leaf problem you looked at for homework last 
week, only now you are actually going to solve it! 
 
a. Consider a disk of radius R spinning with angular velocity Ω in an infinite fluid at 
rest.  By scaling the r and θ momentum equations and the continuity equation, estimate 



the boundary layer thickness and characteristic radial and vertical velocities as a 
function of the parameters in the problem.   
 
b. We are primarily interested in the total flow rate of fluid into and out of the boundary 
layer.  This is just the vertical velocity times the area of the disk!  Based on your 
scalings, estimate the flow rate for a 5cm radius disk spinning in water at an angular 
velocity of 100 radians/s.  What is the characteristic boundary layer thickness for these 
values? 
 
c. As could be demonstrated from either the scaling process or via simple affine 
stretching, this problem admits the classic von Karman similarity solution: that uθ*= 
r*f(z*), ur* = r* g(z*), and uz* = h(z*).  Plug these into the r and θ momentum equations 
and the continuity equation to obtain a set of three ODE’s for f, g, & h.  Determine the 
five boundary conditions. 
 
d. By breaking this problem into a set of five coupled first order ODE’s such as 
described in class it is pretty straightforward to solve the problem numerically using 
ode23.m (or your favorite integrator) and fminsearch.m (or your favorite 
multidimensional optimization utility) to determine the two unknown initial conditions 
via the shooting method.  The shooting method is more robust if you define an objective 
function which is the norm of the two “misses” and find the values which minimize it 
(it should be zero when you hit the target!).  Do this and plot up f, g, and h.   
 
(Note: you can’t directly integrate “to infinity” for this problem due to stability issues: 
the integration to large z* is very strongly dependent on the unknown initial conditions 
and both the integrator and root finder tend to hang up.  An easy way of fixing this is to 
iteratively increase your limit of integration (starting at some small initial value, such as 
1) until the problem converges, using the last best fit values at the current limit as the 
initial guess for the next larger limit of integration.  An example of such a code (and a 
bit fancier than required here) can be found in the senior lab experiment near the 
bottom of the page:   
 
http://www.nd.edu/~dtl/cheg459/pivexperiment/) 
 
e. You are primarily interested in the flow rate of fluid into the boundary layer.  This is 
just the limit of uz* at large z* times its scaling and the disk area.  What is this value 
from your numerical solution? How much does the exact flow rate deviate from the 
answer you got for part b, where you took the unknown O(1) constant to be one? 
 



What you should learn from these problems: 
 
Problem 1: Heat Loss from a plate in shear flow.   
 

a. This problem, as well as the next two, demonstrate the use of similarity 
transforms to convert PDE’s to ODE’s.  Lots of practice using Morgan’s Theorem 
and affine stretching! 

b. Practice actually “getting the number” - the O(1) unknown constant left over 
after scaling. 

c. Practice analytically solving a linear second order ODE, this time yielding a 
function a bit more complicated than a parabola…  It is interesting to note the 
asymptotic form of the solution to this sort of problem.  The solutions decay 
away to zero exponentially as you move away from the plate, typical for 
boundary layer problems.  That’s why “infinity” doesn’t have to be all that large 
numerically: it’s a fairly abrupt transition as you move out of the boundary layer. 
 

Problem 2: Flow past a flat plate with suction. 
 

a. This is a nice scaling problem, demonstrating that you don’t actually have to 
suck all that much fluid out of a boundary layer to affect its size.  This is one of 
the three simple approaches to controlling boundary layer growth and delaying 
separation, the others being injection (why flaps on wings have small gaps 
between wing elements), and vortex generation (promoting turbulence in 
boundary layers, also delaying separation).  Suction has been used, but not 
much: imagine what would happen to a plane if the holes get plugged! 

b. Practice breaking a problem into a set of first order ODE’s and solving them 
numerically using the shooting method. 

 
Problem 3: Rotating Disk Flow: 
 

a. This is the classic von Karman similarity problem.  The similarity transform 
used here actually works even for parallel plate flow, although then the pressure 
gradient in the radial direction wouldn’t be zero (instead you would have a no 
net radial flow condition that fixes the radial pressure gradient). 

b. A bit more practice solving a problem numerically, somewhat more involved 
than the flat plate problem. 

c. Once again demonstrating that the scaling (the easiest part) provides an 
excellent estimate of the desired quantity (total flux into the boundary layer and 
boundary layer thickness). 


